神经网络及应用第七章基于粒子群优化算法的人工神经网络
- 格式:pdf
- 大小:115.51 KB
- 文档页数:4
粒子群算法原理及应用随着人工智能技术的发展,各种算法被广泛应用在数据分析、预测以及优化等方面。
其中,粒子群算法(Particle Swarm Optimization,PSO)作为一种高效的全局优化算法,在实际应用中表现出色,受到了越来越多的关注与重视。
本文将围绕粒子群算法的原理与应用进行阐述。
一、粒子群算法的原理粒子群算法是一种基于群体智能的优化算法,借鉴了鸟群或鱼群等生物群体行为的思想。
它是一种随机化搜索算法,通过模拟大量粒子在问题空间中的随机移动,不断探索解空间,从而寻找全局最优解。
具体来说,粒子群算法是基于一个粒子群的模型,其中每个粒子代表一个搜索空间内的解。
每一个粒子都有一个自身的位置和速度,而粒子的位置和速度可以通过如下公式进行更新:$v_{i,j}=wv_{i,j}+c1r1(p_{ij}-x_{ij})+c2r2(g_{ij}-x_{ij})$$x_{i,j}=x_{i,j}+v_{i,j}$其中,$v_{i,j}$表示第$i$个粒子在第$j$个搜索空间维度上的速度,$w$表示惯性权重,$c1$和$c2$分别是自己的历史最佳位置$p_{ij}$和全局最佳位置$g_{ij}$对粒子位置的影响因子,$r1$和$r2$是0~1的随机数,$x_{i,j}$是粒子的位置。
通过更新速度和位置,粒子可以向更优秀的位置移动,从而不断逼近全局最优解。
这种不断更新、迭代搜索的过程可以实现全局搜索和多目标优化等问题领域的优化求解。
二、粒子群算法的应用粒子群算法最主要的应用领域是全局优化问题,如函数优化、数据拟合、最小二乘等问题的求解。
此外,粒子群算法还被广泛应用在神经网络训练、图像处理、机器学习等领域。
(一)函数优化函数优化问题是粒子群算法最基本的应用领域之一。
例如,在参数优化问题中,可以将参数空间定义为搜索空间,通过粒子群算法不断寻找全局最优解来优化模型参数。
在现实中,这种方法已被广泛应用于金融风险分析、选股等领域。
基于粒子群优化的BP神经网络【摘要】人工神经网络的优化学习是其研究中的一个重要课题。
将粒子群优化算法用于BP神经网络的学习,将粒子优化算法的全局搜索和BP神经网的局部搜索相结合,并设计一网络实例加以训练,达到了比较满意的效果。
【关键词】粒子群优化算法BP神经网络BP算法BP网络(Back Propagation Network)是用途最为广泛的一类神经网络,具有很强的信息处理能力。
但是,由于BP算法的基本思想是最小二乘法,采用的是梯度搜索技术,难免存在收敛速度慢、局部极小等问题。
粒子群优化算法(Particle Swarm Optimaziton,简称PSO )是由Kennedy J和Eberhart R C于1995年提出的一种优化算法,源于对鸟群和鱼群群体运动行为的研究。
由于其容易理解,易于实现,不要求目标函数和约束条件是可微的,并能以较大概率求得全局最优解,目前已在许多优化问题中得到成功应用。
由于它具有并行计算的特点,而且可以提高计算速度。
因此,可以用粒子群优化算法来优化BP网络。
一、BP神经网络及其算法BP网络是一种具有三层或三层以上的单向传播的多层前馈网络,其拓扑结构如图1。
图1 拓扑结构图BP算法的执行步骤如下:(1)对各层权系数置一个较小Wij的非零随机数。
(2)输入一个样本X=(X1,X2,…,x n),以及对应期望输出) Y=(y1,y2,…,yn)。
(3)计算各层的输出。
对于第k 层第i个神经元的输出有:Uki=∑WijXk-1i,Xki=f(Uki)(一般为sigmoid 函数,即f(x)=1/(1-epx(-x))。
(4)求各层的学习误差dki。
对于输出层,有,k=m,dmi=Xmi(1-Xmi)(Xmi-Ymi)。
对于其他各层,有dxi=Xki(1-Xki)∑Wijdk+1i。
(5)修正权系数Wij。
Wij (t+1)=Wij-η•dki•Xk-1j。
粒子群算法与神经网络结合的优化算法研究随着人工智能和数据分析的快速发展,优化算法作为一种重要的数学方法,在各个领域中得到了广泛应用。
其中,粒子群算法和神经网络结合的优化算法,已经成为优化问题的一种新思路。
粒子群算法是一种优化算法,灵感来源于鸟群捕食的策略。
鸟群在进行捕食时,会根据周围环境和食物的分布情况,不断调整自己的方向和速度。
同样,粒子群算法中的“粒子”,也会根据周围其他粒子的信息和当前环境的优化目标,去更新自己所处的位置和速度。
神经网络作为另一种常用的数学方法,其本质是一种多层次的非线性函数。
神经网络通常被用来解决分类、识别和预测等问题。
其通过对输入变量的权重和偏差进行变化,不断调整模型参数,从而优化预测的准确性和泛化能力。
将这两种方法进行结合,即可形成一种有效的优化算法。
具体而言,粒子群算法可以用来寻找神经网络中的最优参数,从而提高模型的性能。
而神经网络则可以作为粒子群算法的优化目标,通过反馈神经网络预测误差,不断调整粒子的位置和速度。
这种结合方法的好处在于,能够同时利用粒子群算法的全局优化和神经网络的非线性优势。
在一些特定的优化问题中,甚至可以得到比单一方法更优秀的解决方案。
另外,在实际应用中,这种结合方法也有着很大的潜力。
