几何光学习题及解答
- 格式:doc
- 大小:693.00 KB
- 文档页数:24
几何光学第一次作业第1题:一折射球面r=150mm ,n=1,n ’=1.5。
当物方截距分别为- 、-1000mm 、-100mm 、0mm 、100mm 、150mm 、200mm 时,求像方截距及垂轴放大率各为多少?解:由'''n n n n l l r--= 得像方截距为'''n l n n n r l=-+又因为''nl n lβ=所有当l = - 时,'l =450mm ,β=0当l = -1000mm 时,'l =643mm ,β=-3/7 当l = -100mm 时,'l =-225mm ,β=1.5当l = 0mm 时,'l =0mm , β=1当l = 100mm 时,'l =50mm , β=1/3 当l = 150mm 时,'l =150mm ,β=2/3 当l = 200mm 时,'l =180mm ,β=0.6第2题:在曲率半经r=200mm 的凸面镜前l= -1000 mm 处有一物高为y=100mm 的物体,求该物体经球面镜后所成像的位置和大小。
解:由'''n n n n l l r--=,令'1n n =-=得,'112l l r +=所以当r=200mm ,l= -1000 mm 时,'l =90.9mm ,则'l lβ==-0.091 'y y β== -9.1mm第4题:已知一个透镜将一物放大-3X 投影在屏幕上,当透镜向物体移近18mm 时,物体将被放大-4X ,求透镜的焦距。
解:因为f xβ=-所以根据题意有:3fx-=- ①418fx -=-+ ②解得物方焦距f = -216mm ,像方焦距'f = -f =216mm第2次作业第1题:某物镜由两个薄光组组成:f 1’=100mm ,f 2’=200mm ,d=0;在第一光组前x= —50mm 处有一物高为y=20mm的物体,求:(1)该物镜的焦距;(2)像的位置;(3)像高。
高考物理光学知识点之几何光学经典测试题附答案解析(1)一、选择题1.如图所示,是两个城市间的光缆中的一条光导纤维的一段,光缆总长为L ,它的玻璃芯的折射率为n 1,外层材料的折射率为n 2.若光在空气中的传播速度近似为c ,则对于光由它的一端射入经多次全反射后从另一端射出的过程中,则下列判断中正确的是( )A .n 1< n 2,光通过光缆的时间等于1n L cB .n 1< n 2,光通过光缆的时间大于1n L c C .n 1> n 2,光通过光缆的时间等于1n L c D .n 1> n 2,光通过光缆的时间大于1n L c2.某单色光在真空中传播速度为c ,波长为λ0,在水中的传播速度为v ,波长为λ,水对这种单色光的折射率为n ,当这束单色光从空气斜射入水中时,入射角为i ,折射角为r ,下列正确的是( )A .v=nc ,λ=n c 0λ B .λ0=λn,v=sini csinr C .v=cn ,λ=c v0λD .λ0=λ/n,v=sinrcsini 3.半径为R 的玻璃半圆柱体,截面如图所示,圆心为O ,两束平行单色光沿截面射向圆柱面,方向与底面垂直,∠AOB =60°,若玻璃对此单色光的折射率n =3,则两条光线经柱面和底面折射后的交点与O 点的距离为( )A .3RB .2RC . 2RD .R4.如图所示,口径较大、充满水的薄壁圆柱形浅玻璃缸底有一发光小球,则( )A.小球必须位于缸底中心才能从侧面看到小球B.小球所发的光能从水面任何区域射出C.小球所发的光从水中进入空气后频率变大D.小球所发的光从水中进入空气后传播速度变大5.如图所示的四种情景中,属于光的折射的是().A.B.C.D.6.如图所示,黄光和紫光以不同的角度,沿半径方向射向半圆形透明的圆心O,它们的出射光线沿OP方向,则下列说法中正确的是()A.AO是黄光,穿过玻璃砖所需时间短B.AO是紫光,穿过玻璃砖所需时间短C.AO是黄光,穿过玻璃砖所需时间长D.AO是紫光,穿过玻璃砖所需时间长7.如图所示,一束平行光经玻璃三棱镜折射后分解为互相分离的a、b、c三束单色光.