射流-尾迹三元流动理论在循环水泵上的应用
- 格式:pdf
- 大小:180.66 KB
- 文档页数:3
浅析离心泵叶轮基于三元流理论的节能改造摘要:闸述了离心泵三元流叶轮节能技术的应用改造情况。
三元流叶轮应用于离心泵实际工况与设计工况不吻合情况下的节能改造,具有投资少、见效快,实施方便,节能显著等特点。
1 概述大庆炼化公司润滑油厂石蜡成型车间粒蜡冷却系统由于近两年增加了生产线、离心泵运行时间过长等原因导致设计工况与实际工况不相符,造成离心泵运行效率低,浪费不少电能。
针对上述能源浪费情况,车间对离心泵进行技术改造,公司与大连里欧华能泵业有限公司合作,应用三元流理论对叶轮进行改造,取得了一定的节能效果。
2 离心泵效率提升改造的技术理论2.1离心泵工作原理及结构我们的生活和工业生产离不开各种各样的泵,特别是化工类企业,处处都有不同的泵在用于满足我们企业功能的实现和需要。
泵是一种进行能量转换的通用设施,它能把动力机如电机、马达等的机械能或者其它形式能源的能量传递给所输送的流体介质,达到流体势能增加的目的,从而可把各种液体流体从低处输送到高处,或从一处抽送到另外一处。
泵主要用来传输水、油等液体,亦可输送由气液构成的混合物或者带有部分细小颗粒物的液体。
泵的种类众多,根据工作原理一般可分为动力式泵(含离心泵)、容积式泵和其他类型泵三大类。
而离心泵是用装在泵壳内被电机带动的叶轮做高速旋转运动产生的离心力来进行工作的设备,其工作原理为先将输送物料灌满泵壳和泵入口管道,然后,启动动力设施,使叶轮和进入泵壳内的液体作高速的旋转运动,此时,液体由于受到强大的离心力作用而被甩出叶轮流道,再由蜗形泵壳中的固定流道而进入泵出口管(也叫做压水管道)。
这时候,泵叶轮吸入口由于该处介质受强大离心力作用被甩出继而成为了真空状态,在该瞬间真空的引导下,输送介质沿着泵入口管而迅速、完全地流入到叶轮的吸入口,再一次受到叶轮的作用,被甩出后进入泵的出口管。
由此,就完成了离心泵的连续输送功能。
离心泵的分类根据不同原则有不同划分。
如按叶轮数目可分为:1)单级泵:即在泵轴上只有一个叶轮,较常见;2)多级泵:在泵轴上安装有两个或多个叶轮,多用于高扬程场合,因此时泵的总扬程为多个叶轮产生的扬程总和。
循环水泵节能改造方法措施与案例seek; pursue; go/search/hanker after; crave; court; woo; go/run after在石油、化工、冶金、医药、电力等行业都大量应用循环水泵,其耗电量不容小视.对循环水泵系统进行节能改造,对企业降耗增效具有很大经济价值.我公司长期致力于水泵系统节能服务,改造了数十台循环水泵,有丰富的实践经验和体会,在此和大家交流、分享.我们把水泵系统节能原理概括为一句话,就是“用高效水泵在高效点工作,降低管路损失尤其是降低或消除节流损失”.这句话包含了高效水泵水泵效率、高效点、管路损失三个关键词,也是水泵系统节能的三个关键点.1高效水泵水泵效率:要节能,水泵效率必须高.水泵效率高低首先取决于设计水平,其次取决于制造精度和质量;2高效点:同一台水泵,在不同的流量点其效率是不同的,一般在额定工况附近效率最高,如果偏离额定工况较多,水泵额定效率即便很高,其实际运行效率也不高.再延伸一点说,高效点还要考虑电机的负荷率和电机高效区,也就是说要使整个水泵系统总效率处于综合高效点.3管路损失:管路损失要尽可能降低,尽量消除节流损失.我们就是通过紧紧瞄准水泵效率、高效点、管路损失这三个关键点,对水泵实际运行工况进行科学分析和诊断,利用先进理论和科学方法,找出水泵系统存在的问题,有针对性地采取切实有效的措施,全面深入挖掘各项潜力,提高水泵额定效率、使水泵实际工作参数处于高效点、最大限度地降低管路损失,通过三方面的有机结合,实现节能目标,这就是我们的节能原理.我公司的具体节能措施有以下几点:1、现场调研,正确诊断系统存在问题,有的放矢,精准确定设计参数.2、凭借高超设计水平和节能理念,提高设计工况点的额定效率.