第五章 多原子分子结构与性质2
- 格式:ppt
- 大小:630.50 KB
- 文档页数:39
第五章多原子分子的结构和性质●多原子分子的结构包括两方面内容:(1)组成分子的原子在三维空间的排布次序、相对位置,(1)组成分子的原子在三维空间的排布次序相对位置,通常由键长、键角、二面角等参数描述构型和构象。
分子的几何结构可用衍射方法(包括X 射线衍射、电子衍射和中X射线衍射电子衍射和中子衍射)测定。
(2)分子的电子结构、化学键型式和相关的能量参数,通(2)分子的电子结构化学键型式和相关的能量参数通常由分子轨道的组成、性质、能级高低和电子排布描述。
分子的电子结构可用谱学方法(包括分子光谱、电子能谱和子的电子结构可用谱学方法(包括分子光谱电子能谱和磁共振谱等)测定。
51价电子对互斥理论(VSEPR)5.1 价电子对互斥理论(VSEPR)•VSEPR :V alence S hell E lectronic P air R epelling 1940年提出,用来解释许多化合物的几何构型。
年提出用来解释许多化合物的几何构型•价电子对·成键电子对(bp)·孤对电子对(lp)p•价电子对互斥理论认为:原子周围各个价电子对之间由于互相排斥作用,在键长一定的条件下,相互间距离愈远愈稳定。
·价电子对之间排斥力的根源1. 是各电子对之间的静电排斥力;2. 是Pauli 斥力,即价电子对之间自旋相同的电子互相回避的效应。
•判断分子几何构型的规则:1. 为使价电子对间斥力最小,可将价电子对看作等距离地排1为使价电子对间斥力最小可将价电子对看作等距离地排布在同一个球面上,形成规则的多面体形式。
中心原子周围存在m个配位体L及n个孤对电子对E时,★当m+n=2 时,分子为直线形;★当m+n 3 时,分子为三角形;m+n=3★当m+n=4 时,分子为四面体形;★当m+n=5 时,分子为三方双锥形;m+n=5时分子为★当m+n=6 时,分子为八面体形。
用VSEPR方法判断原子A周围配位体和孤对电子对的空间排布ALm E n2.中心原子A 与m 个配位体L 之间所形成的键可能是单键,双键或三键等多重键。
第五章 多原子分子结构与性质习题解答070601306 何梅华 070601307游梅芳 070601308 陈风芳 070601309黄丽娜 070601310 郑海霞 070601311 黄秀娟 070601312 尤丽君1.以CH 4为例,讨论定域分子轨道和离域分子轨道间的区别和联系。
答:杂化轨道理论将CH 4分子中的C 原子进行了sp 杂化,每个杂化轨道和1个H 原子的1s 杂化形成一个定域分子轨道,在此成键轨道中的一对电子形成定域键C-H ,四个C-H 键轨道能量等同。
离域分子轨道处理CH 4分子所得的能级图说明4个轨道能量高低不同。
定域分子和离域分子两种模型是等价的,只是反应的物理图像有所区别。
2.试讨论杂化轨道构成三原则。
解:若以{i φ}表示某原子参加杂化的原子轨道集合,k Φ为杂化轨道,则:∑=Φni i k cki φ i =1,2,3,…,n (1)(1) 杂化轨道要满足归一化条件 杂化轨道是一种原子轨道,它描述了处于价态原子中单电子的可能状态。
归一化的数学表达式为:1)(222===Φ∑⎰∑⎰ki c d cki d ninii kτφτ (2) 上面的计算用到了同一原子中原子轨道间满足正交、归一的条件。
ki c 为i φ在第k个杂化轨道中的组合系数,而2ki c 表示i φ在k Φ中的成分。
当把k Φ轨道中s 轨道的成分记为k α、p 轨道的成分记为k β时,就有2ks k c =α (3)222kzky kx k c c c ++=β (4) (2)参加杂化的轨道贡献之和为1参加杂化的i φ轨道是归一化的,杂化后的在新形成的所有杂化轨道里的成分之和——即i φ电子“分散”到各杂化轨道中的概率之和应为1。
故有12=∑kkic(5)由(2)式和(5)式可知,有n 个i φ轨道参与杂化应得n 个杂化轨道。
(2) 同一原子中杂化轨道间正交正交的杂化轨道间排斥作用能最小,使原子体系稳定。
