岩石物理学及岩石性质
- 格式:pdf
- 大小:400.72 KB
- 文档页数:8
岩石力学岩石的物理性质 一、 岩石的分类火成岩:侵入岩和喷出岩。
沉积岩:砂岩(95%的油气储量)、页岩(待开采,如页岩气、煤层气)、石灰岩。
变质岩:不含油气。
二、 岩石的强度主要取决于:组成其矿物的强度、连接结构形式、岩石的结构和整体构造、胶结物的成分和胶结方式 三、岩石的物理性质孔隙度、渗透率、可压缩性、导电性、传热性的总称。
1、 孔隙度:绝对孔隙度:φ = V 孔/V 岩总 孔隙度越高,岩石的力学性质越差。
有效孔隙度: φ有效 =V 连通/V 孔总。
2、 渗透性:在一定压力作用下,孔隙具有让流体(油、气、水)通过的性质。
其大小用渗透率来描述,反映了流体在岩石孔隙中流动的阻力的大小。
达西定律:A LhK Q ∆=φ...K Φ——反应岩石性质系数 含义:以粘度为1厘泊的流体完全饱和于岩石孔隙中,在1个大气压差的作用下,以层流的方式用过截面积为1cm 2,长度为1cm 的岩样时,其流量为1cm 3/s 。
则渗透率为1达西(D )。
3、 岩石中的油、气、水饱和度。
…4、 岩石的粒度组成和比表面积:粒度组成的分析方法:筛分析法和沉降法。
通过粒度得孔隙度。
比表面积:单位体积岩石内颗粒的总表面积。
通过粒度组成估算比面。
孔隙度、粒度、比表三者之二求一岩石的力学性质岩石的类型、组成成分、结构构造、围压、温度、应变率、载荷等对其力学性质都有影响 一、 岩石变形性质的基本概念1、 弹性:… 基本弹性参数E 、υ。
2、 塑性3、 黏性:物体受力后,变形不能在瞬时完成,且应变率随应力的增加而增加的性质。
4、 脆性:受力后变形很小就发生破裂的性质。
(ε>5%就发生破裂的称为塑性材料,小于的称脆性材料)5、 延性:发生较大塑性变形,但不丧失其承载能力的性质。
岩石在常温,常压下,并不是理想的弹性或塑性材料,而是几种的复合体,如塑弹性、塑弹塑、弹塑蠕。
其本构关系略。
6、常温常压下岩石的典型应力-应变曲线:(重点)OA---塑性,应力增加快,但应变增加不多。
岩石的物理性质与性质分析岩石是地球表面最常见的地质材料之一,其物理性质和性质分析对于地质学研究以及工程建设都起到至关重要的作用。
本文将对岩石的物理性质进行介绍,并探讨如何对岩石的性质进行分析。
一、岩石的物理性质1. 密度密度是岩石的重要物理性质之一,通常用质量与体积的比值表示。
岩石的密度不仅与岩石的成分有关,还与其孔隙度和结构形态等因素密切相关。
不同类型的岩石其密度差异较大,例如火山岩的密度一般较低,而花岗岩和玄武岩的密度相对较高。
2. 弹性模量弹性模量是衡量岩石抗弹性变形能力的重要指标,通常用应力与应变的比值表示。
弹性模量可分为体积弹性模量、剪切模量和弯曲模量等。
不同类型的岩石其弹性模量也不同,例如砂岩的弹性模量相对较低,而页岩和石灰岩的弹性模量相对较高。
3. 磁性岩石的磁性是指岩石在外磁场作用下表现出的磁特性。
大部分岩石都具有不同程度的磁性,但具体的磁性表现与岩石的成分、结构以及成岩过程等因素有关。
通过对岩石的磁性分析,可以了解地质历史和构造变形。
4. 热性质岩石的热性质包括导热性、热膨胀系数和热导率等。
岩石的导热性取决于其成分、密度和孔隙度等因素,而热膨胀系数则决定了岩石在温度变化下的体积变化。
热导率是指岩石传导热量的能力,与岩石的矿物含量和孔隙度等因素有关。
二、岩石性质分析方法1. 物理试验常用的岩石性质分析方法之一是物理试验,包括密度测定、弹性模量测定和磁性测定等。
密度测定可通过称重和容器体积测量来完成,而弹性模量的测定通常使用弹性波速度的测量方法。
磁性测定则需要使用磁化强度计等仪器完成。
