第五章 液体三元流动基本原理w
- 格式:ppt
- 大小:4.97 MB
- 文档页数:71
学习单元一、液体流动的基本概念液体运动的两种方法要研究液体运动的规律,就要建立描述液体运动的方法。
在流体力学中,表达流体的运动形态和方式有两种不同的基本方法:拉格朗日法和欧拉法。
1.拉格朗日法拉格朗日法是由法国科学家J. L.拉格朗日作了独立的、完整的表述和具体运用, 又称随体法。
该方法着眼于流体内部各质点的运动情况,描述流体的运动形态。
按照这个方法,在连续的流体运动中,任意流体质点的空间位置,将是质点的起始坐标(a,b,c) (即当时间t等于起始值t0时的坐标)以及时间t的单值连续函数。
若以r代表任意选择的质点在任意时间t的矢径,则:矢径与质点坐标可以表示为:r = r(a,b, c, t)X=x (a,b,c,t)y=y (a,b,c,t)z=z (a,b,c,t)式中,r在x、y 、z 轴上的投影为x、y 、z ;a、b、c 称为拉格朗日变量。
当研究对象为某一确定的流体质点时,起始坐标a、b、c 将为常数,r 以及x、y 、z 将只是时间t的函数;此时上式所表达的将是这个流体质点运动的轨迹。
当研究的对象不是某一确定的流体质点,而是在某一确定时间中,各流体质点的分布情况,即时间t为一常数,r及x、y 、z 将只是起始坐标a、b、c的函数;在这种情况下,式子所表达的将不是某流体质点的历史情况,而是同一瞬间,由各质点所组成的整体状况.将式上述拉格朗日表达式对时间求一阶和二阶导数,可得任意流体质点的速度和加速度为:),,,(t c b a u t x u =∂∂= ),,,(t c b a v t y v =∂∂=),,,(t c b a w t z w =∂∂=),,,(22t c b a a t x t u a x x =∂∂=∂∂=),,,(22t c b a a t y t v a y y =∂∂=∂∂=),,,(22t c b a a t z t w a z z =∂∂=∂∂=描述了整个流场中所有质点的规律,就可以描述整个流动。
《水力学》学习指南第一章绪 论(一)液体的主要物理性质1.惯性与重力特性:掌握水的密度ρ和容重γ;2.粘滞性:液体的粘滞性是液体在流动中产生能量损失的根本原因。
描述液体内部的粘滞力规律的是牛顿内摩擦定律 :注意牛顿内摩擦定律适用范围:1)牛顿流体, 2)层流运动3.可压缩性:在研究水击时需要考虑。
4.表面张力特性:进行模型试验时需要考虑。
下面我们介绍水力学的两个基本假设: (二)连续介质和理想液体假设1.连续介质:液体是由液体质点组成的连续体,可以用连续函数描述液体运动的物理量。
2.理想液体:忽略粘滞性的液体。
(三)作用在液体上的两类作用力第二章 水静力学水静力学包括静水压强和静水总压力两部分内容。
通过静水压强和静水总压力的计算,我们可以求作用在建筑物上的静水荷载。
(一)静水压强:主要掌握静水压强特性,等压面,水头的概念,以及静水压强的计算和不同表示方法。
1.静水压强的两个特性:(1)静水压强的方向垂直且指向受压面(2)静水压强的大小仅与该点坐标有关,与受压面方向无关,2.等压面与连通器原理:在只受重力作用,连通的同种液体内, 等压面是水平面。
(它是静水压强计算和测量的依据)3.重力作用下静水压强基本公式(水静力学基本公式)p=p 0+γh 或 其中 : z —位置水头,p/γ—压强水头(z+p/γ)—测压管水头请注意,“水头”表示单位重量液体含有的能量。
4.压强的三种表示方法:绝对压强p ′,相对压强p , 真空度p v , ↑ 它们之间的关系为:p= p ′-p a p v =│p │(当p <0时p v 存在)↑相对压强:p=γh,可以是正值,也可以是负值。
要求掌握绝对压强、相对压强和真空度三者的概念和它们之间的转换关系。
1pa(工程大气压)=98000N/m 2=98KN/m2下面我们讨论静水总压力的计算。
计算静水总压力包括求力的大小、方向和作用点,受压面可以分为平面和曲面两类。
叶轮机械三元流动通用原理The principles of the three-element flow in centrifugal machinery are essential to understand in the field of mechanical engineering. 叶轮机械三元流动原理是机械工程领域中必须理解的基本原理之一。
This concept involves the study of the interactions between the flow of fluid, the rotation of the impeller, and the resulting pressure and velocity changes within the centrifugal pump. 这个概念涉及了流体流动、叶轮的旋转以及离心泵内因此产生的压力和速度变化之间的相互作用。
With a deep understanding of these principles, engineers can design and optimize centrifugal machinery for various applications. 有了对这些原理的深刻理解,工程师可以设计和优化适用于各种应用的离心机械。
One of the fundamental aspects of the three-element flow in centrifugal machinery is the study of fluid dynamics. 叶轮机械三元流动的一个基本方面就是流体动力学的研究。
It involves the analysis of how fluids behave in motion, including the principles of conservation of mass, momentum, and energy. 它涉及流体在运动中的行为分析,包括质量、动量和能量守恒原理。