第五章多原子分子的结构和性质§5.1 价电子对互斥理论(VSEPR)价电子对: 成键电子对(bp)和孤电子对(lp)认为:由于斥力作用,键长一定时,价电子对之间距离越远越稳定.价电子对斥力: (1)电子对之间的静电排斥作用;(2)Pauli斥力,即价电子对之间自旋相同的电子互相回避的效应判断分子构型需要考虑:(1)bp集中在两个原子的键轴区域(2)多重键按一个键考虑(3)孤电子对比较肥大(4)电负性据此提出判断几何构型的规则:1. 使价电子对斥力小价电子对等距排布在同一球面上,形成规则多面体m + n 个顶点的对应的构型这里m为配体数,n孤电子对数2. 键型的作用3.中心原子A与配体无论形成单键还是双键三键,按一个键区计算原子间的互斥作用.这样双键区有4个电子,三键区有6个电子。
C=O双键对C-Cl单键的斥力大于C-Cl单键之间的斥力,导致键角的不同. 4.孤电子对占据较大的位置§5.2 杂化轨道理论5.2.1.实验基础CH4正四面体键角109.28°中心C原子:111122222222zyxpppsps5.2.2.杂化轨道理论1.定义:所谓“杂化”即单中心原子轨道的线性组合。
2.基本假定:在形成分子的过程中,原子中能级相近的几个原子轨道可以相互混合,从而产生新的原子轨道,称这种新的原子轨道为杂化轨道,这个过程为“杂化”。
3.数学表述:i ki ni k c φφ∑==1 ⎩⎨⎧==n k n i ......2,1......2,1 形成杂化轨道过程和AO 组合成MO 一样,也符合轨道数目守恒。
4. 成键能力:经计算表明,原子轨道经杂化以后增加了成键能力,使体系更加稳定。
5.2.3.杂化轨道的三条基本原则1. 杂化轨道的归一性1=⎰τφφd k k k φ为实函数,得出,∑==+++n iki knk k c c c c 1...222221例如: 3sp 杂化轨道:pzk py k px k s k k c c c c 2423221φφφφφ+++= (k=1……4)124232221=+++k k k k c c c c 2. 单位轨道贡献每个参加杂化的原子轨道,在所有新的n 个杂化轨道中该轨道成分之和必为一个单位。
结构化学第五章多原子分子的结构和性质多原子分子是由两个或更多个原子通过共价键连接在一起的分子。
在结构化学的研究中,对多原子分子的结构和性质进行分析是非常重要的。
本章主要介绍多原子分子的键角、电荷分布、分子极性以及它们的几何结构等方面的内容。
首先,多原子分子的键角是指由两个原子和它们之间的共价键所形成的夹角。
键角的大小直接影响分子的空间构型和立体化学性质。
结构化学家通过分析分子的键角可以确定分子的几何结构。
一般来说,当原子间的键角接近于109.5°时,分子的几何结构为四面体形;当键角接近120°时,分子的几何结构为三角锥形;当键角接近180°时,分子的几何结构为线性形。
其次,多原子分子的电荷分布对分子的性质起着重要的影响。
分子中的原子会通过共价键共享电子,形成电子云密度的分布。
根据电负性差异,原子会对电子云产生一定程度的吸引或排斥,并形成了分子中的正负电荷分布。
根据这种电荷分布,可以判断分子的极性。
当分子的正负电荷分布不平衡时,就会形成极性分子,如水分子;而电荷分布平衡时,就会形成非极性分子,如二氧化碳分子。
另外,多原子分子的分子极性也与分子的几何结构密切相关。
分子的几何结构会影响分子的偶极矩,从而决定分子的极性。
当一个分子的几何结构对称时,分子的偶极矩为零,分子为非极性分子;而当分子的几何结构不对称时,分子的偶极矩不为零,分子为极性分子。
例如,二氧化碳分子由于O=C=O的线性结构使得分子的偶极矩为零,因此二氧化碳是非极性分子;而水分子由于O-H键的角度小于180°,使得分子的偶极矩不为零,是极性分子。
在多原子分子中,还存在着共振现象。
共振是指在分子中一些共价键的原子成键和非键电子位置可以相互交换的现象。
共振的存在使得分子的键长和键能难以准确确定,同时影响分子的稳定性和反应性质。
共振的存在对于解释一些分子性质,如分子的稳定性和电子云的分布具有重要作用。
总之,多原子分子的结构和性质是结构化学研究中的重要内容。