2. 岩心实验岩心是由地下取得的连续岩石样本,在岩石性质分析中起到非常重要的作用。
通过对岩心的观察和实验室分析,可以了解岩石的颜色、质地、孔隙度、矿物组成等特征,从而推测岩石的物理性质。
3. 地球物理勘探地球物理勘探是一种通过地球物理方法研究地壳结构和性质的方法。
它包括地震勘探、电磁测深、重力测量和磁力测量等。
岩石物理学研究岩石物理性质之间的相互关系,具体地说,研究孔隙度,渗透率等是如何同地震波速度、电阻率、温度等参数相关联的。
岩石物理学与地质学、地球物理学、地球化学、力学、流体力学、材料力学、地热学、环境科学、工程学等众多学科密切相关,是一个高度的交叉、边缘学科。
基础性,应用性都很强。
一般情况下,人们把岩石物理学归属于地学学科。
对油气资源的勘探开发而言,岩石物理是联系地质、地球物理、石油工程三个学科领域的共同基础和桥梁【参考文献】陈顒、黄庭芳著,岩石物理学,2001,北京大学。
•地震勘探方面1)岩石、流体等性质对弹性波传播的影响;2)岩石导电率及电磁波在岩石中传播的影响;3)裂缝对岩石弹性及流体输送的影响。
•油气开发(石油物理和石油工程)方面1)岩石、流体等性质对油气运移的影响;2)地震方法监测和提高石油采收率中的岩石物理在测井方面的研究•岩石电学:(1)低电阻率储层的物性参数;(2)复杂储层的岩电关系;(3)岩石的电化学特性;(4)岩石的复电阻率;(5)岩石的电频散问题•核磁共振岩石物理研究和应用的意义(1)在传统的地震勘探中,由于对各地区岩石物性(尤其是储层岩石的物性)缺乏较系统地研究,使得地震资料的处理和解释侧重于构造圈闭形态及岩性的定性解释。
大大限制了地震资料的精细处理和应用范围。
(2)在一些地质条件较复杂的勘探区,仅靠地震资料进行解释难以得到较满意的结果,其原因除对已获取的地震数据进行解释所使用的数学模型有缺陷外,如何获取勘探区内储层岩石物性参数,进行合理的研究并应用于地震资料解释中也是一个重要因素。
(3)在开采过程中,地层压力对孔隙度、渗透率的影响以及孔隙、裂隙对油气的运移、注水或注气的影响需要有定量的物理解释。
(4)目前地震和测井解释中所使用的物性参数和一些数学模型都是常规的或教课书上的经典公式,或是其它地区得到的经验公式, 缺少实际地区和储层条件下岩石物性参数,因而出现较大的偏差。
一些原有理论和经验公式已不适合,有必要通过实验室的结果对原有理论和经验公式进行修正。
岩石物理学及岩石性质一、矿物1.1矿物矿物是单个元素或若干个元素在一定地质条件下形成的具有特定理化性质的化合物,是构成岩石的基本单元。
矿物多数是在地壳(地球)物理化学条件下形成的无机晶质固体,也有少数呈非晶质和胶体。
1.2矿物的主要物理特性1.2.1光学特性(1)颜色:矿物的颜色由矿物对入射光的反映呈现出来。
一般来说矿物的颜色是矿物对入射光吸收色的补色。
(2)条痕:条痕色指矿物经过在不涂釉的瓷板上擦划,在瓷板上留下的矿物粉粒的颜色。
(3)光泽:光泽是矿物表面对入射光所射的总光量。
根据光泽有无金属感,将光泽分为金属光泽与非金属光泽。
矿物光泽特性既与矿物组成和结构有关,又与矿物表面特征有关。
(4)透明度:透明度与矿物对矿物透射光的多少有关。
1.2.2力学性质(1)硬度:矿物的硬度是指矿物的坚硬程度。
一般采用摩氏硬度法鉴别矿物硬度。
即采用标准矿物的硬度对未知矿物进行相对硬度的鉴别。
摩氏硬度中选取十种矿物作为标准矿物,将矿物分为10级,称为摩氏硬度计。
这十种矿物硬度由1级到10级的顺序是:①滑石,②石膏,③方解石,④磷灰石,⑤萤石,⑥正长石,⑦石英,⑧黄玉,⑨刚玉,⑩金刚石。
(2)解理与断口:矿物受力后产生破裂出现的没有一定方向的不规则的断开面,谓之断口。
当晶质体矿物受力断开时,出现一系列平行的、平整的裂面时,称为解理。
