使用DSD自主模式实现FSSS可控震源高效采集技术
- 格式:pdf
- 大小:242.48 KB
- 文档页数:4
低频可控震源激发信号特征及高精度动态监测应用作者:王力伟李丽杨微王宝善黄柳芳来源:《地震研究》2021年第04期摘要:通過实验测试了国产KZ28LF低频可控震源在线性升频、伪随机编码和单频3种激发模式下的信号特征及在地下介质高精度动态监测中的应用效果。
结果表明:①线性升频和伪随机编码激发模式可稳定激发1.5~12Hz的低频信号,近场信号互相关系数大于0.95的分别占81%和63%,信号能量在9~12Hz较强、在1.5~9Hz较弱,低频外传能量较弱,而单频激发时高次谐波能量较强,信号重复性较差。
②相干法和反褶积法均能压缩震源子波,恢复介质真实响应,相干法的结果重复性和信噪比最高,反褶积法保幅和保相效果最好。
③叠加后探测距离可达20km,波速变化探测精度达10-。
关键词:低频可控震源;聚类分析;反褶积;加权相位叠加;波速变化;高精度动态监测中图分类号:P315.3文献标识码:A文章编号:1000-0666(2021)04-0622-130引言利用地震波高精度动态监测地下介质物理性质及其变化是人们认识地球物理过程的重要手段。
实现地下一定目标深度的高精度动态监测,需要能稳定激发、高度重复、宽频带、高信噪比和高时间服务精度信号的地震震源。
天然震源如背景噪声和重复地震已广泛应用于与火山喷发(Bren—guier et al,2014)、断裂带破坏和愈合(Peng, -Zion,2006;Chaves et al,2020)、流体运移(Niu et al,2003)、大地震(Liu et al,2014;Li et al, 2017)和地壳介质受外力加卸载(Hillers et al,2015;Mao et,2019)等相关波速变化研究中。
但背景噪声易受噪声源变化及其能量分布影响(Zhan et al,2013),重复地震会受到定位精度和时空分布限制(Liet al,2017)。
与天然震源相比,人工震源激发位置、深度和激发时间都精确已知,且可与流动台阵组成高质量观测系统,是地下介质高精度动态监测的首选震源(Chen et al,2017)。
可控震源高保真地震数据采集方法
夏勇
【期刊名称】《物探装备》
【年(卷),期】2000(000)02X
【摘要】可控震源高保真地震数据采集(HFVS)是通过从记录的震源驱动信号中分离出单台震源记录信号来实现多个震点同时进行数据采集的方法,通过增加绝对频带宽度、减少相关子波边叶畸变以及预置较稳定子波来提高震源数据分辨率。
在地震采集施工中,使用HFVS方法所记录的数据量要显著高于常规方法,同时,HFVS方法利用震源驱动信号来对数据反演也大大提高了震源间的一致性和相位的稳定性,减小了信号中因谐波引起的幅值畸变。
【总页数】5页(P14-17,45)
【作者】夏勇
【作者单位】石油地球物理勘探局国际勘探部
【正文语种】中文
【中图分类】TE13
【相关文献】
1.可控震源低频能量激发在低频地震数据采集应用中的误区 [J], 陶知非;刘兴元;王志杰
2.可控震源高保真地震数据采集作业设备的配备与设置 [J], 王光德;郭强
3.428XL在可控震源高保真采集中的一些问题及解决方法 [J], 刘卫平;窦学庆;董西宁;韦根海;董虹
4.高保真地震数据采集的问题探讨 [J], 王雪秋;孙建国
5.高保真地震数据采集的问题探讨 [J], 王雪秋;孙建国
因版权原因,仅展示原文概要,查看原文内容请购买。
可控震源工作原理可控震源是指一种使用专门的设备和技术来产生地震的工具,其产生的能源通常用于地震探测、工程测量、地质勘探和研究地震动力学等领域的应用。