比较a、b、c三束光,可知A.当它们在真空中传播时,c光的波长最大B.当它们在玻璃中传播时,c光的速度最大C.若它们都从玻璃射向空气,c光发生全反射的临界角最小D.对同一双缝干涉装置,a光干涉条纹之间的距离最小8.下列说法中正确的是A.白光通过三棱镜后呈现彩色光带是光的全反射现象B.照相机镜头表面涂上增透膜,以增强透射光的强度,是利用了光的衍射现象C.门镜可以扩大视野是利用了光的干涉现象D.用标准平面检查光学平面的平整程度是利用了光的干涉9.如图所示为用a、b两种单色光分别通过同一双缝干涉装置获得的干涉图样.现让a、b 两种光组成的复色光穿过平行玻璃砖或三棱镜时,光的传播路径与方向可能正确的是()A.①③B.①④C.②④D.只有③10.如图所示,一束复色光由空气射向玻璃,发生折射而分为a、b两束单色光.则A.玻璃对a、b光的折射率满足n a>n bB.a、b光在玻璃中的传播速度满足v a>v bC.逐渐增大入射角,a光将先消失D.分别通过同一双缝干涉实验装置时,相邻亮条纹间距离a光大于b光11.如图所示,一束红光P A从A点射入一球形水珠,光线在第一个反射点B反射后到达C点,CQ为出射光线,O点为球形水珠的球心.下列判断中正确的是( )A .光线在B 点可能发生了全反射B .光从空气进入球形水珠后,波长变长了C .光从空气进入球形水珠后,频率增大了D .仅将红光改为紫光,光从A 点射入后到达第一个反射点的时间增加了12.光在真空中的传播速度为c ,在水中的传播速度为v 。
习题九 几何光学(习题参考解答)[9-1] 将一物置于长柱形玻璃的凸球面前25cm 处,设这个凸球面曲率半径为5cm ,玻璃前的折射率n=1.5,玻璃前的媒质是空气,求:(1) 像的位置,是实像还是虚像?(2) 该折射面的焦距。
已知:5.11525====n n cm r cm u o 求:①?=v ②??21==f f 解:∵ rn n v n u n 1221-=+ ∴ 515151251-=+.v . )(25cm v = 成实像当:时∞=u 2f v =515.112-=f cm f 152=当:1f u v =∞=时55.15.111=∞+f cm f 101=答:像的位置在球面后25cm 外 为实像焦距cm f 101= cm f 152=[9-2] 有一厚度为3cm ,折射率为1.5的共轴球面系统,其第一折射面是半径为2cm 的球面,第二折射面是平面,若在该共轴球面系统前面对第一折射面8cm 处放一物,像在何处? 已知:cm d 3= 1=o n 5.1=n cm r 21= ∞=2rcm u 81=求:?=v解:∵ rn n v n u n 1221-=+ ∴ 215151811-=+.v . cm v 121=又 ∵ ∞-=+--5.111)312(5.1v ∴ cm v 6=答:像最后成在第二折射面后6cm 处。
[9-3] 一个双凸透镜,放在空气中,两面的曲率半径分别为15cm 和30cm ,如玻璃折射率为1.5,物距为100cm ,求像的位置和大小,并作图验证之。
已知:cm r 151= cm r 302-= 5.1=n cm u 100=求:像的位置?=v 像的大小解:∵ 透镜的焦距f 为:()121111-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=r r n f ∴ 1)301151)(15.1(-⎥⎦⎤⎢⎣⎡---=f )(20cm =又 ∵ fv u 111=+ ∴20111001=+v )(25cm v =又 ∵ 放大率 uv m = 10025= 41=答:像的位置在透镜后20cm 外,实像且放大率为41[9-4] 一对称的双凸透镜折射率为1.5它在空气中的焦距为12cm ,其曲率半径为多大?另一双凸薄透镜置下列介质中,其左边为折射率为n 1=4/3的水,右边为空气,且右侧球面的半径与上一透镜的相同。
部分作业答案 几何光学部分第一章 几何光学基本定律与成像16、一束平行细光束入射到半径为30r mm =、折射率为 1.5n =的玻璃球上,求其会聚点的位置。
