最小方差无偏估计UMVUE
- 格式:ppt
- 大小:668.50 KB
- 文档页数:22
参数估计习题与习题解答6.11.从一批电子元件中抽取8个进行寿命测试,得到如下数据(单位:h ):1 050, 1 100, 1 130, 1 040, 1 250, 1 300, 1 200, 1 080试对这批元件的平均寿命以及分布的标准差给出矩估计。
解:样本均值 75.11438108011301101050=++++=x样本标准差 ∑=-=812)(71i i x x s []22)75.11431080()75.11431050(71-++-=0562.96= 因此,元件的平均寿命和寿命分布的标准差的矩估计分别为1143。
75和96.05622. 设总体),0(~θU X ,现从该总体中抽取容量为10的样本,样本值为0。
5,1.3,0。
6,1.7,2.2,1.2,0。
8,1。
5,2.0,1.6试对参数θ给出矩估计.解:由于E(X )=2θ,即θ=2E(X ),而样本均值106.13.15.0+++=x =1.34,故θ的矩估计为68.22ˆ==x θ3. 设总体分布列如下,n x x ,1是样本,试求未知参数的矩估计.10,,3,2,)1()1()()2(,1,,2,1,0,1)()1(22<<=--==-===-θθθ k k k X P N N k Nk X P k ;(正整数)是未知参数 解:(1) 总体均值E (X )=21110-=-+++N N N ,解之可得N =2E (X )+1故N 的矩估计量12ˆ+=x N,其中x 为样本均值,若x 2不是整数,可取大于x 2的最小整数代替.2x(2) 总体均值E (X )==---+∞=∑222)1()1(k k k k θθ∑+∞=---222)1)(1(k k k k θθ,由于3222)1)(1(θθ=--∑+∞=-k k k k ,故有E(X )θθθ2232=⨯=,即θ)(2X E =,从而参数的 θ 矩估计为.2ˆx=θ 4.设总体密度函数如下,n x x ,,1 是样本,试求未知参数的矩估计.0,,1),;()4(;0,10,);()3(;0,10,)1();()2(;0,0),(2);()1(12>>=><<=><<+=><<-=---θμθμθθθθθθθθθθθθθμθθx ex p x x x p x x x p x x x p x解:(1) 总体均值E (X )==-⎰dx x x )(22θθθθθθθ31)(222=-⎰dx x x ,即即)(3X E =θ,故参数θ的矩估计为.3ˆx =θ(2)总体均值E(X )=dx x x ⎰+1)1(θθ=21++θθ,所以1E(X)E(X)21--=θ,从而参数θ的矩估计.121ˆ--=x xθ (3)由E (X )=dx x x 11-⎰θθ=1+θθ可得2)(1)(⎪⎪⎭⎫ ⎝⎛-=X E X E θ,由此,参数θ的矩估计.1ˆ2⎪⎭⎫⎝⎛-=x x θ(4)先计算总体均值与方差E (X )=dx ex x θμμθ--∞+⎰1=dt e t tθθ-∞+⎰01+dt e tθμθ-∞+⎰1=μθ+)(2X E =dx ex x θμμθ--∞+⎰12=dt e t tθθμ-∞+⎰+1)(02=dt e ttθθ-∞+⎰12+dt e t tθθμ-∞+⎰012+dt e tθθμ-∞+⎰12=.2222μμθθ++V a r(X )=22))(()(X E X E -=2θ由此可以推出)()(,)(X Var X E X Var -==μθ,从而参数μθ,的矩估计为.ˆ,ˆs x s -==μθ 5.设总体为)1,(μN ,先对该总体观测n 次,发现有k 次观测为正,使用频率替换方法求μ的矩估计。
一、概述最小方差无偏估计(UMVUE)是统计学中一种重要的参数估计方法,它具有估计准确性高、无偏性等优点。
充分完全统计量法是一种用于求解UMVUE的方法,通过找到一个充分完全统计量,就可以得到一个UMVUE。
本文将介绍充分完全统计量法求UMVUE的原理、步骤和应用。
二、充分完全统计量的定义充分完全统计量是指在给定参数下,包含了样本全部信息,且不含冗余信息的统计量。
具体而言,设X1,X2,…,Xn为来自总体分布函数Pθ(x)的一个样本,则T = t(X1, X2, …, Xn)为统计量,若对任意θ∈Θ,Pθ(x1, x2, …, xn|T = t)只依赖于θ,而不依赖于概率分布函数的任何其他的信息,则称T为总体分布的一个充分完全统计量。
三、充分完全统计量法求UMVUE的步骤1. 确定总体分布和要估计的参数。