断口出现的程度跟解理的完善程度相互消长,解理程度越低的矿物越容易形成断口。
因此,断口具有了非晶质体的基本含义。
解理与晶质体内质点间距有明显的关系,解理常出现在质点密度较大的方向上。
(3)延展性:矿物的延展性,也可以称为矿物的韧性。
其特征是表现为矿物能被拉成长丝和辗成薄片的特性。
这是自然金属元素具有的基本特性。
1.3重要矿物(1)自然元素矿物:这类矿物较少,其中包括人们所熟知的矿物,如金、铂、自然铜、硫磺、金刚石(见图1)、石墨等。
图1金刚石(2)硫化物类矿物:本类是金属元素与硫的化合物,大约200多种,Cu、Pb、Mo、Zn、As、Sb、Hg等金属矿床多有此类矿物富集而称,具有很大的经济价值。
岩石的物理性质与性质分析岩石是地壳中主要的固体物质,由矿物粒子和胶结物质组成。
岩石的物理性质是指岩石在外部作用下所表现出的性质,包括密度、硬度、磁性、导电性等。
岩石的性质分析是对岩石物理性质的具体研究,通过对岩石的性质分析,可以更好地了解岩石的组成和结构,为勘探、开采和利用岩石资源提供参考。
1. 密度分析岩石的密度是指单位体积岩石的质量,通常以g/cm³或kg/m³为单位。
密度是岩石的一个重要物理性质,可以通过密度的测定来判断岩石的成分和结构。
常见的岩石密度范围在2.4-3.0g/cm³之间,不同种类的岩石其密度也会有所差异。
例如,花岗岩的密度较高,大理石的密度较低,通过密度分析可以区分不同种类的岩石。
2. 硬度分析岩石的硬度是指岩石抵抗外力破坏的能力,通常以莫氏硬度来表示。
莫氏硬度是一个用来标定矿物硬度的量值,取值范围从1到10,硬度越大表示矿物的抗压能力越强。
常见的岩石硬度在2-7之间,硬度较高的岩石如石英、玄武岩等在建筑和工程领域中有重要的应用。
通过硬度分析可以进行岩石分类和评价。
3. 磁性分析岩石的磁性是指岩石在外磁场作用下表现出的性质,包括磁化强度、剩磁、磁化率等。
岩石的磁性与岩石的矿物成分密切相关,一些含铁矿物的岩石具有较强的磁性。
通过磁性分析可以对岩石中的矿物组成和结构进行识别和研究,为地质勘探和矿产资源调查提供基础数据。
4. 导电性分析岩石的导电性是指岩石导电能力的强弱,不同类型的岩石具有不同的导电性。
一些含水的岩石、矿石等具有较好的导电性,通过导电性分析可以进行矿石探测和地下水勘探。
导电性分析还可以用于岩石的工程评价和建筑设计,对岩石的稳定性和耐久性进行评估。
综上所述,岩石的物理性质与性质分析对于岩石资源的开发利用具有重要的意义。
通过对岩石的密度、硬度、磁性和导电性等方面的分析,可以更加深入地了解岩石的成分和结构,为岩石资源的综合利用提供科学依据。
岩石的1岩石的力学性质-岩石的变形岩石的强度:岩石抵抗外力作用的能力,岩石破坏时能够承受的最大应力。
岩石的变形:岩石在外力作用下发生形态(形状、体积)变化。
岩石在荷载作用下,首先发生的物理力学现象是变形。
随着荷载的不断增加,或在恒定载荷作用下,随时间的增长,岩石变形逐渐增大,最终导致岩石破坏。
岩石变形过程中表现出弹性、塑性、粘性、脆性和延性等性质。
-1・5岩石变形性质的几个基本概念・1)弹性(elasticity):物体在受外力作用的瞬间即产生全部变形,而去除外力(卸载)后又能立即恢复其原有形状和尺寸的性质称为弹性。
・弹性体按其应力-应变关系又可分为两种类型:・线弹性体:应力-应变呈直线关系。
・非线性弹性体:应力—应变呈非直线的关系。
・2)塑性(plasticity):物体受力后产生变形,在外力去除(卸载)后变形不能完全恢复的性质,称为塑性。
・不能恢复的那部分变形称为塑性变形,或称永久变形,残余变形。
・在外力作用下只发生塑性变形的物体,称为理想塑性体。