如果在凸面镀上反射膜,其会聚点应在何处?如果凹面镀反射膜,则反射光束在玻璃中的会聚点在何处?反射光束经前表面折射后,会聚点又在何处?解:玻璃球可以看作两个折射球面组合在一起,设凸面为第一面,凹面为第二面 (1)首先考虑光束射入玻璃球第一面时的状态,使用单折射球面物像关系公式1111111n n n n l l r ''--=' 由11111.5;1;;30n n l r mm '==→-∞=,得190l mm '=。
对于第二面,由于两球面顶点距离260d r mm ==,所以222121.0; 1.5;30;30n n l l d mm r mm ''===-==-,由物像关系 2222222n n n n l l r ''--=' 得215l mm '=,即会聚点位于第二面顶点右侧15mm 处。
(2) 将第一面镀膜,形成反射镜,就相当于凸面镜,则11111;1;;30n n l r m m '==-→-∞=,得到115l mm '=,即会聚点位于第一面顶点右侧15mm 处。
(3)光线经过第一面折射后第二面镀膜则22221.5; 1.5;30;30n n l mm r mm '==-==-,得到210l mm '=-,即反射光束在玻璃球内的会聚点位于第二面顶点左侧15mm 处。
(4)再经过第一面折射,将其记为第三面,则333231.5; 1.0;2106050;30n n l l r mm r mm ''===+=-+== 由物像关系3333333n n n n l l r ''--=' 得375l mm '=,即光束从玻璃球出来后的会聚点位于第一面顶点右侧75mm 处,也是第二面顶点右侧15mm 处。
几何光学试题精选及答案1.两种单色光由水中射向空气时发生全反射的临界角分别为θ1、θ2,已知θ1>θ2.用n 1、n 2分别表示水对两单色光的折射率,v 1、v 2分别表示两单色光在水中的传播速度,则(B )A .n 1<n 2,v 1<v 2B .n 1<n 2,v 1>v 2C .n 1>n 2,v 1<v 2D .n 1>n 2,v 1>v 22.两束单色光A 、B 同时由空气射到某介质的界面MN 上,由于发生折射而合成一复色光C ,如图所示,下列判断中正确的是(D ) ①A 光的折射率小于B 光的折射率 ②A 光的折射率大于B 光的折射率③∠AOM 和∠BOM 均大于∠NOC ④∠AOM 和∠BOM 均小于∠NOC A .①③ B.①④ C .②③ D .②④3.由折射率为2的材料构成的半圆柱的主截面如图所示,沿半径方向由空气射入的光线a 射到圆柱的平面后,光线b 和c 分别是它的反射光线和折射光线.若半圆柱绕垂直纸面过圆心O 的轴转过15º,而光线a 不动,则(B )A .光线b 将偏转15ºB .光线b 将偏转30ºC .光线c 将偏转30ºD .光线c 将偏转45º4.如图所示,直角三角形ABC 为一透明介质制成的三棱镜的截面,且∠A =300,在整个AC 面上有垂直于AC 的平行光线射入.已知这种介质的折射率n >2,则(BC )A .可能有光线垂直AB 面射出B .一定有光线垂直BC 面射出C .一定有光线垂直AC 面射出D .从AB 面和BC 面射出的光线能会聚于一点5.如图所示,水盆中盛有一定深度的水,盆底处水盆放置一个平面镜.平行的红光束和蓝光束斜射入水中,经平面镜反射后,从水面射出并分别投射到屏MN 上两点,则有(B )A .从水面射出的两束光彼此平行,红光投射点靠近M 端B .从水面射出的两束光彼此平行,蓝光投射点靠近M 端C .从水面射出的两束光彼此不平行,红光投射点靠近M 端D .从水面射出的两束光彼此不平行,蓝光投射点靠近M 端6.如图所示,两束单色光a 、b 分别照射到玻璃三棱镜AC 面上,穿过三棱镜后互相平行,则(C ) A .a 光的频率高B .b 光的波长大C .a 光穿过三棱镜的时间短D .b 光穿过三棱镜的时间短7.MN 是空气与某种液体的分界面.