2. 推导出总体分布的概率密度函数或概率质量函数。
3. 确定充分统计量。
4. 利用充分统计量构造UMVUE。
四、充分完全统计量法在正态分布下的应用以正态分布N(θ, σ^2)为例,其中θ为均值,σ^2为方差,我们希望求得均值的UMVUE。
1. 总体分布的概率密度函数为f(x|θ) = (1/√(2πσ^2)) * exp[-(x-θ)^2/(2σ^2)]。
2. 根据充分完全统计量的定义,我们可以知道样本的均值和方差并不是充分完全统计量。
3. 经过推导和分析,我们发现样本的平方和为充分完全统计量,即T= Σ(xi - x̄)^2。
4. 利用T构造UMVUE,即求E[g(T)], 其中g(T)为一个关于T的函数,使得g(T)是T的UMVUE。
通过数学推导,我们可以得到g(T) = (n-1)S^2/σ^2,其中S^2为样本的方差。
五、结论通过上述步骤和应用实例,我们可以看到充分完全统计量法求UMVUE的方法。
通过确定充分完全统计量,我们可以得到UMVUE,从而实现参数的准确估计。
在实际应用中,我们可以根据不同的总体分布和参数,利用充分完全统计量法来求得UMVUE,从而提高参数估计的准确性和可靠性。
最小方差无偏估计⏹最小方差无偏估计的定义⏹RBLS定理⏹计算实例1. 最小方差无偏估计的定义对于未知常数的估计不宜采用最小均方估计,但可以约束偏差项为零的条件下,使方差最小。
定义:最小方差无偏估计定义为约束估计是无偏的条件下,使方差{}{}22ˆˆˆˆ()[()]()minVar E E E θ=θ-θ=θ-θ→估计的均方误差为22ˆˆˆˆ(){[]}()[()]Mse E Var E θ=θ-θ=θ+θ-θ偏差项估计方差在前面讨论的有效估计量是无偏的,且方差达到CRLB,所以有效估计量是最小方差无偏估计。
如果有效估计量不存在,如何求最小方差无偏估计呢?这时可利用RBLS定理求解。
2. RBLS(Rao-Blackwell-Lehmann-Scheffe)定理如果是一个无偏估计、是一个充分统计量,那么是:(1) θ的一个可用的估计(a valid estimator);(2) 无偏;(3) 对所有的θ,方差小于等于的方差。
θ()T z ˆ(|())E T θ=θz θ如果充分统计量是完备的,则是最小方差无偏估计。
()T z ˆ(|())E T θ=θz 完备: 只存在唯一的T (z)的函数,使其无偏。
例1:高斯白噪声中未知常数的估计0,1,...,1i iz A w i N =+=-iw 其中是均值为零、方差为σ2高斯白噪声序列。
求最小方差无偏估计。
解:首先找一个无偏估计,很显然是无偏。
1A z =其次,求A 的充分统计量,由前面的例题可知,是A 的充分统计量。
1()N i i T z -==∑z 3. 计算举例接着求条件数学期望()ˆ|()AE A T =z 由高斯随机变量理论:1(|)()(,)(())(())E x y E x Cov x y Var y y E y -=+-2()~(,)T N NA N σz 而1121100(,())()N N i i i i Cov A T E z A z NA E w w --==⎧⎫⎧⎫⎛⎫=--==σ⎨⎬⎨⎬ ⎪⎩⎭⎝⎭⎩⎭∑∑z ()11221001ˆ|()()N N i i i i A E A T A N z NA z N ---==⎛⎫==+σσ-= ⎪⎝⎭∑∑z由于完备的充分统计量只存在一个唯一的函数使其无偏,所以最小方差无偏估计量也可以通过下面的方法求解:假定T(z)是完备的充分统计量,那么ˆ(())g T θ=z 在刚才的例题中,10()N ii T z -==∑z 2.1.3 计算举例例2: 假定观测为其中为独立同分布噪声,且,求均值θ=β/2的最小方差无偏估计。
在数理统计中,UMVUE(最小方差无偏估计量)是一种非常重要的概念,它描述的是一种最优的统计量,即具有最小方差的无偏估计量。
UMVUE在很多统计推断问题中都有广泛的应用,例如线性回归模型的参数估计、方差分量估计等等。
要找到UMVUE,我们需要满足两个条件:无偏性和最小方差性。
无偏性意味着估计量的期望值等于参数的真实值,而最小方差性则要求估计量的方差达到所有无偏估计量中的最小值。
具体来说,假设我们要估计一个参数θ,一个无偏估计量是所有可能的估计量中的一个,如果它的期望值等于参数的真实值,即E(θ^)=θ。
而UMVUE则是所有无偏估计量中方差最小的那个。
对于一些特定的分布,UMVUE是已知的,例如正态分布的均值和方差的UMVUE分别是样本均值和样本方差。
