低压无源滤波无功补偿技术概要
- 格式:ppt
- 大小:171.50 KB
- 文档页数:22
低压电网中的无功补偿技术一、低压电网功率因数低的主要因素功率因数的产生主要是因为交流用电设备在其工作过程中,除消耗有功功率外,还需要无功功率。
异步电动机和电力变压器是耗用无功功率的主要设备。
异步电动机的定子与转子间的气隙是决定异步电动机需要较多无功的主要因素。
供电电压超出规定范围也会对功率因数造成很大影响。
当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将增长得很快。
据有关资料统计,当供电电压为额定值的110%时,一般电网的无功将增加35%左右。
电网频率的波动也会对异步电动机和变压器的磁化无功功率造成一定的影响。
二、低压电网中无功补偿的意义低压电网中进行无功补偿的意义表现在以下两个方面:1、提高供电设备的利用率在供电设备的容量(视在功率)S一定的情况下,因P=Scos,显然cos越高,有功功率P越大,设备的容量越能得到充分利用。
例如,某一供电系统的供电容量S=1000KV·A,当cos=0.5时,输出的有功功率P=500KW;如果cos=0.9时,则输出的功率P可达900KW。
可见,低压电网进行无功补偿提高功率因数,可使供电设备得到充分的利用。
2、减少了供电设备和输电线路的功率损耗,达到降损节能的效果由P=UIcos可得I=P/Ucos。
在负载消耗的有功功率P和电压U一定时,功率因数cos越高,供电线路电流I越小,使供电设备和输电线路的功率损耗减小,也减小了供电设备和线路的发热。
三、低压电网中无功补偿提高功率因数的一般方法进行无功补偿提高功率因数而又不改变负载两端的工作电压,通常的方法是:1、提高用电设备本身的功率因数。
提高用电设备的功率因数,主要是合理选用异步电动机和电力变压器的容量,即不要用大容量的电动机带小功率负载,因为它们轻载或空载时,功率因数低,满载时功率因数高,所以选用变压器和电动机的容量不宜过大,应尽量减少空载或长期处于低负载运行状态。
2、并联补偿法。
常采用在电感性负载两端并联电容器的方法来提高电路的功率因数。
低压配电系统无功补偿滤波设计说明一、引言无功补偿滤波器是低压配电系统中的一种重要设备,通过对无功功率进行补偿和滤波,可以提高系统的功率因数,减少谐波污染,保证系统的稳定运行。
本文将详细介绍低压配电系统无功补偿滤波器的设计原理和注意事项。
二、无功补偿滤波器原理无功补偿滤波器通常由电容器和电感器组成。
通过调节电容器和电感器的容值和电感值,可以实现对无功功率的补偿和滤波。
在低压配电系统中,负载通常具有较大的无功功率,导致系统的功率因数下降。
无功补偿滤波器可以通过优化电容器和电感器的组合,实现对负载无功功率的补偿。
同时,滤波器中的电感器可以对电网中的谐波进行滤除,减少谐波污染。
三、无功补偿滤波器设计步骤1.确定滤波器的功率根据低压配电系统的实际负载情况,确定无功补偿滤波器的功率。
通常,滤波器的功率应略大于负载的无功功率。
2.选择电容器和电感器根据滤波器的功率和电网的频率,选择合适的电容器和电感器。
电容器的容值应按照滤波器的功率和电网频率进行计算,电感器的电感值应使得滤波器在电网频率下具有最佳的谐波滤除效果。
3.设计滤波器的连接方式根据实际的系统要求,选择滤波器的连接方式。
常见的连接方式包括单电容滤波器、双电容滤波器和电感滤波器等。
4.进行滤波器的电流和电压设计根据滤波器的功率和连接方式,计算滤波器的电流和电压。
滤波器的电流和电压设计应满足系统的安全要求,同时考虑滤波器的耐受能力和寿命。
5.进行滤波器的谐波分析和调整通过对滤波器的谐波分析,确定滤波器的谐波滤除效果。
根据实际需要,对滤波器进行调整,以达到最佳的谐波滤除效果。
四、无功补偿滤波器设计注意事项1.安全性滤波器内部的电容器和电感器应具有良好的安全性能,能够承受系统的电流和电压冲击,防止发生电弧、爆炸等事故。
2.稳定性滤波器的设计应具有良好的稳定性,能够适应负载的变化,保证系统的补偿效果和滤波效果。