一束红光由空气射到分界面,一部分光线被反射,一部分进入液体中.当入射角是450 时,折射角为300, 如图所示.以下判断正确的是(C ) A .反射光线与折射光线的夹角为900 B .该液体对红光的全反射临界角为600 C .在该液体中,红光的传播速度比紫光大介质 空气O A B N M C M 红光 蓝光 a b C A红光450 空气 300 O M 液体D .当紫光以同样的入射角从空气射到分界面,折射角也是3008.光从介质1通过两种介质的交界面进入介质2的光路如图所示.下列论述:①光在介质1中的传播速度较大;②光在介质2中的传播速度较大;③光从介质1射向两种介质的交界面时,可能发生全反射现象;④光从介质1射向两种介质的交界面时,可能发生全反射现象。
几何光学基本原理习题答案几何光学是光学中的一个重要分支,研究光的传播和反射的规律。
它是光学理论的基础,也是应用最广泛的光学学科之一。
在学习几何光学的过程中,我们常常会遇到一些习题,下面我将为大家提供一些几何光学基本原理习题的答案。
1. 问题:一束光从空气射入玻璃介质,入射角为30°,折射角为20°,求玻璃的折射率。
解答:根据折射定律,光线从空气射入玻璃介质时,入射角、折射角和两种介质的折射率之间满足关系:n1*sinθ1 = n2*sinθ2。
其中,n1为空气的折射率,一般取为1;θ1为入射角,θ2为折射角,n2为玻璃的折射率。
代入已知条件,得到:1*sin30° = n2*sin20°。
解方程可得:n2 ≈ 1.5。
所以,玻璃的折射率约为1.5。
2. 问题:一束光从玻璃射入空气,入射角为60°,折射角为45°,求玻璃的折射率。
解答:同样根据折射定律,光线从玻璃射入空气时,入射角、折射角和两种介质的折射率之间满足关系:n1*sinθ1 = n2*sinθ2。
其中,n1为玻璃的折射率,θ1为入射角,θ2为折射角,n2为空气的折射率,一般取为1。
代入已知条件,得到:n1*sin60° = 1*sin45°。
解方程可得:n1 ≈ 1.15。
所以,玻璃的折射率约为1.15。
3. 问题:一束光从玻璃射入水,入射角为45°,折射角为30°,求水的折射率。
解答:同样根据折射定律,光线从玻璃射入水时,入射角、折射角和两种介质的折射率之间满足关系:n1*sinθ1 = n2*sinθ2。
其中,n1为玻璃的折射率,θ1为入射角,θ2为折射角,n2为水的折射率。
代入已知条件,得到:n1*sin45° = n2*sin30°。
解方程可得:n2 ≈ 1.33。
所以,水的折射率约为1.33。
4. 问题:一束光从空气射入玻璃,入射角为60°,折射角为90°,求玻璃的折射率。
09专题:几何光学专题1.如图所示,甲、乙两块透明介质,折射率不同,截面为14圆周,半径均为R,对接成半圆。
一光束从A点垂直射入甲中,OA=22R,在B点恰好发生全反射,从乙介质D点(图中未画出)射出时,出射光线与BD连线间夹角为15°。
已知光在真空中的速度为c,求:(1)乙介质的折射率;(2)光由B到D传播的时间。
2.如图所示,单色细光束射到一半径为R的透明球表面,光束在过球心的平面内,入射角θ1=60°,该光束折射进入球内后在内表面反射一次,再经球表面折射后射出,出射光束恰好与最初入射光束平行。
(已知真空中光速为c)①补充完整该光束的光路图,求透明球的折射率;②求这束光在透明球中传播的时间。
3.如图所示,三棱镜的横截面ABC为直角三角形,∠A=90°,∠B=30°,边AC长为20cm,三棱镜材料的折射率为3,一束平行于底边BC的单色光从AB边上的中点O射入此棱镜,已知真空中光速为3.0×108m/s。
求:(1)从AB边射入的折射角;(2)通过计算判断光束能否从BC边射出。
4.如图所示,半圆玻璃砖的半径R=12cm,直径AB与光屏MN垂直并接触于A点。
一束激光a从半圆弧表面上射向半圆玻璃砖的圆心O,光线与竖直直径AB之间的夹角为60°,最终在光屏MN上出现两个光斑,且A点左侧光斑与A之间距离为4cm。
求:①玻璃砖的折射率;②改变激光a 的入射方向,使光屏MN 上只剩一个光斑,求此光斑离A 点的最远距离。
