核电子学复习资料
- 格式:docx
- 大小:112.29 KB
- 文档页数:12
核医学名词解释(每小题2分,共10分)1.单光子显像:是使用探测单光子的显像仪器(如伽马照相机、SPECT)对显像剂中放射性核素发射的单光子进行的显像。
2.正电子显像:是使用探测正电子的显像仪器(如PET、符合线路SPECT)对显像剂中放射性核素发射的正电子进行的显像技术。
3.有效半衰期:由于物理衰变和机体生物活动共同作用而使体内放射性核素减少一半所需的的时间。
4.物理半衰期:放射性核素的数量因衰变减少一半所需要的时间,用T1/2表示。
5.核医学:核医学是研究核科学技术在疾病诊治及生物医学研究的一门学科。
它是利用核素示踪技术实现分子功能显像诊断和靶向治疗的特色专业学科,并利用核素示踪进行生物医学基础理论的研究。
6.放射免疫分析:是以放射性核素作为示踪剂的标记免疫分析方法,它是建立在放射性分析高度灵敏性与免疫反应高度特异性基础之上的超微量分析技术。
7.核素:质子数、中子数均相同,并且原子核处于相同能级的原子,称为一种核素。
8.放射性核素:原子核处于不稳定状态,需通过核内结构或能级调整才能趋向于稳定的核素称为放射性核素。
9.肿瘤前哨淋巴结:从局部肿瘤引流的第一站淋巴结。
10.心机可逆性缺损:负荷心肌显像呈现为放射性缺损或稀疏,静息或延迟显像填充或“再分布”,见于心肌缺血。
11.心机固定缺损:负荷心肌显像呈现为放射性缺损,静息影像显示该部位仍为放射性缺损,见于心肌梗死、心肌瘢痕和“冬眠心肌”。
(冬眠心肌”:是指由于冠状动脉血流长时间减少,造成心肌细胞功能受损但仍保持代谢活动,其细胞膜完整,心肌并未坏死,恢复血流灌注后心功能可以改善或恢复正常。
)12.标准化摄取值:是PET显像时半定量评价病变组织代谢率的指标,即局部感兴趣区平均放射性活度(MBq/ml)/注入放射性活度(MBq)/体重(g).13.T/NT:靶/非靶比值:是指放射性药物在靶器官或靶组织中的浓聚量,与非靶器官或组织特别是与相邻的非靶器官或组织中的浓聚量之比。
核医学27反射性核素的制备三大类:核反应堆制备,医用回旋加速器制备,放射性核素发生器制备28.物理半衰期:在单一的放射性核素衰变过程中,放射性活度减少一半,所需要的时间是放射性核素的一个重要特征参数。
29什么是生物半衰期:指进入生物体内的放射性核素,经各种途径从体内排出一半所需要的时间30.1合成代谢,细胞吞噬,循环通路,选择性摄取,选择性排泄,通透弥散,细胞拦截,离子交换和化学吸附,特异性结合14.放射性核素示踪计数:是以放射性核素或标记化合物作为示踪剂,应用射线探测器检测示踪剂分子的行踪,研究被标记物在生物体系或外界环境中分布状态或变化规律的技术9.放射性活度:单位时间内发生的核衰变次数,反映放射性强弱的物理量。
1.核医学:是一门利用开放型放射性核素对疾病进行诊断、治疗和科学研究的学3.炸面圈:骨显像时病灶中心显像剂分布减少,病灶周围显像剂增高呈环形的影像表现。
多见于股骨头缺血坏死。
是通过静脉注射的方式将放射性核素标记的亲骨性显像剂引入体内,该类显像剂可以与骨组织内的无机盐和有机质紧密结合,在体外通过核医学成像仪器显示显像剂在骨骼系统内的分布,获得骨骼系统的影像。
13.超级骨显像:某些累计全身的骨代谢性病变,呈现显像剂在全身骨骼积聚异常增高,被称为超级骨显像或过度显像,1.正常典型肾图的三段的名称及生理意义是什么?名称:a段放射性出现段;b段示踪剂聚集段c段排泄段生理意义:a段静脉注射示踪剂后10s左右肾图急剧上升段。