例如,在智能物流中,可以运用粒子群算法从一堆货物中找出最优的装载方式,在这个过程中可以利用神经网络为每个货物进行分类,不断调整粒子,从而更好地进行装载。
在医学影像诊断中,可以利用神经网络对医学影像进行自动识别和分析,然后通过粒子群算法优化多个相关参数,从而提高诊断准确率。
总之,粒子群算法和神经网络结合的优化算法,在各个领域中有着重要的应用和价值。
虽然这种结合方法还处于起步阶段,但我们相信在不久的将来,它们将会得到更广泛的应用,并为我们带来更加稳健、高效和准确的优化算法。
基于粒子群优化的深度神经网络分类算法董晴;宋威【摘要】针对神经网络分类算法中节点函数不可导,分类精度不够高等问题,提出了一种基于粒子群优化(PSO)算法的深度神经网络分类算法.使用深度学习中的自动编码机,结合PSO算法优化权值,利用自动编码机对输入样本数据进行编解码,为提高网络分类精度,以编码机本身的误差函数和Softmax分类器的代价函数加权求和共同作为PSO算法的评价函数,使编码后的数据更加适应分类器.实验结果证明:与其他传统的神经网络相比,在邮件分类问题上,此分类算法有更高的分类精度.%Aiming at problem that classification precision of neural network algorithm is not very high and node function doesn't have derivate,a new classification algorithm of deep neural network based on particle swarm optimization(PSO) is e autoencoder of deep study,and combined with PSO algorithm to optimize the weight,coder and decoder for input sample data using autoencoder.In order to improve the classification precision of network,take the error function of autoencoder and cost function of softmax classifier weight sum as evaluation function of PSO algorithm in common,making coded data more adapter to the classifier.The experimental results show that compared with other traditional neural network,the classification algorithm has higher classification precision on Email classification.【期刊名称】《传感器与微系统》【年(卷),期】2017(036)009【总页数】5页(P143-146,150)【关键词】深度神经网络;自动编码机;粒子群优化算法;分类【作者】董晴;宋威【作者单位】江南大学物联网工程学院,江苏无锡214122;江南大学物联网工程学院,江苏无锡214122【正文语种】中文【中图分类】TP183近年来,神经网络的研究一直受到学者们的关注,如感知机[1],反向传播(back propogation,BP)神经网络[2],径向基函数(radial basis function,RBF)神经网络及其各种改进算法[3~5]等。
基于粒子群优化算法的神经网络架构搜索与参数优化方法
研究
近年来,神经网络在深度学习领域取得了巨大的成功。
然而,设计一个有效的神经网络架构仍然是一个具有挑战性的问题。
传统的人工设计方法需要大量的经验和时间,而且很难找到最佳的架构。
为了解决这个问题,研究人员提出了一种基于粒子群优化算法的神经网络架构搜索与参数优化方法。
粒子群优化算法是一种模仿鸟群寻找食物的行为而发展起来的优化算法。
它通过不断地迭代搜索空间中的解空间,从而找到最佳的解。
在这个方法中,每个粒子代表一个神经网络架构。
每个粒子都有一个位置和速度,位置表示当前的网络架构,速度表示网络架构的变化方向。
粒子群中的每个粒子根据当前的位置和速度更新自己的位置,并根据一个评价函数计算其适应度。
适应度高的粒子将会被保留下来,并作为下一次迭代的起点。
为了进一步优化神经网络的性能,该方法还引入了参数优化。
在每次更新粒子位置之前,通过使用梯度下降算法对神经网络的参数进行优化。
这样可以在搜索过程中同时优化网络架构和参数,从而得到更好的结果。
通过在多个数据集上的实验证明,基于粒子群优化算法的神经网络架构搜索与参数优化方法相比于传统的方法具有更高的准
确性和更快的收敛速度。
该方法能够自动地搜索到最佳的网络架构和参数,在各种任务中都取得了良好的结果。
总之,基于粒子群优化算法的神经网络架构搜索与参数优化方法为神经网络的设计提供了一种新的思路。
它能够自动地找到最佳的架构和参数,并在各种任务中取得优秀的性能。
这一方法的研究为深度学习的发展提供了新的方向,有望在未来得到更广泛的应用。