5.(多选)如图,一束光沿半径方向射向一块半圆柱形玻璃砖,在玻璃砖底面上的入射角为θ,经折射后射出a 、b 两束光线。
则( )A .在玻璃中,a 光的传播速度小于b 光的传播速度B .在真空中,a 光的波长小于b 光的波长C .玻璃砖对a 光的折射率小于对b 光的折射率D .若改变光束的入射方向使θ角逐渐变大,则折射光线a 首先消失E .分别用a 、b 光在同一个双缝干涉实验装置上做实验,a 光的干涉条纹间距大于b 光的干涉条纹间距6.(2019·沈阳市第一七0中学高二期中)如图所示,将半圆形玻璃砖放在竖直面内,它左方有较大的光屏P ,一光束SA 总是射向圆心O ,在光束SA 绕圆心O 逆时针转动过程中,在光屏P 上先看到七色光带,然后各色光陆续消失,则此七色光带从下到上....的排列顺序以及最早消失的光是( ) A .红光→紫光,红光 B .紫光→红光,红光 C .红光→紫光,紫光D .紫光→红光,紫光7.固定的半圆形玻璃砖的横截面如图。
高三物理几何光学试题答案及解析1. Morpho蝴蝶的翅膀在阳光的照射下呈现出闪亮耀眼的蓝色光芒,这是因为光照射到翅膀的鳞片上发生了干涉。
电子显微镜下鳞片结构的示意图见题1 图。
一束光以入射角i从a点入射,经过折射和反射后从b点出射。
设鳞片的折射率为n,厚度为d,两片之间空气层厚度为h。
取光在空气中的速度为c,求光从a到b所需的时间t。
【答案】【解析】设光在鳞片中的折射角为γ,根据折射定律有:sini=nsinγ根据折射率定义式可知,光在鳞片中传播的速度为v=由图中几何关系可知,光从a到b的过程中,在鳞片中通过的路程为:s=1=在空气中通过的路程为:s2所以光从a到b所需的时间为:t=+联立以上各式解得:t=【考点】本题主要考查了折射定律的应用问题,属于中档偏低题。
2.如图所示,一束光从空气垂直射到直角棱镜的AB面上,已知棱镜材料的折射率为,则这束光进入棱镜后的光路图应为下面四个图中的()【答案】D【解析】光由光疏介质进入光密介质中,入射角大于折射角,由此可知光线与底面交界处入射角为30°,由sinC=1/n可知全反射临界角为45°,D对;3.一束单色光斜射到厚平板玻璃的一个表面上,经两次折射后从玻璃板另一个表面射出,出射光线相对于入射光线侧移了一段距离.在下列情况下,出射光线侧移距离最大的是( )A.红光以30°的入射角入射B.红光以45°的入射角入射C.紫光以30°的入射角入射D.紫光以45°的入射角入射【答案】D【解析】侧移距离是指出射光线与原入射方向的垂直距离.同一种光线相比折射率相等,入射角越大侧移距离越大,即B项侧移距离大于A项.D项侧移距离大于C项.又在入射角相同时,折射率越大,侧移距离越大,所以紫光在45°的入射角入射时,侧移距离最大,即D项正确.4.如图13-1-14所示,巡查员站立于一空的贮液池边,检查池角出液口的安全情况.已知池宽为L,照明灯到池底的距离为H,若保持照明光束方向不变,向贮液池中注入某种液体,当液面高为时,池底的光斑距离出液口.(1)试求:当液面高为H时,池底的光斑到出液口的距离x.(2)控制出液口缓慢地排出液体,使液面以vh 的速率匀速下降,试求池底的光斑移动的速率vx.【答案】(1)(2)·vh【解析】(1)作出光路图如图所示.由几何关系知:=①由折射定律:=n·②代入h=、l=得:n=③联立①②③式得x=·h.当h=H时,解得x=.(2)由x=·h知,Δx=·Δh,则=·,即vx =·vh.5.一台激光器,它的功率为P,如果它发射出的单色光在空气中的波长为λ.(1)它在时间t内辐射的光能为__________,如果已知这束单色光在某介质中的传播速度为v,那么这束单色光从该介质射向真空发生全反射的临界角为__________.(2)由于激光是亮度高、平行度好、单色性好的相干光,所以光导纤维中用激光作为信息高速传输的载体.要使射到粗细均匀的圆形光导纤维一个端面上的激光束都能从另一个端面射出,而不会从侧壁“泄漏”出来,光导纤维所用材料的折射率至少应为多大?