此段为血管段,时间短,约30s反映肾动态的血流灌注相;b段:a段之后的斜行上升段,3-5min 达到高峰,其上升斜率和高度与肾血流量、肾小球滤过功能和肾小管上皮细胞摄取、分泌功能有关。
反映肾皮质功能与肾小管功能;c段:b段之后的下降率与b段上升斜率相近,下降至峰值一半的时间小于8min。
为示踪剂经肾集合系统排入膀胱的过程,主要反映上尿路的通畅情况和尿流量多少有关1.核医学:是一门利用开放型放射性核素对疾病进行诊断、治疗和科学研究的学科2.核医学特点:①高灵敏度②方法简便、准确③合乎生理条件④定性、定量、定位研究的相结合⑤专业技术性强3.核医学显像:①功能性显像②无创性检查③图像融合④解剖分辨力低4.核素:质子数相同,中子数相同,具有相同能量状态的原子8.半衰期:放射性核素数量因衰变减少一半所需要的时间9.放射性活度:单位时间内发生的核衰变次数,反映放射性强弱的物理量。
第一章:能谱数据的获取什么是核辐射探测器核辐射探测器是将入射射线的信息(能量、强度、种类等)转换成电信号或者其它易测量信号(光、热、色或径迹)的转换器,即传感器或换能器。
利用辐射在气体、液体或固体中引起的电离、激发效应或其它物理、化学变化进行辐射探测的器件称为辐射探测器核辐射探测器的工作原理• 基于粒子与物质的相互作用。
• 带电粒子:与物质中原子的轨道电子直接相互作用;• γ/X射线:光电效应,康普顿效应,电子对效应• 中子:核反应产生带电粒子核辐射探测器的分类按工作原理分类:• 利用射线通过物质产生的电离现象做成的辐射探测器• 利用射线通过物质产生的荧光现象做成的辐射探测器。
闪烁体探测器N aI(Ti) C sI(Ti/Na) BGO LaBr3• 利用辐射损伤现象做成的探测器。
径迹探测器CR-39径迹片。
• 利用射线与物质的核反应或相互碰撞产生易于探测的次级。
自给能探测器利用射线与物质的相互作用的其它原理制成的辐射探测器切伦琴科夫探测器。
热释光探测器谱仪中为什么需要前置放大器:1.由于探测器输出的信号比较小,提高信号的差异匹配后续电路,必须对信号进行放大。
2.直接将两者连接在一起,系统笨重,且可能受周围环境(空间太小,辐射太强)的影响。
3.同时为减少探测器输出端到放大器间的分布电容、匹配传输线阻抗,减少外界干扰,提高信噪比。
前置放大器的作用:1.提高系统的信噪比2.减少信号传输过程中外界干扰的相对影响3.合理布局,便于调节与使用4.实现阻抗转换与匹配模拟式谱仪采集一个信号的过程数字化谱仪与模拟式谱仪的区别与联系数字化谱仪:对探测器输出脉冲信号进行采样模拟式谱仪:第二章:能谱数据的特征线状谱转变成类高斯峰的原因a)探测器产生离子对的统计涨落b)探测器的边缘效应c)电子线路的弹道亏损d)脉冲堆积效应谱线“拖尾”形成的根源低能拖尾:当探测器介质中存在缺陷时,该缺陷会复合或俘获电子(或空穴),导致实际收集的电量减少,其结果使得计数从高能段向能端转移,峰偏离高斯分布,出现“低能拖尾”。
1、名词解释:核电子学:物理学、核科学与技术、电子科学与技术、计算机科学与技术等相结合而形成的一门交叉学科。
核辐射探测器:利用辐射在气体、液体或固体中引起的电离、激发效应或其它物理、化学变化进行辐射探测的器件称为辐射探测器。
核仪器:是指用于核辐射产生或测量的一类仪器的统称。
能量-电荷转换系数:设辐射粒子在探测器中损失的能量为E,探测器产生的电子电荷数为N,则N/E称为探测器的能量-电荷转换系数θ。
θ=N/E能量线性:定义:是指探测器产生的离子对数平均值和所需消耗的粒子能量之间的线性程度。
探测器的稳定性:探测器中能量-电荷转换系数在环境温度T和电源电压V变化时的稳定性。