・理想塑性体,当应力低于屈服极限时,材料没有变形,应力达到后,变形不断增大而应力不变,应力-应变曲线呈水平直线.・3)黏性(viscosity):物体受力后变形不能在瞬时完成,且应变速率随应力增加而增加的性质,称为粘性。
・应变速率与时间有关,->黏性与时间有关・其应力-应变速率关系为过坐标原点的直线的物质称为理想粘性体(如牛顿流体),・4)脆性(brittle):物体受力后,变形很小时就发生破裂的性质。
・5)延性(ductile):物体能承受较大塑性变形而不丧失其承载力的性质,称为延性。
・1・7岩石变形指标及其确定・岩石的变形特性通常用弹性模量、变形模量和泊松比等指标表示。
3)全应力-应变曲线的工程意义・①揭示岩石试件破裂后,仍具有一定的承载能力。
・②预测岩爆。
・若A>B,会产生岩爆・若B>A,不会产生岩爆③预测蠕变破坏。
・当应力水平在H 点以下时保持应力恒定,岩石试件不会发生蠕变。
岩石物理学及岩石性质一、矿物1.1矿物矿物是单个元素或若干个元素在一定地质条件下形成的具有特定理化性质的化合物,是构成岩石的基本单元。
矿物多数是在地壳(地球)物理化学条件下形成的无机晶质固体,也有少数呈非晶质和胶体。
1.2矿物的主要物理特性1.2.1光学特性(1)颜色:矿物的颜色由矿物对入射光的反映呈现出来。
一般来说矿物的颜色是矿物对入射光吸收色的补色。
(2)条痕:条痕色指矿物经过在不涂釉的瓷板上擦划,在瓷板上留下的矿物粉粒的颜色。
(3)光泽:光泽是矿物表面对入射光所射的总光量。
根据光泽有无金属感,将光泽分为金属光泽与非金属光泽。
矿物光泽特性既与矿物组成和结构有关,又与矿物表面特征有关。
(4)透明度:透明度与矿物对矿物透射光的多少有关。
1.2.2力学性质(1)硬度:矿物的硬度是指矿物的坚硬程度。
一般采用摩氏硬度法鉴别矿物硬度。
即采用标准矿物的硬度对未知矿物进行相对硬度的鉴别。
摩氏硬度中选取十种矿物作为标准矿物,将矿物分为10级,称为摩氏硬度计。
这十种矿物硬度由1级到10级的顺序是:①滑石,②石膏,③方解石,④磷灰石,⑤萤石,⑥正长石,⑦石英,⑧黄玉,⑨刚玉,⑩金刚石。
(2)解理与断口:矿物受力后产生破裂出现的没有一定方向的不规则的断开面,谓之断口。
当晶质体矿物受力断开时,出现一系列平行的、平整的裂面时,称为解理。
断口出现的程度跟解理的完善程度相互消长,解理程度越低的矿物越容易形成断口。
因此,断口具有了非晶质体的基本含义。
解理与晶质体内质点间距有明显的关系,解理常出现在质点密度较大的方向上。
(3)延展性:矿物的延展性,也可以称为矿物的韧性。
其特征是表现为矿物能被拉成长丝和辗成薄片的特性。
这是自然金属元素具有的基本特性。
1.3重要矿物(1)自然元素矿物:这类矿物较少,其中包括人们所熟知的矿物,如金、铂、自然铜、硫磺、金刚石(见图1)、石墨等。
图1金刚石(2)硫化物类矿物:本类是金属元素与硫的化合物,大约200多种,Cu、Pb、Mo、Zn、As、Sb、Hg等金属矿床多有此类矿物富集而称,具有很大的经济价值。
方铅矿PbS。
闪锌矿ZnS。
黄铁矿FeS2(见图2)图2黄铁矿(3)氧化物及氢氧化物类矿物:本类矿物分布相当广泛,共约180多种,包括重要的造盐矿物如石英及Fe、Al、Mn、Cr、Ti、Sn、U、Th等的氧化物或氢氧化物,是铁、铝、锰、铬、钛、锡、铀、钍等矿石的重要来源,经济价值很大。
赤铁矿Fe2O3。
磁铁矿Fe3O4或FeO·Fe2O3。
褐铁矿FeO(OH)·nH2 O。
软锰矿MnO2。
铝土矿Al2O3·nH2O石英SiO2(4)含氧盐类矿物:正长石K[AlSi3O8]或K2O·Al2O3·6SiO2。
斜长石橄榄石(Mg,Fe)2[SiO4]。
辉石(Ca,Na)(Mg,Fe,Al)[(Si,Al)2O6]。