广泛学习和利用三元流等先进设计理论,结合CFD流场分析和动态模拟,瞄准特定工作范围,借鉴优秀水利模型,采用先进CAD设计软件,最重要的是我们有经验丰富的高级设计师,将几十年的设计经验和体会融入其中,使设计的水泵及叶轮效率接近特定工况的极限值,用高效水泵或高效叶轮三元流叶轮替换旧泵或旧叶轮.3、消除工况偏移造成的效率低下.普通水泵都是系列化定型产品,用适当间隔的有限的规格参数,来满足千差万别的工况,不可能针对某厂具体需要参数来设计制造.水泵产品型谱的有限性和实际生产工况参数千差万别的多样性,必然会造成水泵性能参数和实际生产工艺需求及管路实际阻力之间的不完全匹配,这就导致水泵偏离高效运行区间;由于各种原因造成水泵负荷的变化也会导致水泵偏离高效区;这都会导致效率低下,造成能源浪费.我们根据具体情况,采取各种措施消除工况偏移状况,使水泵重回高效区工作.4、量身定做,专门设计制造,消除无用功耗.设计院在工程设计时,一般没有对每台水泵的流量需求、管道阻力进行精确计算,普遍采用类比估算,为了安全可靠相对比较保守.淄博怡达节能服务公司针对客户实际工况需要,合理确定具体参数,精心设计专门适应于该实际工况的水泵,使水泵能力和实际负荷良好匹配,提高运行效率,实现节能目的.5、多泵优化组合,系统整体优化:通过对电机、水泵、传动装置、调速装置、管网和工作装置整个系统进行匹配优化设计,合理调度实现经济运行,提高系统总效率,达到节能目的.具体措施譬如:进行水泵合理配置,根据生产负荷变动进行节能运行调度,实现节能目的;提高电机运行效率等;合理分流、回流;水泵合理串并联运行等等.6、采用调速节能技术变频调速、永磁调速器调速、偶合器调速等.变频调速是水泵系统目前应用最广泛的节能技术之一,已被大家普遍认识和接受,为水泵系统节能做出了很大贡献.但是应该认识到有些工况并不适用,并且变频器本身要耗电3—5%.7、精密铸造,仔细打磨,从制造环节提高产品质量和精度,提高效率.8、广泛收集提高水泵效率的最新研究成果和各种小改小革的成功经验以及各种“偏方”“秘方”,然后分析甄别,选择一部分投入大量资金进行试验验证,通过总结、应用积累了许多独特经验,提高了节能服务的技术水平.要达到好的节能效果,需要根据不同情况针对性地采取不同节能技术,组合选用几种有效节能措施.和大家分享淄博怡达节能服务公司近期几个案例,让大家对水泵节能改造效果有一个大概了解有兴趣的朋友可以从海川化工论坛搜索到更多我公司资料.1、某公司qsn300-m9双吸泵更换我公司特制的高效叶轮后,在流量相同的情况下,水泵电机电流由280A降为230A,节能率达到17.8%2、某公司 qsn250-m6双吸泵更换特制的高效叶轮后,在流量比原来还稍有增大的情况下,水泵电机电流由223A降为153.8A,节能率达到30%;3、某化工公司qsn250-m9双吸泵进行扩容改造,在阀门、管路系统相同的情况下,流量由490方/时增大到560方/时,且效率有显着提高.4、某化工公司循环水泵 24SH-9B 流量2800方/时,扬程56米,电机560KW,原每小时耗电520度,更换我们高效叶轮后,在流量相同的情况下每小时耗电470度,节省50度.5、某公司OS350-510B双吸泵更换我公司节能泵实现节能率15%6、某公司10sh-6A水泵更换我公司节能泵,相同流量电流由145A降为105A,节能率27%.用三元流高效叶轮替换法进行循环水泵节能改造的步骤与特点:根据用户水泵实际运行工况.以完全满足用户实际运行需要为前提,根据射流——尾迹全三元流动理论,借助PCAD、CFD等设计软件,再融入高级工程师多年积累的丰富经验,综合优化,重新设计、制造加工可互换的高效率三元流叶轮,换装于原水泵壳体内即可,原设备基础、电机、管路等都不需要改动,施工简单快捷,项目实施安全方便,节能效果显着,可谓水泵节能改造的首选方案.原创资料,谢绝同行引用。
循环冷却水系统节能方案设计实践导读:从能量守恒定律出发,分析了循环冷却水系统各构成单元的能量转化过程。
以降低循环冷却水系统运行能耗为目标,剖析了可采用的三种节能技术。