3.谐波滤除效果滤波器应具备良好的谐波滤除效果,能够滤除电网中的谐波,减少谐波对系统的影响。
低压无功补偿及滤波装置技术要求一、控制器部分1.工作电源:86--256VAC2.测量精度:相间电压≤0.5%线电流≤0.5%无功功率≤1%功率因数≤1%3.控制器动态响应时间t ﹤30ms4.每组电容器可设定为长期接通或断开5.按无功功率需求投切电容器,杜绝投切震荡6.在线设定PT、CT、运行电压范围、动作延时时间、报警限值7.具有温度测量及保护功能8.具有谐波测量和保护功能二、投切单元部分投切单元的组成结构及优点采用电容器、电抗器、投切开关、保护装置一体化的电容器投切开关单元,以便于补偿装置的安装、容量的增减及现场维护。
紧凑型设计,整体结构紧凑,外形美观;母线式开关直接挂接在母排上,无需螺丝固定。
母排无需打孔连接,连接方便。
节省安装空间,安装容量大。
安装快捷、方便。
减少布线,易于维护。
标准化、紧密和坚固的优化设计、方便系统扩充容量。
合理的结构设计,单元的通用性好,适合GGD、GCS、GCK、MNS等各种型号柜体的安装。
四种不同容量的投切单元,可满足各种容量的补偿柜的投切精度的需求。
其中投切单元的主要器件技术要求如下:1、投切开关:1)无触点开关:a通过反并联晶闸管投切电容器组b.动作时间要求不大于20msc电容器组投入时涌流控制在额定电流的1.7倍以内,切除时无过电压产生。
d具有超温保护功能e可频繁投切电容器组2)智能复合开关a采用可控硅投切电容器组、继电器运行的工作方式b可选5-12VDC电平控制和485通讯控制c即可控制△接电容器又可分别控制Y接电容器组的每一相d工作内阻为零、无功耗、不产生谐波接触器a采用主触头本身有抑制涌流作用的电容器专用接触器b接触器在电容器组退出工作时具备放电功能2、电容器1)采用银锌镀膜技术、确保电容器的稳定性2)采用梯形膜以保证电容器承载涌流的能力3)采用纯干式结构,避免渗漏和污染4)采用可压缩但不燃烧的蛭石做填充物,以保证自愈失败的情况下不燃烧、不爆炸3、电抗器1)采用干式铁心结构,无电磁污染,无油污污染,阻燃性能好2)电抗器整体结构简单,体积小,免维护,便于柜内安装3)低压干式铁心电抗器电感值准确,温升留有合理的余量,噪声低。
低压供电系统无功补偿技术探究摘要:近年来,随着国民经济的蓬勃发展,电能需求量持续提升,电网传输效率与电能质量面临严峻考验,低压供电系统运行期间时常出现谐波污染问题,难以满足实际供电需求。
在这一背景下,无功补偿技术可以全面提高低压供电系统的供电效率及电能质量,这对电网运行效益的提高有重要作用。
因此,为保证低压供电系统安全稳定运行,本文对无功补偿技术在低压供电系统中的应用进行探究。
关键词:低压供电系统;无功补偿技术;电网传输一、低压供电系统无功补偿意义1、提高电网传输效率传输功率作为电网传输效率的决定性因素,在低压供电系统运行期间,在无功功率有所增加时,则有功功率所占比例会随之降低,进而影响到电网传输效率,并承担较大的无功功率负担。
而无功补偿技术的应用,可以持续提供无功功率补偿,维持电网中有功及无功功率比例稳定,以此来达到预期的电网传输效率。
2、稳定电网电压根据系统实际运行情况来看,所产生的输电线路电压损耗由无功功率电感压降以及有功功率电阻压降所组成。
同时,在系统等效电路中,由于电抗值往往大于电阻值,电压损耗量将受到无功功率影响,并不会受到有功功率的明显影响,表明无功功率是电压损耗量的决定性因素。
在这一前提条件下,对无功补偿技术的应用,以及无功补偿装置的配置,可以持续向低压供电系统提供无功补偿,将无功功率所占比例维持在稳定状态,这将在客观层面上减小无功功率对电压损耗造成的影响,起到改善系统运行稳定性的作用。
3、提高电能质量电能质量是指自低压供电系统向用户端所提供交流电能品质,以电压幅值及电压频率等参数作为评价指标。
现阶段,在低压供电系统实际运行中,受到设备与外部环境等因素影响,难以维持各相电压与电流幅值大小相及相位对称的理想状态,从而对电能质量造成负面影响。
而对无功补偿技术的应用,一方面可以稳定维持系统的理想供电状态,以恒定频率、正弦波形及稳定标准电压向用户端持续供电,以控制电能质量。
