4流体机械原理课件第三章叶轮解析
- 格式:ppt
- 大小:21.01 MB
- 文档页数:32
叶轮的设计原理及应用叶轮是一种常见的机械设备,它的设计原理和应用非常广泛。
叶轮常用于液体泵、风扇、涡轮机、喷气发动机等各种工程设备中。
下面将从设计原理、应用范围和优缺点等方面详细介绍叶轮。
叶轮的设计原理主要基于流体力学,叶轮即为固定叶片或转动叶片组成的旋转部件。
为了实现特定的流体机械任务,叶轮的设计取决于不同的应用和摩擦条件。
根据叶片的形状、布局和工作环境,叶轮可分为开式和密闭两种类型。
在涡轮机中,流体通过叶轮,叶轮将流体的动能转化为机械能,并推动传动系统工作。
叶轮的设计需要考虑以下几个因素:1. 流体参数:流速、密度、粘度和温度等参数会影响叶轮的设计。
不同的参数对叶轮的各项性能和工作效果都有显著影响。
2. 叶片类型:叶轮的性能主要由叶片的形状和数量决定。
根据叶片类型的不同,叶轮可以分为离心式、轴流式和混流式等。
3. 叶片布局:叶片的布局也会影响叶轮的性能。
布置叶片的角度和密度能够调节叶轮的扬程、流量和效率。
4. 材料选择:叶轮的工作环境对材料的选择提出了要求。
例如,在高温或高压环境中,必须选择能够耐受这些条件的耐热、耐腐蚀材料。
叶轮的应用非常广泛,以下是几个典型的应用领域:1. 液体泵:叶轮作为泵的核心部件,通过旋转产生离心力,将液体向外部压送。
在工业生产、供水系统和化工过程中广泛使用。
2. 风扇:叶轮通过旋转产生气流,用于降温、通风和气体传送,广泛应用于建筑、汽车、电子设备等领域。
3. 涡轮机:叶轮作为涡轮机的动力转换部件,将流体的动能转变为机械能,如水力发电和汽轮发电等。
4. 喷气发动机:喷气发动机中的叶轮通过喷气产生推力,实现飞机或其他飞行器的推进。
叶轮具有一些优缺点:优点:1. 高效能:叶轮的设计优化可以提高流体机械的效率,从而降低能源消耗和运行成本。
2. 灵活性:叶轮的尺寸、形状和材料可以根据具体应用需求进行定制,满足不同工况下的流体传输要求。
3. 负载适应性:叶轮能够根据系统负载的需求自动调整输出功率,对于泵类设备尤为重要。
《化工过程流体机械》总结、思考、公式、习题(第三章)2009.10.15(内容总结及思考题)第三章叶片式压缩机§ 3.1 离心压缩机的结构类型3.1.1 离心压缩机的基本结构3.1.2 主要零部件3.1.3 典型结构小结:1.基本结构级、段、缸、列;首级、中间级、末级;叶轮、扩压器、弯道、回流器、吸气室、蜗壳;2.主要零部件叶轮(后弯型,相对宽度b2/D2,直径比D1/D2);扩压器(叶片、无叶片);3.典型结构单级、多级,水平中开型、高压筒型等。
思考题:[2] 3-1.何谓离心压缩机的级?它由哪些部分组成?各部件有何作用?§ 3.2 离心压缩机的工作原理3.2.1 工作原理3.2.2 基本方程3.2.3 压缩过程3.2.4 实际气体小结:1.工作原理离心压缩机特点(优缺点);关键截面参数(s、0、1、2、3、4、5、0');2.基本方程连续性、欧拉方程,焓值方程(热焓形式)、伯努利方程(压损形式);3.压缩过程等温压缩、绝热压缩、多变压缩过程(过程指数m、绝热指数k);4.实际气体压缩性系数Z、混合气体(ρ、R、c p或c v、k)。
思考题:[2] 3-2.离心压缩机与活塞压缩机相比,它有何特点?[2] 3-3.何谓连续方程?试写出叶轮出口的连续方程表达式,并说明式中b2/D2和φr2的数值应在何范围之内?[2] 3-4.何谓欧拉方程?试写出它的理论表达式与实用表达式,并说明该方程的物理意义。
[2] 3-5.何谓能量方程?试写出级的能量方程表达式,并说明能量方程的物理意义。
[2] 3-6.何谓伯努利方程?试写出叶轮的伯努利方程表达式,并说明该式的物理意义。
[2] 3-14.如何计算确定实际气体的压缩性系数Z?[2] 3-15.简述混合气体的几种混合法则及其作用。
§ 3.3 离心压缩机的工作性能3.3.1 能量损失3.3.2 性能参数3.3.3 单级特性3.3.4 多级特性3.3.5 性能换算小结:1.能量损失流动(摩阻、分离、冲击、二次流、尾迹、M)、轮阻、内漏气损失;2.性能参数能头、功率、效率,级中气体状态参数(温度、压比、比容);3.单级特性能头(压比)、功率、效率特性,喘振和堵塞工况、稳定工况区;4.多级特性特性(曲线陡、喘振限大、堵塞限小、稳定区窄)、影响(u2、μ);M、k)、完全相似和近似相似(k=k')换算。
叶轮机械原理
叶轮机械原理是通过旋转的叶轮来转化或传递能量的一种机械原理。
叶轮通常由装备在轴上的叶片构成,这些叶片通过旋转提供机械能或液压能。
叶轮的工作原理基于牛顿第三定律,即作用力与反作用力相等而方向相反。
当叶轮旋转时,它会通过叶片与流体之间的相互作用产生一个作用力。