然而,对于更一般的分布,找到UMVUE通常是一个复杂的问题,可能需要使用优化算法或者数值计算方法来解决。
在实践中,我们通常会使用一些常见的估计量作为UMVUE的近似值,例如在回归模型中,我们通常使用普通最小二乘估计量作为参数的估计值,这个估计量是线性无偏的,并且在大多数情况下具有相对较小的方差。
数理统计8:点估计的有效性、⼀致最⼩⽅差⽆偏估计(UMVUE)、零⽆偏估计法在之前的学习中,主要基于充分统计量给出点估计,并且注重于点估计的⽆偏性与相合性。
然⽽,仅有这两个性质是不⾜的,⽆偏性只能保证统计量的均值与待估参数⼀致,却⽆法控制统计量可能偏离待估参数的程度;相合性只能在⼤样本下保证统计量到均值的收敛性,但却对⼩样本情形束⼿⽆策。
今天我们将注重于统计量的有效性,即⽆偏统计量的抽样分布的⽅差。
由于本系列为我独⾃完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢!⽬录Part 1:⼀致最⼩⽅差⽆偏估计⾸先考虑这样的问题:如何刻画⼀个统计量的有效程度?注意到,⼀个统计量的取值既可能⾼于待估参数,亦可能低于待估参数,要综合考虑统计量对待估参数误差,需要⽤平⽅均衡这种双向偏差,因此,提出均⽅误差的概念:若ˆg(X)是g(θ)的估计量,则ˆg(X)的均⽅误差定义为MSE(ˆg(X))=E[ˆg(X)−g(θ)]2.对于确定的统计量ˆg(X)⽽⾔,MSE(ˆg(X))是θ的函数。
显然,⼀个统计量的均⽅误差越⼩,它就越在待估参数真值附近环绕,由此,⽤统计量的⼀次观测值作为待估参数的估计就有着越⼤的把握。
如果对于g(θ)的两个估计量ˆg1(X)和ˆg2(X),恒有MSE(ˆg1(X))≤MSE(ˆg2(X)),且严格不等号⾄少在某个θ处成⽴,就称ˆg1(X)在均⽅误差准则下优于ˆg2(X)。
如果我们能找到均⽅误差最⼩的统计量ˆg(X),就相当于找到了均⽅误差准则下的最优统计量。
不过,均⽅误差是θ的函数,这就导致了某些统计量在θ=θ1时均⽅误差⼩,在θ=θ2时均⽅误差⼤,⼀致最⼩均⽅误差估计量便不存在,需要增加约束条件,找到更可能存在的“最优”。
基于此,我们提出⼀致最⼩⽅差⽆偏估计(UMVUE)的概念,它将g(θ)的估计量限制在了⽆偏估计之中,这使得UMVUE的存在可能性得以提⾼。
并且,由于E(ˆg(X))=g(θ),所以MSE(ˆg(X))=E(ˆg(X)−g(θ))2=E[ˆg(X)−E(ˆg(X))]2=D(ˆg(X)),即⽆偏估计的均⽅误差就是⽆偏估计的⽅差。
一致最小方差无偏估计的判断一致最小方差无偏估计(Uniform Minimum Variance Unbiased Estimator, UMVUE)是统计学中一种重要的估计方法。
它在许多实际问题中具有广泛应用,可以有效地对未知参数进行估计,并且满足无偏性和方差最小的要求。
UMVUE的判断需要满足以下几个要素。
首先,一个无偏估计是指估计量的期望值与真实参数值相等。
也就是说,对于任意一个未知参数θ,UMVUE的期望值应该恰好等于θ。
无偏性是估计方法的一个重要性质,它确保了估计结果的准确性和可靠性。
一般来说,UMVUE的无偏性是通过数学推导和证明得出的,具有较高的可信度。
其次,UMVUE还要求具有最小的方差。
方差是对估计量精确性的度量,方差越小,估计结果越准确。
UMVUE的方差要比其他估计方法的方差小,这意味着UMVUE相对于其他估计方法更具优越性。
通过比较不同估计方法的方差,可以选择出UMVUE,从而得到更准确的估计结果。
UMVUE的判断还需要满足一致性的要求。
一致性是指当样本容量逐渐增大时,估计结果逐渐接近真实参数值。
UMVUE在大样本情况下应该是一致的,即当样本容量趋于无穷大时,UMVUE将趋于真实参数值。
这意味着UMVUE的估计结果在大样本情况下更加可靠和稳定。
判断一个估计方法是否为UMVUE,一般需要通过数学推导和证明进行验证。
然而,在实际应用中,我们可以根据具体问题的特点和数据的特性来选择合适的估计方法。
一般来说,如果一个估计方法已经被证明是无偏的,并且在方差上具有较小的表现,那么它很可能是一个UMVUE。
UMVUE作为一种重要的估计方法,为我们解决实际问题提供了有力的工具。
它不仅可以提供准确可靠的估计结果,还能够为我们提供关于未知参数的更多信息。
在统计建模、实验设计、市场调研等领域,UMVUE的应用非常广泛。
它能够帮助我们更好地了解事物的本质和规律,为决策和预测提供科学的依据。
总之,UMVUE是一种重要的统计估计方法,具有无偏性、最小方差和一致性的特点。