另一方面,还可以起到降低线损与减小供电设备设计容量等作用。
电力系统低压电网无功补偿技术摘要:为了确保电力系统的正常运行,无功补偿技术的应用保证了在电力输出过程的高效稳定。
本文主要对低压电网中的无功补偿技术进行技术层面的概述,并且提出实际操作中存在的问题,并且点对点提出解决方案,为电力系统的稳定运行提供保证。
关键词:电力系统;低压电网;无功补偿;技术创新引言由于在低压电网的运行输电过程中,会造成较多的电能损耗,因此无功补偿技术的应用使得电能消耗大量的减少,并且大大降低了低压电网较高的故障率,保障了电力能源的节约,满足了企业社会的生产需要,为广大人民群众稳定的电力供应。
一、无功补偿的原理电网输出的功率包括两部分:一是有功功率,二是无功功率。
在电力系统中,不仅有功功率要平衡,无功功率也要平衡;φ为功率因数角,它的余弦cosφ=PS [1]就是功率因数。
由功率三角形可知,在一定的有功功率下,用电企业的功率因数cosφ 越小,则所需的无功功率越大。
由于电路中有一定的消耗,这部分耗能需要由电力系统在供电时自行进行提供,因此为了增加供电量,整体的电路和变压器也同样需要做改动,这时则不仅多增加了不必要的投入,而且电路运输中的耗损也同时增大,输电效率大大降低。
所以不论是对于供电部门还是用电部门,对无功功率进行适时补偿以提高功率因数,以防止无功倒送,从而节约电能,提高运行质量都具有非常重要的作用。
电流在电感元件中作功时,电流超前于电压90°。
而电流在电容元件中作功时,电流滞后电压 90°。
在同一电路中,电感电流与电容电流方向相反,互差180°。
如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力;把具有容性功率负荷的装置与感性功率负荷的装置并联接在同一电路中,能量在两种负荷间相互转换,这样,感性负荷所需要的无功功率可由容性负荷输出的无功功率补偿,这就是无功补偿技术的原理。
低压无功补偿技术及其应用[摘要]:无功补偿可降低电能损耗,文章论述了异步电动机无功就地补偿及低压无功集中补偿技术及其应用。
提倡大力推广低压无功补偿,以达到节能降耗的目的。
[关键词]:低压无功补偿;技术;应用交流异步电动机应用广泛,所需无功功率最大,未经补偿的综合负荷的自然功率因数为0.6~0.9,异步电动机比例较高的负荷的功率因数为0.6。
低压用户点多量广、比较分散,很多异步电动机都未装设无功补偿装置,低压电网功率因数较低,线路损耗及变压器损耗比较大。
针对目前对低压电网的无功补偿不重视的现状,本文大力提倡推广异步电动机无功就地补偿及低压电网无功集中补偿,以达到较明显的节能降耗效果。
低压补偿无功功率,可采用并联电容器的方法,可分散装设或集中使用,能做到就地补偿无功功率以降低电网的电能损耗。
电容本身并不节电,但电容电流可抵消电感电流,从而减少输配电线路中流动的电流,从而减少电流引起的损耗及电压降。
下面先介绍无功补偿降低电能损耗的原理。
设R为线路的单相电阻, I1、U1分别为线路原来的电流、电压,I2、U2分别为功率因数提高的线路电流、电压。
P为线路输送的有功功率,△P1为线路原损耗,△P2为功率数提高后线路的损耗,则线路损耗减少为ΔP=△P1- △P2 =3R(I12- I22)比原来损耗减少的百分数为(ΔP/△P1)×100%=[1-( I2/ I1 ) 2] ×100%式中I1=P/( 3 U1cosφ1) ,I2=P/( 3 U2cosφ2 )补偿后,由于功率因数提高,U2> U1,为分析方便,可认为U2≈U1,则(ΔP/△P1)×100%=[1-( cosφ1 /cosφ2) 2]×100%cosφ1为原功率因数, cosφ2为无功补偿提高后功率因数。
例如: 原功率因数为0.7,提高至0.85后,线路损耗减少计算为:(ΔP/△P1)×100%=[1-( 0.7/ 0.85 ) 2] ×100%=33%变压器损耗由铁损和铜组损成,功率因数提高后,铁损基本不变,铜损也同线路一样与电流平方成正比,功率因数提高后,电流减少了,所以铜损也减少了,变压器损耗也减少了。