这个作用力会将流体推动并转化为机械能。
叶轮机械用于很多不同的应用,例如水泵、涡轮机和风力发电机等。
在水泵中,叶轮通过转动将流体吸入并推出,提供压力和流动。
在涡轮机中,叶轮则通过流体的作用转动轴,从而驱动发电机或者其他机械设备。
风力发电机中的叶轮接收风的能量,将其转化为旋转能量,然后由发电机生成电力。
叶轮机械的效率取决于其设计和操作参数,例如叶轮的形状、角度和转速等。
优化这些参数可以提高叶轮机械的效率和性能。
同时,叶轮机械还需要定期的维护和保养,以确保其正常运行和寿命。
总之,叶轮机械原理是一种通过旋转的叶轮将流体能转化为机械能的重要机械原理。
它在各种领域中都有广泛的应用,并且对于能源转换和流体传输具有重要意义。
流体机械目录第一章概论1.1流体机械简介1.2流体机械的分类1.3流体机械的应用第二章水轮机2.1 概论2.2 帕尔登水轮机2.3 法氏水轮机2.4 轴流式水轮机2.5 泵轮机第三章泵3.1 概论3.2 离心泵3.3 特性曲线3.4 轴流泵与斜流泵3.5 往复泵3.6齿轮泵与轮叶泵第四章空气机械4.1 概论4.2 轴流式送风机与压缩机4.3 回转式送风机与压缩机4.4 往复式压缩机4.5 真空泵第一章概论1.1 流体机械简介所谓流体机械(fluid mechanism)系指气体、液体或两者混合流体做为媒介而进行能量转换之机械。
如泵(pump)、压缩机(compressor)、送风机(blower)等系以外界之动力源驱动运转,对流体施加能量,使其压力、速度或位能增加。
另如水轮机(water turbine)、气轮机(gas turbine)、蒸汽轮机(steam turbine)、风力机(wind turbine)等则是以流体本身作为动力源而运转,对外界做功。
1.2 流体机械的分类流体机械依工作流体的不同,可分为两大类:1. 液体机械(hydraulic mechanism)。
2. 空气机械(air mechanism)。
流体机械依能量转换的型式,可分为三大类:1.流体原动机械流体原动机械是指将流体能量转换成机械能之机械,如水轮机、气轮机、蒸汽轮机、风力机等。
2.流体动力机械:流体动力机械是指将机械能转换成流体能量之机械,如泵、风扇机、鼓风机及压缩机等。
3.流体传动机械:流体传动机械是利用流体以达到动力传送目的之机械,如流体连轴器(hydraulic coupling)、扭矩变速器(torque converter)、液压缸等。
1.3 流体机械的应用流体机械在工程上之应用相当多,如:1. 自来水之输送、下水道排水、工厂之工作流体输送等。
2. 气轮机发电系统、蒸汽发电厂、空调系统、飞机喷射引擎等。
3. 水力发电厂所使用之水轮机、风力发电厂所使用之风力轮机。
第二章 叶片式流体机械的能量转换§2-1流体在叶轮中的运动分析一、几个概念及进出口边符号确定流体机械叶片表面一般是空间曲面,为了研究流体质点在 叶轮中的 运动规律,必须描述叶片。
叶片在柱坐标下是一曲面方程),,(θθθz r =,但解析式一般 不可能获得。
工程上借助几个面来研究: 基本概念1.平面投影: 平面投影是将叶片按工程图的做法投影到与转轴垂直的面上。
2.轴面(子午面):通过转轮上的一点和转轮轴线构成平面:(一个转轮有无数个轴面,但是每个轴面相同)3.轴面投影:它是将叶片上每一点绕轴线旋转一定角度投影到同一轴面上的投影,叫轴面投影。
4.流线5.迹线 6.轴面流线进出边符号确定:(本书规定) P 代表高压边 P 对风机,泵,压缩机,一般S 代表低压边 出口边对水轮机进口边S 对风机,泵,压缩机,一般是进口边,对水轮机是出口边二、叶轮中的介质运动 1.速度的合成与分解:流体机械的叶片表面是空间曲面,而转轮又是绕定轴旋转的,故通常用圆柱坐标系来描述叶片形式及流体介质在转轮中的运动。
在柱坐标中,空间速度矢量式可分解为圆周,径向,轴向三个分量。
u z r C C C C++= 将C z ,C r 合成得C m , z r m C C C+= C m 位于轴面内(和圆周方向垂直的面),故又叫轴面速度。
2.绝对运动和相对运动:在流体机械的叶轮中,叶片旋转,而流体质点又有相对转轮的运动,这样根据理论力学知识质:叶轮的旋转是牵连运动。
流体质点相对于叶轮的运动叫相对运动,其速度叫相对速度,这样,流体质点的绝对速度为 这两速度的合成,即 u w C += 其中 u是叶轮内所研究的流体质点的牵连速度在流体机械的静止部件内,没有牵连速度,相对运动的轨迹和绝对运动重合。
用速度三角形,表示上述关系,即得:依速度合成分解,将C 分解为沿圆周方向的分量C u 及轴面上的分量C m ,从速度三角形知:C m =W m u u W C u +=或u u W C u-=叶轮内,每一点都可作出上述速度三角形。