角闪石Ca2Na(Mg,Fe)4(Al,Fe)[(Si,Al)4O11]2[OH]2云母。
方解石CaCO3。
(见图3)图3方解石二、岩石2.1岩石岩石,地质勘探的主要对象。
是固态矿物或矿物的混合物,由一种或多种矿物组成的,具有一定结构构造的集合体,也有少数包含有生物的遗骸或遗迹(即化石)。
2.2岩石种类(1)岩浆岩也称火成岩。
来自地球内部的熔融物质,在不同地质条件下冷凝固结而成的岩石。
当熔浆由火山通道喷溢出地表凝固形成的岩石,称喷出岩或称火山岩。
常见的火山岩有玄武岩、安山岩和流纹岩等。
当熔岩上升未达地表而在地壳一定深度凝结而形成的岩石称侵入岩,按侵入部位不同又分为深成岩和浅成岩。
花岗岩(见图4)、辉长岩、闪长岩是典型的深成岩。
花岗斑岩、辉长玢岩和闪长玢岩是常见的浅成岩。
根据化学组分又可将火成岩分为超基性岩(SiO2,小于45%)、基性岩(SiO2,45%~52%)、中性岩(SiO2,52%~65%)、酸性岩(SiO2,大于65%)和碱性岩含有特殊碱性矿物,SiO2,52%~66%)。
火成岩占地壳体积的64.7%。
图4花岗岩(2)沉积岩也称水成岩。
在地表常温、常压条件下,由风化物质、火山碎屑、有机物及少量宇宙物质经搬运、沉积和成岩作用形成的层状岩石。
沉积岩由颗粒物质和胶结物质组成。
颗粒物质是指不同形状及大小的岩屑及某些矿物,胶结物质的主要成分为碳酸钙、氧化硅、氧化铁及粘土质等。
按成因可分为碎屑岩、粘土岩和化学岩(包括生物化学岩)。
常见的沉积岩有砂岩、凝灰质砂岩、砾岩、粘土岩、页岩、石灰岩、白云岩、硅质岩、铁质岩、磷质岩等。
沉积岩占地壳体积的7.9%,但在地壳表层分布则甚广,约占陆地面积的75%,而海底几乎全部为沉积物所覆盖。
(3)变质岩原有岩石经变质作用而形成的岩石。
根据变质作用类型的不同,可将变质岩分为5类:动力变质岩、接触变质岩、区域变质岩、混合岩和交代变质岩。
常见的变质岩有糜棱岩、碎裂岩、角岩、板岩、千枚岩(见图5)、片岩、片麻岩、大理岩、石英岩、角闪岩、片粒岩、榴辉岩、混合岩等。
变质岩占地壳体积的27.4%。
图5千枚岩火成岩、沉积岩、变质岩三者可以互相转化。
火成岩经沉积作用成为沉积岩,经变质作用成为变质岩。
变质岩也可再次成为新的沉积岩,沉积岩经变质作用成为变质岩,沉积岩、变质岩可被熔化,再次成为火成岩。
2.3岩石的物理性质(1)磁性岩石的磁性主要决定于组成岩石的矿物的磁性,并受成岩后地质作用过程的影响。
一般说,橄榄石、辉长石、玄武岩等基性、超基性岩浆岩的磁性最强;变质岩次之;沉积岩最弱。
岩石和矿物的磁性与温度、压力有关系。
顺磁性矿物的磁化率与温度的关系遵循居里定律。
铁磁性矿物的居里温度一般为300~700℃,其磁化率一般随温度升高而增大(可达50%),至居里温度附近则迅速下降。
岩石的磁化率和磁化强度值都随压力的增大而减小。
(2)密度和孔隙度矿物的密度是由构成该矿物各元素的原子量和矿物的分子结构决定的。
天然金属的密度最大。
石油的密度是由其成分决定的。
岩石的密度取决于它的矿物组成、结构构造、孔隙度和它所处的外部条件。
(3)弹性波传播速度纵波和横波在岩石和矿物中传播的速度vP和vS是地球物理勘探中常用的两个参数。
矿物中波的传播速度与矿物的密度有关,对于主要造岩矿物,如长石、石英等,波速一般随密度的增加而升高;对于金属矿物和天然金属,波速一般随密度的增加而下降。
岩石中的波速取决于其矿物成分和孔隙充填物的弹性。
压力增大时,岩石中的波速增大。
(4)电性地球物理勘探中常用的岩石电性参数有电导率σ或电阻率ρ,电容率ε和极化率η。
按导电特性不同,矿物可分为导体、半导体和介电体。
一些金属(如自然金、自然铜等)和石墨等属于导体(ρ≈10-6~10-5欧姆·米)。