低压电容无功功率补偿原理无功功率补偿装臵在电子供电系统中所承担的作用是提高电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。
所以无功功率补偿装臵在电力供电系统中处在一个不可缺少的非常重要的位臵。
合理的选择补偿装臵,可以做到最大限度的减少网络的损耗,使电网质量提高。
反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。
一、按投切方式分类:1. 延时投切方式延时投切方式即人们熟称的"静态"补偿方式。
这种投切依靠于传统的接触器的动作,当然用于投切电容的接触器专用的,它具有抑制电容的涌流作用,延时投切的目的在于防止接触器过于频繁的动作时,电容器造成损坏,更重要的是防备电容不停的投切导致供电系统振荡,这是很危险的。
当电网的负荷呈感性时,如电动机、电焊机等负载,这时电网的电流滞带后电压一个角度,当负荷呈容性时,如过量的补偿装臵的控制器,这是电网的电流超前于电压的一个角度,即功率因数超前或滞后是指电流与电压的相位关系。
通过补偿装臵的控制器检测供电系统的物理量,来决定电容器的投切,这个物理量可以是功率因数或无功电流或无功功率。
2. 瞬时投切方式瞬时投切方式即人们熟称的"动态"补偿方式,应该说它是半导体电力器件与数字技术综合的技术结晶,实际就是一套快速随动系统,控制器一般能在半个周波至1个周波内完成采样、计算,在2个周期到来时,控制器已经发出控制信号了。
通过脉冲信号使晶闸管导通,投切电容器组大约20-30毫秒内就完成一个全部动作,这种控制方式是机械动作的接触器类无法实现的。
动态补偿方式作为新一代的补偿装臵有着广泛的应用前景。
现在很多开关行业厂都试图生产、制造这类装臵且有的生产厂已经生产出很不错的装臵。
当然与国外同类产品相比从性能上、元器件的质量、产品结构上还有一定的差距。
3.混合投切方式实际上就是静态与动态补偿的混合,一部分电容器组使用接触器投切,而另一部分电容器组使用电力半导体器件。
浅谈低压电网无功补偿技术摘要:本文着重对无功补偿技术对低压电网功率因数的影响进行分析。
关键词:无功补偿低压电网Abstract: This paper focuses on the reactive power compensation techniques for low-voltage grid power factor analysis.Key Words: reactive power compensation, low-voltage grid一、低压电网补偿1.增加配电网的功率因数对低压配电网进行无功补偿,采取相关的无功补偿措施后,可提高电网的功率因数至0.9以上,负荷稳定要求较高的功率因数可达0.93以上,电压质量要求较高的功率因数可达0.95以上。
提高功率因数对低压电网的安全运行具有重要意义,可增加低压电网运行的可靠性和安全性,减少低压电网的线路损耗。
2.提高电气设备的利用率低压电流的降低使得导线、开关设备、配电变压器等配电设备的温度不至于过高,这样就通过降低配电设备的温度,提高了设备的可靠性和其使用寿命,提高了电气设备的利用率,使配电设备能够安全稳定运行,减少了相关的经济损失并提高了低压配电网运行的可靠性和稳定性。
3.降低配电网的线损率低压配电网中线路损耗是与电流的平方成正比的,降低线路损耗的有效途径之一就是通过采取就地补偿的措施减小负荷电流。
4.改善电压质量在电能传送过程中损失的电能与线路中的有功功率和无功功率是正相关的关系,对低压电网进行无功补偿,减少线路中传输的无功功率,相应的电能损失也会降低。
二、低压电网无功补偿现存问题1.补偿装置造价高低压电网的配电变压器由于其容量多在200kV A以下,而对于低压配电网中用于农灌的变压器,容量多在50kV A及以下,因此,这些配电变压器的自动补偿柜的价格要比与之相配套电容器的价格高2~3倍,且配电变压器的价格差距随容量增加而减少,若对低压配电网进行相应的补偿,则需要投入大量的资金。