【答案】(1)Pt arcsin(2)【解析】(1)激光器t时间内发出的光能W=Pt由n=,sinC=,则C=arcsin.2)设激光束在光导纤维端面的入射角为i,折射角为r,折射光线射向侧面时的入射角为i′,折射角为r′,如图所示.由折射定律:n=,由几何关系:r+i′=90°,sinr=cosi′.由全反射临界角的公式:sini′=,cosi′=,要保证从端面射入的任何光线都能发生全反射,应有i=r′=90°,sini=1.故n===,解得n=,故光导纤维的折射率至少应为.6. (2011年温州模拟)自行车的尾灯采用了全反射棱镜的原理,它虽然本身不发光,但在夜间骑行时,从后面开来的汽车发出的强光照到尾灯后,会有较强的光被反射回去,使汽车司机注意到前面有自行车.尾灯的构造如图12-1-18 所示.下面说法正确的是()A.汽车灯光应从左面射过来,在尾灯的左表面发生全反射B.汽车灯光应从左面射过来,在尾灯的右表面发生全反射C.汽车灯光应从右面射过来,在尾灯的左表面发生全反射D.汽车灯光应从右面射过来,在尾灯的右表面发生全反射【答案】C【解析】略7. (2011年安徽合肥模拟)如图所示,P、Q是两种透明材料制成的两块相同的直角梯形棱镜,叠合在一起组成一个长方体,一单色光从P的上表面射入,折射光线正好垂直通过两棱镜的界面,已知材料的折射率nP <nQ,射到P上表面的光线与P上表面的夹角为θ,下列判断正确的是()A.光线一定从Q的下表面射出B.光线若从Q的下表面射出,出射光线与下表面的夹角一定等于θC.光线若从Q的下表面射出,出射光线与下表面的夹角一定大于θD.光线若从Q的下表面射出,出射光线与下表面的夹角一定小于θ【答案】D【解析】由于没有确定几何尺寸,所以光线可能射向Q的右侧面,也可能射向Q的下表面,A错误;当光线射向Q的下表面时,它的入射角与在P中的折射角相等,由于nP <nQ,进入空气中的折射角大于进入P上表面的入射角,那么出射光线与下表面的夹角一定小于θ,B、C错误,D 正确。
几何光学习题及解答1.证明反射定律符合费马原理。
证明:费马原理是光沿着光程为最小值、最大值或恒定值的路径传播。
⎰=BAnds 或恒值max .min ,在介质n 与'n 的界面上,入射光A 遵守反射定律11i i '=,经O 点到达B 点,如果能证明从A 点到B 点的所有光程中AOB 是最小光程,则说明反射定律符合费马原理。
设C 点为介质分界面上除O 点以外的其他任意一点,连接ACB 并说明光程∆ ACB>光程∆AOB由于∆ACB 与∆AOB 在同一种介质里,所以比较两个光程的大小,实际上就是比较两个路程ACB 与AOB 的大小。
从B 点到分界面的垂线,垂足为o ',并延长O B '至 B ′,使B O B O '='',连接 B O ',根据几何关系知B O OB '=,再结合11i i '=,又可证明∠180='B AO °,说明B AO '三点在一直线上,B AO ' 与AC 和B C '组成ΔB AC ',其中B C AC B AO '+〈'。
又∵CB B C AOB OB AO B O AO B AO ='=+='+=',ACB CB AC AOB =+〈∴即符合反射定律的光程AOB 是从A 点到B 点的所有光程中的极小值,说明反射定律符合费马原理。
2、根据费马原理可以导出在近轴光线条件下,从物点发出并会聚到像点的所有光线的光程都相等.由此导出薄透镜的物象公式。
证明:由QB A ~FBA 得:OF\AQ=BO\BQ=f\s同理,得OA\BA=f '\s ',BO\BA=f\s由费马定理:NQA+NQ A '=NQ Q '结合以上各式得:(OA+OB)\BA=1得证 3.眼睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板(见题3.3图),平板的厚度d 为30cm.求物PQ 的像 与物体PQ 之间的距离 为多少?解:.由题意知光线经两次折射后发生的轴向位移为:cmn d p p 10)321(30)11(=-=-=',即像与物的距离为cm 103.