核电子学电路的稳定性:核电子学电路中能量-电荷转换系数在环境温度T和电源电压V变化时的稳定性。
信噪比:信号幅度与噪声均方根值之比冲击函数:系统函数:H(s)=Uo(s)/Ui(s)极点:系统函数中使分母为零的点零点:系统函数中使分子为零的点有源滤波器:将RC积分网络接在放大器的反馈回路里,就构成有源积分电路,或称为有源滤波器。
积分谱:改变阈电压U T,测量到相应的大于U T的脉冲数N(U T),得到N(U T) - U T 分布曲线,得到的就是积分谱微分谱:从阈电压U Tn上的脉冲计数减去阈电压U Tn+1上的计数就可得到阈电压上间隔ΔU=U Tn-U Tn+1中的计数ΔN。
ΔN和U T的关系曲线,就是脉冲幅度分布曲线(微分谱)仪器谱:仪器实测得的能谱脉冲幅度分布谱:积分谱和微分谱道宽:Uw=Uu - U L > 0时间移动:输入脉冲的幅度和波形的变化引起定时电路输出脉冲定时时刻的移动时间晃动:系统的噪声和探测器信号的统计涨落引起的定时时刻的涨落时间漂移:元件老化、环境温度或电源电压变化(属于慢变化)引起的定时误差慢定时:μs量级的定时快定时:p s量级的定时(还有ns的说法)自然γ全谱:用仪器测得的,能量在及时keV-2.62MeV的自然γ仪器谱。
核医学知识点总结笔记复习整理核医学使用的射线包括α、β-、β+和γ四种,而放射科使用的射线为X射线。
在核医学基础中,核素是指具有特定的质量数、原子序数和核能态,且其平均寿命长得足以被观测的一类原子。
同质异能素是指具有相同的原子序数和核子数,但核能态不同的核素。
放射性核素是指不稳定核素的原子核能自发地放出各种射线而转变为另一种核素。
放射性核衰变是指放射性核素的原子核自发地放出射线,并转变成新的原子核的过程。
β衰变是指由于核内中子数过多,中子和质子数不平衡,由中子转化为质子的同时,核内放射出β射线的过程,核素的质量数不变,原子序数增加1.β+衰变是指由于核内质子数过多,质子和中子数目不平衡,由质子转化为中子的同时,核内放射出β射线的过程,核素的质量数不变,原子序数减少1.γ衰变是指激发态的原子核以放出γ射线(光子)的形式释放能量而跃迁到较低能量级的过程,也称γ跃迁。
放射性活度是指单位时间内发生衰变的原子核数,单位时间为“秒”,其单位为贝可(Bq),1Bq表示放射性核素在一秒内发生一次核衰变,即1Bq=1/s。
物理半衰期是指在单一的放射性核素衰变过程中,放射性活度降至其原有值一半时所需要的时间,简称半衰期(T1/2)。
有效半衰期是指某生物系统中某单一放射性核素的活度,由物理衰变与生物代谢共同作用而使放射性活度减少至原有值的一半所需要的时间(Tc)。
电离是指带电粒子通过物质时,同原子的核外电子发生静电作用,使原子失去轨道电子而形成自由电子(负离子)和正离子的过程。
湮灭辐射是指β入射粒子与物质作用,其动能丧失殆尽时与自由电子结合,转化为方向相反能量各为0.511MeV的两个光子,这种辐射为湮灭辐射。
光电效应是指光子与物质相互作用时,将全部能量转移给原子的内层电子,使得电子脱离原子成为高速运行的光电子。
这一过程在核医学中被广泛应用。
放射性探测是用探测仪器将射线能量转换成可纪录和定量的电能、光能等,测定放射性核素的活度、能量、分布的过程。
第1讲原子结构氢原子光谱板块一主干梳理·夯实基础【知识点1】氢原子光谱Ⅰ1.原子的核式结构(1)电子的发现:英国物理学家J.J.汤姆孙发现了电子。
(2)α粒子散射实验:1909~1911年,英国物理学家卢瑟福和他的助手进行了用α粒子轰击金箔的实验,实验发现绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°,也就是说它们几乎被“撞”了回来。