结合钢铁生产工艺中的循环冷却水系统现场,通过数据采集、运行状况诊断、技术方案设计及节能评估,完整阐述了循环冷却水系统节能方案实践过程。
1、前言钢铁工业是国民经济的重要基础产业,包括从采矿、选矿、烧结(球团)、焦化、炼铁、炼钢、轧钢,直到金属制品及辅料等生产工序。
为推动钢铁工业转型升级,走中国特色的新型工业化道路,工业和信息化部印发《钢铁工业“十二五”发展规划》,规划明确指出要深入推进钢铁工业节能减排。
在钢铁工业链上各生产工序中,工业冷却水的循环使用非常普遍。
循环冷却水系统是工艺生产主线的生命保障线,对于生产正常运行及设备安全运转起着至关重要的作用。
因此,有必要对循环冷却水系统的节能技术进行分析,促进系统安全、节能运行。
中冶南方(武汉)威仕工业炉有限公司以为客户提供“用能设备的全生命周期服务”的理念,提供包括工业炉及钢铁全流程中终端用能设备的节能技术服务。
2、循环冷却水系统能量使用2.1循环冷却水系统构成循环冷却水系统依据系统输送介质不同,有密闭式和敞开式两种系统。
以较常用的敞开式系统为例,包括电源装置、传动系统、循环水泵组、管网、换热装置、冷却塔等,其系统构成如图1所示。
其中电源装置提供了整个系统的能源供给,如机械输送设备、传动控制系统及自动化控制系统等;自动化控制系统包括电气自动化(如变频调速控制)及仪表自动化(如管网上流量调节阀);冷却塔通常有风机及驱动电机等子设备;冷却水使用设备包括在广义的循环系统管网中,没有分别列出。
图1典型循环冷却水系统示意图2.2系统能量输入与转化电能输入。
如图1中的电源装置,通过工厂电网将电能输入到循环冷却水系统。
水泵配用的电机、风机配用电机、以及系统中自动化控制设备均需输入电能来保证设备运行与运转。
三元流技术我公司依托专业技术团队对需进行节能改造的水泵、风机用三元流理论进行定制设计。
对于高效节能水泵的设计,从考虑水力损失最小、效率最高和汽蚀性能最好着手,用三元流理论与CFD流体力学计算和优化相结合的方法,寻找不同的流动和几何参数的最优组合,从设计上保证产品的高效性能。
三元流叶轮设计技术水泵、风机由电机等原动机带动叶轮旋转,将原动机的机械能转变为被输送流体的动能和压力能。
在与叶轮同步旋转的空间坐标系(R、φ、Z)中,任何空间一点均可由此坐标系确定。
任何一点的流速W可表示为该点坐标的函数W=f(R,φ,Z),这就是三元流的基本概念。
计算图(1)流道中任何空间一点的流速W,这就是三元流动解法。
通过三元流动计算,可以得到水泵、风机任意点的流速。
三元流设计技术是根据“三元流动理论”将叶轮内部的三元立体空间无限地分割,通过对叶轮流道内各工作点的分析,建立起完整、真实的叶轮内流体流动的数学模型,进行网格划分和流场计算。
运用三元流设计方法优化叶片的进出安放角、叶片数、扭曲叶片各截面形状等要素,其结构可适应流体的真实流态,从而避免叶片工作面的流动分离,减少流动损失,并能控制内部全部流体质点的速度分布,获得水泵、风机内部的最佳流动状态,保证流体输送的效率达到最佳。
三元流叶轮制造工艺对于中小型三元流叶轮,采用金属模精密铸造,保证叶轮的精度和表面质量。
大型三元流叶轮,叶片毛坯采用铸造或锻造,叶片和叶轮的前后盖板均采用数控加工,叶轮部件采用拼焊工艺。
依据三元流动理论设计出来的叶轮配以先进的三元流叶轮制造工艺,使叶轮的叶片型线完全达到设计要求,最大限度地降低了泵内的损失、冲击和噪音,泵的效率和运行可靠性得以显著提高。
三元流叶轮特点●子午流道三元流叶片宽,轮毂减少,通流能力增大,提高了水力效率;●子午流道三元流叶轮直径减少,而出口宽度增大,提高了水力效率;●三元流叶轮槽道更宽,叶轮槽道水流速减小,因此可以避免汽蚀或减缓汽蚀现象发生。
三元流动理论在叶轮机械中的应用与发展所谓三元流动,其含义是指在实际流动中,所有流动参数都是空间坐标系上三个方向变量的函数。
其通用理论的中心思想是将叶轮机械内部非常复杂、难以求解的三元(空间)流动,分解为相交的两族相对流面上比较简单的二元(流片)流动,只使用这两族流面就可以很容易地得到三元流场的近似解,同时使用这两族流面进行迭代计算,可以得到三元流动的完整解。