眼睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板(见题3.3图),平板的厚度d 为30cm.求物PQ 的像 与物体PQ 之间的距离 为多少?解:.由题意知光线经两次折射后发生的轴向位移为:cmn d p p 10)321(30)11(=-=-=',即像与物的距离为cm 10En=1题3.3图4.玻璃棱镜的折射棱角A 为60度,对某一波长的光其折射率为1.6.计算(1)最小偏向角;(2)此时的入射角;(3)能使光线从A 角两侧透过棱镜的最小入射角.解:由最小偏向角定义得 n=sin2A0+θ/sin 2A,得θ0=46゜16′由几何关系知,此时的入射角为:i=2A0+θ=53゜8′当在C 处正好发生全反射时:i 2’= sin-16.11 =38゜41′,i 2=A- i 2’=21゜19′∴i 1= sin -1(1.6sin 21゜19′)= 35゜34′ ∴imin =35゜34′5.图示一种恒偏向棱角镜,它相当于一个30度-60-90度棱镜与一个45度-45度度棱镜按图示方式组合在一起.白光沿i 方向入射,我们旋转这个棱镜来改变1θ,从而使任意一种波长的光可以依次循着图示的路径传播,出射光线为r.求证:如果2sin 1n=θ则12θθ=,且光束i 与 r 垂直(这就是恒偏向棱镜名字的由来). 解: i nsin sin 11=θ若θ1sin = 2n , 则 sini 1 = 21, i 1=30。
则i 2=30。
,而i nsin 2sin 2=θ∴ θθ21==+αθ1190。
,而θθ21=∴ =+αθ1290。
,∴i ⊥γ得证。
6.高5cm 的物体距凹面镜的焦距顶点12cm ,凹面镜的焦距是10cm,求像的位置及高度,并作光路图.解:∵cm s cm f 12,10-=-=' 又f s s '='+111∴1011121-='+-s ,即cm s 60-=', s s y y '='-=β ∴s s y y '-='=-25cm即像在镜前60cm 处,像高为25cm7.一个5cm 高的物体放在球面镜前10cm 处成1cm 高的虚像.求(1)此像的曲率半径;(2)此镜是凸面镜还是凹面镜?解:由题知物体在球面镜前成虚象,则其为反射延长线的交点,∵s s y y '-='=β∴cm y s y s 2='-=', 又r s s 211='+ , ∴05〉=cm r ,所以此镜为凸面镜。
8.某观察者通过一块薄玻璃板去看凸面镜中他自己的像.他移动着玻璃板,使得在玻璃板中与在凸面镜中所看到的他眼睛的像重合在一起,若凸面镜的焦距为10cm ,眼睛距凸面镜顶点的距离灵40cm,问玻璃板观察者眼睛的距离为多少?解:根据题意,由凸面镜成像公式得:cm s s f s s 81014011111='⇒=-'⇒'=+' ∴凸透镜物点与像点的距离cm s s d 48='+=, 则玻璃距观察者的距离为cmd242=9.物体位于凹面镜轴线上焦点之外,在焦点与凹面镜之间放一个与轴线垂直的两表面互相平行的玻璃板,其厚度为d1,折射率为n.试证明:放入该玻璃板后使像移动的距离与把凹面镜向物体移动d(n-1)/n 的一段距离的效果相同。
解:证明:将玻璃板置于凹面镜与焦点之间,玻璃折射成像,由三题结果得d0=d(1-1\n),即题中所求。
10.欲使由无穷远发出的近轴光线通过透明球体并成像在右半球面的顶点处,问这透明球体的折射率为多少?解:设球面半径为r ,物距和相距分别为s 和s ',由物像公式: r n 'n sn 's 'n -=- S=∞,s '=2r,n=1,得'n =211.有一折射率为1.5,半径为4cm 的玻璃球,物体在距球表面6cm 处,求(1)物所在的像到球心之间的距离;(2)像的横向放大率.解:cm r n n r n n s n s n 4,1,5.1,==='-'=-''的玻璃球。