(3)原子的核式结构模型:在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。
2.光谱(1)光谱用光栅或棱镜可以把各种颜色的光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱。
(2)光谱分类有些光谱是一条条的亮线,这样的光谱叫做线状谱。
有的光谱是连在一起的光带,这样的光谱叫做连续谱。
(3)氢原子光谱的实验规律巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式1λ=R⎝⎛⎭⎫122-1n2,(n=3,4,5,…),R是里德伯常量,R=1.10×107 m-1,n为量子数。
【知识点2】氢原子的能级结构、能级公式Ⅰ1.玻尔理论(1)定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。
(2)跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=E m-E n。
(h是普朗克常量,h=6.63×10-34 J·s) (3)轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应。
原子的定态是不连续的,因此电子的可能轨道也是不连续的。
2.基态和激发态原子能量最低的状态叫基态,其他能量较高的状态叫激发态。
3.氢原子的能级图板块二考点细研·悟法培优考点1 氢原子能级图及原子跃迁[深化理解]1.能级图中相关量意义的说明氢原子的能级图如图所示。
核技术及应用概述1、核技术:核技术是以核物理、核武器物理、辐射物理、放射化学、辐射化学和辐射与物质相互作用为基础,以加速器、反应堆、核武器装置、核辐射探测器和核电子学为支撑而发展起来的综合性现代技术学科。
2、广义地说,核技术可分为六大类:核能利用与核武器、核分析技术、放射性示踪技术,辐射照射技术、核检测技术、核成像技术。
3、核能利用与核武器主要利用的什么原理,其主要应用有哪些?答:主要是利用核裂变和核聚变反应释放出能量的原理,开发出能源或动力装置和核武器,主要应用有:核电站、核潜艇、原子弹、氢弹和中子弹。
4、什么是核分析技术,其特点是什么?答:在痕量元素的含量和分布的分析研究中,利用核探测技术、粒子加速技术和核物理实验方法的一大类分析测试技术,统称为核分析技术。
特点:1.灵敏度高。
比如,可达百万分之一,即10-6,或记为1ppm;甚至可达十亿分之一,即10-9,或记为1ppb。
个别的灵敏度可能更高。
2.准确。
3.快速。
4.不破坏样品。
5.样品用量极少。
比如,可以少到微克数量级。
5、什么示放射性示踪技术,有哪几种示踪方式答:定义:应用放射性同位素对普通原子或分子加以标记,利用高灵敏,无干扰的放射性测量技术研究被标记物所显示的性质和运动规律,揭示用其他方法不能分辨的内在联系,此技术称放射性同位素示踪技术。
有三种示踪方式:1)用示踪原子标记待研究的物质,追踪其化学变化或在有机体内的运动规律。
2)将示踪原子与待研究物质完全混合。
3)将示踪原子加入待研究对象中,然后跟踪。
6、研究植物的光合作用过程是利用的核技术的哪个方面?答:放射性示踪7、核检测技术: 是以核辐射与物质相互作用原理为基础而产生的辐射测量方法和仪器。
特点:1)非接触式测量;2)环境因素影响甚无;3)无破坏性:4)易于实现多个参数同时检测和自动化测量。