三元流动是透平机械气动热力学的专门问题。
最初是航空上为了提高飞机性能,对压缩机的设计不断提出新的技术要求和性能指标,从而使压缩机的第一级由亚音速过渡到超音速。
流线的曲率和斜率对气流参数的影响就特别突出,要设计样的叶轮机械就必须突破“沿圆柱表面”流动的束缚,把流线的曲率和斜率考虑进去,同时还要考虑熵和功沿径向的变化。
因此,迫切需要建立新的流动模型,把二元流发展到三元流。
按三元流动理论设计出既弯又扭的三元叶轮,才能适应气流参数(如速度、压力等)在叶道各个空间点的不同,并使其既能满足大流量、高的级压力比,又具有高的效率和较宽的变工况范围。
图1:S1流面与S2流面相交叉模型叶轮中三元流动的理论大致可分为三类:通流理论、Sl与S2相对流面理论和直接三元流理论。
(1)通流理论通流理论最早是由劳伦茨(Lorenz)提出的。
这个理论假设叶片数趋于无穷多,叶片厚度趋于无限薄。
此时,介于两相邻叶片间的相对流面S2与叶片的几何中位面趋于重合,而其上的流动参数在圆周方向的变化量趋于零,但圆周方向的变化率却保持有限值。
所以,此时仍不是轴对称流动。
叶片的作用则通过引入一假想的质量力场来代替。
这样,只要求出在这个极限流面上流动的解即可。
但是,这样得出的解实际上只能是在叶栅密度较大时,作为某个大约与叶道按流量平均的中分面相重合的相对流面上的解。
(2)Sl、S2相对流面理论(如图1)1952年,吴仲华提出了用准三元方法求解三元流动的理论,即著名的叶轮机械两类相对流面(S1流面和S2流面)的普遍理论,把一个复杂的三元流动问题分解为两类二元流动问题来求解,使数学处理和数值计算大为简化。
循环水泵的节能技术与应用摘要:随着我国水泵系统节能市场的不断发展,水泵已经广泛应用于社会发展的各个领域,作为工业流体输送的核心设备,占据着耗能的主要部分,已经成为节能工作首先需要解决的问题。
关键词:节能水泵生产工艺叶轮技术随着中国加入wto,以及对pm2.5指数的发布,节能环保逐渐成为一个企业的重要议题,在生活中,作为社会的每一个人,无时无刻不在感受着能源技术的发展给生活的每个层面所带来的变化,但是能源的不断消耗,如何以更低的能源消耗,来支持经济的发展成为了一个能源管理的重要任务。
根据通用机械工业协会统计,水泵耗电量占我国发电量的20%左右,水泵已经广泛应用于社会发展的各个领域,成为能耗大户之一。
水泵作为工业流体输送的核心设备,占据着耗能的主要部分,已经成为节能工作首先需要解决的问题。
因此,水泵行业的节能势在必行,水泵运行效率的提升对于节能减排有着重大影响。
目前我国的水泵运行效率总体偏低,水泵的给定效率多数比发达国家产品低5-10%,实际使用效率比发达国家低10-30%,能耗浪费严重,运行效率有较大的提升空间。
但提高水泵的能源利用效率仍然面临严重挑战。
1)对水泵的节能问题认识不足,影响水泵的节能效果。
一是水泵的制造单位注重追求企业的经济效益,对节能工作积极性不高,并拥有较大的市场。
二是水泵使用单位不关心水泵的节能技术指标,只是关心产品能否满足使用要求,价格是否低廉。
为了保险起见,使用单位往往选用流量和扬程余量过大的水泵,大马拉小车,致使水泵不能在高效区运转,实际运行效率远远低于水泵的最高效率。
三是传统的节能概念主要是提高水泵的效率指标,实际上水泵的节能内容还包括水泵性能的持久性,延长水泵的大修期、维修比和寿命,水泵的节材,提高水泵的系统效率,减少水泵对环境的污染等。
2)目前国内水泵设计单位采用的水泵设计方法主要是过去传统的速度系数法和模型换算法,这些方法建立在已有设备设计的经验基础上,在效率方面超过已有水平的可能性不大。
“五小”实用技术项目申报表申报单位: 企管办填报时间:2011年9月5日项目名称“三元流”新技术在改造煤矿主水泵节电中的应用实施时间2011年个人项目姓名性别出生年月文化程度职称工作岗位集体项目参与完成人员黄儒林主要负责人姓名柳建性别男出生年月1970.08 文化程度本科职称高工工作岗位企管办节能环保主要负责人工作节能环保等工作。