对第一个球面,cm s 6-=415.1615.1-=--'∴s ,cm s 36-='∴对第二个球面 cm s 448362-=--=∴45.11445.112--=--'s ∴112='s∴从物成的像到球心距离cm r s ol 152=+'=5.121=''==s n s n βββ12.一个折射率为1.53,直径为20cm 的玻璃球内有两个小气泡.看上去一个恰好在球心,另一个从最近的方向看去,好像在表面与球心连线的中点.求两气泡的实际位置解 :由球面镜成像公式:r n n s n s n -'=-'',当s '=日时,s= r, 气泡在球心。
当s '=2r时,s=6.05cm ,气泡在距球心3.95 cm 处。
13.直径为1m 的球形鱼缸的中心处有一条小鱼,若玻璃缸壁的影响可忽略不计,求缸外观察者所看到的小鱼的表观位置和横向放大率.解:由: r n n s n sn -'=-'', 又 s=r , ∴s '=r=15cm, 即鱼在原处。
β= y y '=''n ns s =1.3314.玻璃棒一端成半球形,其曲率半径为2cm.将它水平地浸入折射率为1.33的水中,沿着棒的轴线离球面顶点8cm 处的水中有一物体,利用计算和作图法求像的位置及横向放大率,并作光路图.解: r n n s n s n -'=-'' 233.15.1833.15.1-=--'s ∴cm s 18-='2)8(5.1)18(33.1=-⨯-⨯=''=s n s n β∵r nn -'=φcm n n n r n f 65.1717.0333.15.125.1==-⨯='=-''='φcm n n n nr f 65.1517.066.233.15.1233.1-==-⨯=-=-'-=φ15.有两块玻璃薄透镜的两表面均各为凸球面及凹球面,其曲率半径为10cm.一物点在主轴上距离20cm 处,若物和镜均浸在水中,分别用作图法和计算法求像点的位置.设玻璃的折射率为1.5,水的折射率为1.33.解:(!)对于凸透镜:由薄透镜焦距公式得:'f f -= =-39.12 ,由透镜成像公式:1''=+s f s f ,s=20cm, 得s '=-40.92(2)对于凹透镜:由薄透镜焦距公式得: f= -'f =39.12由透镜成像公式:1''=+s f s f ,s=20cm, 得s '=-13.2(3)作图:‘FSO(2)16.一凸透镜在空气中的焦距为40cm,在水中时焦距为136.8cm,问此透镜的折射率为多少(水的折射率为1.33)?若将此透镜置于CS 2中(CS 2的折射率为1.62),其焦距又为多少?解:由题意知凸透镜的焦距为:)(22111r nn r n n n f -+--=又∵在同一介质中21n n =,'f f -= 设n n n '==21∴)11)(1(12r n n n f --'-=' 因为对同一凸透镜而言211r n -是一常数,设 tn nf )1(1-'-==',当在空气中时 40,111=='f n ,在水中时 8.136,33.122=='f n ∴ t n )11(401-= ,t n)133.1(8.1361--= 两式相比,可n=1.54,将其代入上式得0463.0=t ∴在2CS 中即时62.1='n , 0463.0162.154.11⨯-=')(f , 得cm f 4.437-='.即透镜的折射率为1.54,在CS 2中的焦距为-437.4cm17.两片极薄的表玻璃,曲率半径分别为20cm 和25cm.将两片的边缘粘起来,形成内含空气的双凸透镜,把它置于水中,求其焦距为多少?解:由薄透镜焦距公式:)(22111r nn r n n n f -+--= ,其中n=1,n 1=n 2=1.33, r 1=20cm,r 2=25cm,得'f f -==-44.8cm18.会聚透镜和发散透镜的焦距都是10cm,求(1)与主轴成30度的一束平行光入射到每个透镜上,像点在何处?(2)在每个透镜左方的焦平面上离主轴1cm 处各置一发光点,成像在何处?作出光路图.解:(1)由1''=+s f s f ,s =∞, 对于会聚透镜:s 'x ='f =10cm, s 'y =s 'x tg30。