8、辐射照射技术:是利用射线与物质的相互作用,将物质置于辐射场中,使物质的性质发生有利改变的技术。
核电子学复习整理第一章一、名词解释探测效率:探测器探测到的粒子数与此时实际入射到探测器中的粒子总数的比值。
散粒噪声:(在电子器件或半导体探测器中)由于载流子产生和消失的随机涨落形成通过器件的电流的瞬时波动,或输出电压的波动,叫做散粒噪声。
分辨率:识别两个相邻的能量、时间、位置(空间)之间最小差值的能力。
(主要有能量分辨率、时间分辨率、空间分辨率)死时间校正:在监察信号的时间T Ip内,如果再有信号输入都要被舍弃,因此监察时间就是堆积拒绝电路所产生的死时间。
计时电路就不应该把这个时间计入测量时间,而应从总的测量时间中扣除这个死时间得到活时间。
由测到的总计数除以活时间就是信号计数率。
这种办法称为死时间校正。
二、填空题1.核电子学是核科学与电子学相结合的产物;2.探测器按介质类型及作用机制主要分为:气体探测器、闪烁体探测器、半导体探测器;3.核电子学中主要的噪声指三类:散粒噪声、热噪声、低频噪声;4.核辐射探测器的输出信号特点是:随机分布的电荷或电流脉冲。
(时间特性、幅度上是非周期非等值的);5.功率谱密度为常数即S(W)=a的噪声为白噪声。
三、简答题1.简述核电子学的信号特点。
答:1.随机性;2.信号弱,跨度大;3.速度快。
2.简述白噪声与干扰以及两者的区别。
答:干扰:主要是指空间电磁波感应,工频交流电网的干扰,以及电源纹波干扰等外界因素。
(可在电路和工艺上予以减小或消除)噪声:是由所采用的元器件本身产生的。
(可以设法减小但无法消除)白噪声定义为功率谱密度为常数的噪声。
3.降低前置放大器噪声的措施有哪些?答:1.输入级采用低频噪声器件;2.低温运行;3.减少冷电容C s;4.反馈电阻R f和探测器负载电阻R D选用低噪声电阻,阻值一般在109欧~1020欧左右。
除此之外,用滤波网络来限制频带宽度,也可进一步抑制噪声。
4.构成核电子学的测量系统的三部分是哪些?答:1.模拟信号获取和处理,2.模数变换,3.数据的获取和处理三个部分5.简述前置放大器的作用。
答:1.提高信噪比、2.减少外界干扰的影响、3.合理布局,4.便于调节和使用、5.实现阻抗转换和匹配;第二章前置放大器的作用与分类?作用:提高信噪比、减少外界干扰的影响、合理布局,便于调节和使用、实现阻抗转换和匹配;分类(按输出信号成形方式分):电压灵敏前置放大器、电荷灵敏前置放大器、电流灵敏前置放大器。
电荷灵敏前置放大器的特性?变换增益、输出稳定性、输出噪声、输出脉冲上升时间及其稳定性、计数率效应电荷灵敏前置放大器的噪声分析?对于高分辨率的能谱测量装置,要求探测器-放大器系统的信噪比尽可能高。
在放大器中一般只考虑在前置放大器第一级减小噪声,因为第一级产生的噪声为后面各级放大电路所放大,它在决定整个装置的噪声中起着主要的作用。
一般半导体探测器的电荷灵敏前置放大器主要采用噪声较小的结型场效应管作输入级。
第三章放大器在核测量系统中的作用及其结构?作用:放大(把小信号放大到需要的幅度)、成形(改造信号的形状);结构:极性转换电路、极-零相消电路、积分滤波放大电路、基线恢复电路等放大器的基本参量?(如下7个)1. 放大倍数及其稳定性:提高放大倍数的稳定性最有效的方法是采用深度负反馈,负反馈愈深,即A o F 愈大,放大倍数的稳定性越好。
放大倍数定义为:用阶跃电压或上升时间足够小,宽度足够宽的矩形脉冲作为输入信号,在一定的成形电路时间常数条件下,输出脉冲和输入脉冲幅度之比。