项目简述一、概述。
运用“三元流”新技术可对煤矿各类大型水泵进行改造,能显著提高水泵的运行效率,达到节约用电及减少开泵数量的的。
该新技术也是国际上流行的一种简易而行的新技术。
目前国内部分钢铁企业大型循环水泵已运用该技术进行了改造,取得了成功,创造了显著的节能经济效益。
二、运用新技术途径与措施。
煤矿井下大水泵以及地面水厂、水源井水泵等,大型水泵多数没有运用变频调速节电技术实施改造,也受到电压高(如6KV)和投资大等因素的影响。
这些水泵运行中,效率非常低(有的低于70%),电耗高,存在很大的节电空间。
运用“三元流”叶轮改造水泵,能显著提高效率,平均节电率在30%左右,视如变频节电调速技术,它无需庞大的控制设备,免去了设备自身的能耗了,同时又不受防爆条件的限制。
运用该技术还能提高水泵扬程与流量。
三、改造效果。
单台300KW水泵应用“三元流”叶轮改造,投资约20万元。
如朔里矿改造前,1#、2#泵(300KW、400KW)同时运行,日工作18小时,系统运行效率(含负载率)按75%,改造平均节电率按30%计算,那么年节电量就达103.48万度,按0.70元/度电价计算,年节约电费72.43万元。
类似集团公司20家企业推广应用,每单位仍按此容量和数量计算(成本仅1000万元以内即可),一年可节电2069.55万度,创经济效益1448.68万元,扣除1000万元的成本,一年还可获利448.68万元。
那么一年之后每年就可获得1448万元以上的纯利润了。
(计算及改造方案详见附件1、2)可展示形式该新技术项目,主要创新特点集中体现如下:一是该新技术结构简单,无需庞大的控制设备;二是运用该技术不受环境条件的限制(比如防爆要求、电压等级要求、空间和位置要求、环境温度与潮湿情况等),自身无能耗;三是节电率高(水泵效率明显得到提高,节电率达到30%以上);三是投资小(比同等条件下的变频调速控制投资要小);四是具有技术好、新颖、先进的特点。
三元流技术在循环水泵节能技术改造中的应用实践针对某大型化工企业循环水系统存在的大马拉小车现象和水泵长期处于大流量、超扬程的偏设计工况运行的特点,提出采用三元流技术对水泵进行纠偏节能技术改造,通过更换高效三元流叶轮达到提高水泵运行效率及降低能耗的目标。
实施改造后,水泵效率提高近10%,单台水泵每年节约电能76.8 万kW-h,节能效果显著。
1、前言某大型化工企业循环水系统的6 台单级双吸卧式水泵由于叶轮长期磨损、水力效率低以及设计参数与循环水系统匹配不当,造成大马拉小车现象严重,水泵长期处于大流量、超扬程的偏设计工况的运行状态,运行效率低,具有巨大的节能改造空间。
本文所叙述的水泵节能改造,采用了三元流技术,通过重新设计、制造并更换高效三元流叶轮,实现水泵性能优化和运行匹配,达到提高水泵运行效率及降低能耗的目的。
2、不同改造方案对比分析目前,常用的水泵节能技术改造方案主要有4 种:切割叶轮外径、变频调速、更换新泵和重新设计高效新叶轮。
4 种方案的对比特点见表1。
表1 水泵节能技术改造方案对比通过表1 对4 种节能改造方案的综合对比分析可知:采用重新设计高效新叶轮的方案最为可行,该方案是在保证新叶轮与原有叶轮互换性基础上,采用优秀的水力模型对叶轮进行重新设计,真空技术网(chvacuum/)认为可以彻底解决切割叶轮和变频节能技术无法实现系统彻底节能的技术难题,标本兼治,达到最佳节能效果。
3、三元流动理论及其实施方法3.1、三元流动理论概述叶轮机械三元流动理论是将叶轮内部的三元立体空间无限地分割,通过对叶轮流道内各工作点的分析,建立起完整、真实的叶轮内流体流动的数学模型。
依据三元流动理论设计的叶片形状为不规则曲面形状,叶轮叶片的结构可适应流体的真实状态,能够控制叶轮内部全部流体质点的速度分布,可以显著提高水泵的运行效率。
三元流动理论最早是由吴仲华院士创立,因此也称吴氏理论,他提出了S1、S2 两类流面的概念,但是吴氏理论是建立在理想流体忽略流体粘性假设的基础上,计算结果往往与流体实际流动情况偏差较大。