多数金属硫化物和金属氧化物属于半导体(ρ≈10-6~106欧姆·米)。
绝大多数造岩矿物(石英、长石、云母等)属于介电体(ρ>106欧姆·米)。
不同岩石和矿石的矿物组成、结构构造、孔隙液含量和液体的性质都不相同,岩石和矿物的电容率ε即为介电常数。
在实用中为了方便,常采用无量纲参数相对电容率k面极化系数和极化率是激发极化法(见电法勘探)所用的两个电性参数。
含矿岩石的极化率要比不含矿的大得多。
在结构构造相同的同类含矿岩石中,随着导电矿物体积含量(ξv)的增加,极化率开始明显增大,渐趋于某一极大值。
极化率在很大程度上受着结构构造的控制。
此外,极化率还与温度和孔隙液含盐浓度等因素有关。
岩石或矿石中有拉长形导电矿物,当其呈定向排列时,这种岩石或矿石的极化率有明显的各向异性。
(5)热学性质在地球物理工作中常用的热学参数是热导率。
大多数矿物的热导率都显示各向异性。
岩石的热导率取决于组成岩石的矿物和固体颗粒间的介质如空气、水、石油等的绝热性质。
孔隙度增高时热导率下降。
当温度和压力升高时,空气的热导率显著增大。
岩石和矿物的热导率与温度、压力有关系。
一般说来,温度升高,热导率降低,,压力升高,沉积岩的热导率增大,当压力从零升至100大气压时,热导率变化最大。
压力再升高,则热导率变化不大,或趋于一常数。
三、岩石物理学3.1岩石物理学岩石物理研究主要是试图建立地球物理勘探所获得的物理量与地下岩石参数的定量对应关系,并快速理解储层流体变化所引起的地震响应变化,增强和减小解释的风险。
3.2发展现状及应用技术国外岩石物理研究的重点在于理论模型的建立和应用,着眼于研究成果的系统化和精细化。
国内岩石物理研究则紧紧跟踪了国外的技术发展,着眼于岩石物理理论模型的应用,主要包括以下几方面:1)岩石物理理论模型适应性研究;2)实验室岩心测试技术研究;3)储层特征参数研究;4)岩石物理参数规律统计;5)储层特征敏感参数识别;6)测井曲线的重构或生成。
3.3未来发展趋势随着隐蔽油气藏勘探开发及提高老油田采收率的实际需要,作为油气勘探开发领域的基础性研究,岩石物理研究在未来储层特征识别、测井曲线估算、流体性质预测、AVO、时移地震等方面有着广泛的应用,面临着难得的机遇。
岩石物理研究相当于油气勘探开发的显微镜,不同的研究阶段、不同的研究对象,需要不同的技术支撑。
岩石物理未来的研究的重点可能包括以下方面:1)岩石物理模型建立及适用性研究岩石物理性质是复杂的,且不同区域有不同的规律。
一方面,要基于地震波在岩石中传播的规律,建立尽可能确切的岩石物理性质各因素间相互联系的理论模型,这是岩石物理研究的基础;另一方面,要明确不可能得到一种普遍的理论模型或者经验公式,因此应用理论模型或者经验公式时,必须要了解各自的适用范围、假设条件和关键参数,简单的外推可能导致错误的结果。
2)岩石物理研究在勘探开发中的实际应用随着计算机能力的提高和地震处理技术的改进,地震数据处理可以解释地下岩石更多的细节,如岩性识别、流体识别、孔隙性质判断、储层压力和温度确定、岩石衰减因子确定等。
没有相应的岩石物理研究,这些任务很难实现;同时也需要在勘探发实践中,对岩石物理研究所得到的认识、结论不断的进行探索应用,分析其存在的问题,不断的进行完善。
3)岩石物理模版研究岩石物理技术在储层物性反演、烃类检测、AVO、时移地震等地震技术中起到了基本准则的作用,也可对地震数据的处理和解释提供基础性参数和参考,这种准则作用或者基础参数分析可以通过岩石物理模板实现。
基于区域地质和岩石物理参数,如岩性、矿物组成、深度、压力、温度梯度、成岩作用、流体特征等,通过各种参数的统计分析,建立针对特定应用目的不同属性参数之间的关系的模版,为地质学家对地球物理信息的定性认识乃至定量解释提供方便的实用工具。