2. 线性(积分非线性与微分非线性):放大器的线性是指放大器的输入信号幅度和输出信号幅度之间的线性程度。
积分非线性 微分非线性3. 噪声与信噪比4. 放大器的幅度过载特性max max 100%o o V INL V ∆=⨯''/[1]100%/o i o i V V DNL V V ∆∆=-⨯∆∆一般的讲,引起过载的原因主要与放大器中的耦合电容充放电有关,其解决的办法有:(1)应尽可能采用直流耦合,从根本上消除电容充放电的现象;(2)当有耦合电容时,从电路上采用差分输入形式可以具有良好的抗过载性能。
(3)使输入脉冲变窄,从而缩短电容充放电时间;(4)在输入端加一级限幅电路来限制过载脉冲。
5. 计数率过载特性:在高计数率条件下,由于信号堆积造成了谱线严重的畸变。
反映在测量结果中,谱峰展宽,峰的位置发生偏移,甚至出现假峰。
放大器中,由于计数率过高所引起的脉冲幅度分布的畸变称为放大器的计数率过载。
6. 上升时间7.输入输出阻抗改善放大器线性的方法?(1)合理选择工作点,在输入信号作用下尽可能减少工作电流的变化。
(2)采用负反馈方法,它可以使放大器的非线性减少到原来的11+A F。
谱仪放大器的放大节?放大节通常由一个高增益的运算放大器和一个反馈网络组成。
放大节的要求可归结为:放大倍数及其稳定性、线性、上升时间和过载特性等。
在谱仪放大器中,改善指标的有效办法是采用负反馈方法。
并联负反馈与串联负反馈:谱仪放大器中最常用的反馈形式是电压并联负反馈和电压串联负反馈两种。
图. 并联负反馈图. 串联负反馈同相输入与反相输入信噪比的区别?谱仪放大器中的滤波成形滤波成形的作用:抑制系统噪声,使系统信噪比最佳;使信号形状满足后续分析设备的要求。
对谱仪放大器中的滤波成形电路的要求可以归结为:(1)通过滤波成形后要求输入和输出应严格保持线性关系;(2)尽可能提高放大器的信噪比;(3)减少输入脉冲的宽度,减少堆积和基线的变化,提高电路的计数率响应;(4)成形后的最后输出波形应适合后续电路的要求;(5)滤波成形电路应尽可能简单,参数可以调节,以达到最佳效果。
白化滤波器与匹配滤波器:当输入噪声不是白噪声时,最佳滤波器的频率响应H(ω)可由以下方法导出:白化滤波器 匹配滤波器最佳滤波器什么是白化噪声?弹道亏损:当有一定宽度的电流脉冲输入时,在探测器回路中输出信号幅度总小于冲激信号输入时的输出幅度,这种情况称之为弹道亏损。
堆积畸变—放大器输出信号的描述图:堆积:极—零相消(定义、传输函数的变化、波形的判断):在几级相串联的系统中,将前M t j i e H V d k H ωωωω-=)()()(*1*2212()()()H H H ωωω=级传递函数的极(零)点和后级的零(极)点相消,从而改善输出波形的方法称为极-零相消。
基线恢复(产生原因、对信号的判别标准):堆积拒绝方法:对峰堆积的处理方法首先要能够随时发现峰堆积,通常是设法判别信号的时间间隔是否过小,堆积是否发生,然后把发生峰堆积的信号剔除。
前沿堆积后沿堆积对信号的判别标准:T>tw-tM两个信号都无幅度畸变。
tM>T>0发生前沿堆积,两个信号都发生畸变。
tw-tM>T>tM发生后沿堆积,前一个信号无畸变,后一个信号发生畸变。
线性门(定义、传输函数):线性门是传输信号的一个门电路,其作用在控制信号(门控信号)作用下,可以有两个状态。
用于时域里信号的筛选或采样。
在高分辨率能谱仪中,影响谱仪能量分辨率的因素有:射线及电荷收集的统计涨落、探测器及放大器的噪声、信号堆积引起的基线偏移。
第四章脉冲幅度选择的基本电路是脉冲幅度甄别器。
它有一个阈电压,称为甄别阈。
单道脉冲幅度甄别器的工作原理?几个概念:1)上阈:V U下阈:V L;2)道宽与阈道宽:上下阈之差V W= V U–V L 电路的基本工作原理:改造后的电路框图:单道脉冲幅度分析器实例:微分谱:积分谱:用于幅度分析的模数变换器什么是幅度分析?答:幅度分析是指测量信号幅度的分布。
即按信号幅度大小进行分布计数。
用于幅度分析的模数转换器是核电子学中的一个重要内容。
什么是幅度响应?答:模数变换器的输入信号幅度A 与道数之间的关系称为模数变换器的幅度响应。
变换系数:模数变换器的精度还常用变换系数来表示。
变310P H ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦道毫伏伏道换系数P的定义:每单位幅度可变换成多少道数。
它与道宽是倒数关系:道宽:一个量化级数相应于模数变换器的一个道。
每个量化电压都是道边界。
相邻的两个量化电压组成一个道。
相邻两个量化电压间的差值称为模数变换器的单个道宽h,所有单个道宽的平均值称为模数变换器的道宽H。
道数:量化电平数用L表示,最大量化电平数为Lmax,最低量化电平称为0点。
所以最大量化电平数Lmax就是模数变换器的道数。
线性放电型模数变换器线性放电型模数变换器(Wilkinson型模数变换器)的电路简单、道宽一致性好且便于生产,国内外产品大多数仍然是线性放电型模数变换器。
工作原理:它的工作原理是基于脉冲幅度与时间的线性变换。
首先,把脉冲幅度V变换成时间间隔Δt,然后把时间间隔Δt变换成数字m;时间间隔Δt正比于输入脉冲幅度V,数字m正比于时间间隔Δt,则数字m正比于输入脉冲幅度V,由此完成V-m变换。
模数变换的工作方式:逐次比较型模数变换器工作原理:逐次比较型模数变换器利用二进制的标准电平与输入信号比较。
第一次比较时,取标准电平为满量程的一半;若标准电平小于信号幅度,则标准电平保留下来,进行第二次比较。
第二次比较的标准电平为保留的上次标准电平加满量程的四分之一标准电平。
若标准电平小于信号幅度,第二次比较的标准电平同样保留下来,进行第三次比较。
若标准电平大于信号幅度,则不保留该标准电平。
依此类推,直到12个标准电平取出比较完才结束。
第五章一、时间分析概述二、定时方法(以下四种)什么是定时电路?答:定时电路是核电子学中检出时间信息的基本单元,故而又称时间检出电路。
(它接受来自探测器或放大器的随机脉冲,产生一个与输入脉冲时间上有确定关系的输出脉冲。
)定时误差产生的原因?答:探测器信号是在时间t0时产生的,但是电子学定时信号是在时间t0’时发生的,所以落后一段时间,而且对应探测器的信号本身的涨落时间(收集时间过程的涨落),电子学定时信号V0(t)也会产生涨落时间,定时时刻可以从t0’变到t0’’,即为定时误差,除此之外,电子学的定时电路本身在进行定时时也会产生定时误差。
2.1前沿定时延迟产生的因素:输入信号幅度变化引起的时间移动;输入信号上升时间变化引起的时间移动;噪声引起的时间晃动;输入信号统计涨落引起的时间晃动。
触发比与斜率噪声比定义触发比f为触发电平与输入信号最大幅度之比;定义斜率噪声比2.2过零定时2.3恒比定时2.4幅度和上升时间补偿定时(以上四种方法的优缺点、以及适用场合见书P209)最佳定时滤波器与定时滤波放大器定时单道脉冲幅度分析器定义:具有定时功能的单道脉冲幅度分析器称为定时单道脉冲幅度分析器。
分类:按定时误差的不同,分为:慢定时(us数量级)单道和快定时(ns数量级)单道;按定时方法不同,分为:前沿定时、过零定时、恒比定时三类。