可控震源的工作原理基于一定的物理原理和理论模型,同时需要科学的数据采集和处理,整个过程经过多次反复测试和验证。
可控震源的工作原理是利用一定的能量源来刺激地下岩石,并观测其反应,从而推断地质结构和构造等特征。
可控震源的能量源可以是机械、电磁、火药、液压等各种形式,在刺激岩石时需要控制其强度、频率、方向等参数,以满足不同应用场合的需求。
在野外实际应用中,可控震源通常采用电磁激振器或气炮等设备,通过把能量传输到地下,观测地下反馈信号,从而推断地下构造特征、地层厚度、地下水储层等重要信息。
可控震源工作的前提是需要准确的地质资料和模型,这些模型往往是由专业地质学家、地震学家和地球物理学家利用岩石学、古地磁学、地形分析和探测数据等多种手段构建而成。
这些模型可以描绘地质背景、地层接触、构造界面等各种地质特征,为地震勘探提供数据支持和理论基础。
可控震源的工作流程一般包括以下几个步骤:1. 设计实验方案。
根据地质条件和应用需求,设计可控震源的参数和地震探测的范围和深度等基本要素。
此步骤需要结合实地勘探资料进行分析和优化,将可控震源产生的波能量最大化并使其在地下穿透深度最大化。
2. 安装设备。
将电磁激振器或气炮等设备安装在控制区域内,需要将设备牢固地固定在地面上,同时需要对设备进行电气和机械上的检测和测试。
3. 启动可控震源。
根据设计的参数和方案,对设备进行控制和调试,产生特定的能量波形,观测地下反馈信号,从而推断地下结构及其与地震活动的关系。
4. 数据处理和分析。
将收集到的数据进行处理、滤波、降噪、叠加等处理,生成图形化数据表现形式,辨识或解释所探地层或地下构造的特征。
5. 计算和评估。
根据测量结果,进行剖面重建、层析成像、三维模型重建等数据处理方法,进一步评估地下构造的特性,并根据实际应用需求判断其潜在价值和可行性。
可控震源无线节点采集质量控制技术
蒋小龙;孙永峰;赵帅;吴京凯;温红建
【期刊名称】《物探装备》
【年(卷),期】2015(025)001
【摘要】在国外某项目首次采用GSR无线节点采集技术过程中,虽然在放炮模式上引入了428 XL仪器,但不能实现仪器对放炮质量的实时监控.DSS导航系统和SDR数据记录设备同时在可控震源上的应用,对可控震源激发质量控制与生产管理提出了新的要求.本文介绍了可控震源在GSR无线节点采集项目中的生产质量控制与管理方案,重点介绍了施工过程中常见的生产质量问题与预防控制措施.
【总页数】6页(P33-38)
【作者】蒋小龙;孙永峰;赵帅;吴京凯;温红建
【作者单位】东方地球物理公司装备服务处震源服务中心,河北涿州072750;东方地球物理公司装备服务处震源服务中心,河北涿州072750;东方地球物理公司装备服务处震源服务中心,河北涿州072750;东方地球物理公司装备服务处震源服务中心,河北涿州072750;东方地球物理公司装备服务处震源服务中心,河北涿州072750
【正文语种】中文
【相关文献】
1.塔里木盆地沙漠地区可控震源采集质量控制 [J], 呙莹
2.利用地震道头数据进行深海拖缆数据采集质量控制技术 [J], 全海燕;韦秀波;郭毅;刘原英
3.地震资料采集质量控制技术分析与研究 [J], 李苏苏
4.地震资料采集质量控制技术分析与研究 [J], 关仲波
5.可控震源地震采集质量监控技术 [J], 张翊孟;郭善力;陈兴国
因版权原因,仅展示原文概要,查看原文内容请购买。
应对当今地震勘探需求与挑战的高精度可控震源陶知非【摘要】要解决低信噪比地区勘探、复杂地质体成像、岩性勘探以及精细油气藏描述与监测等勘探难题,进一步提高地震资料成像和油气预测精度,需不断地拓宽频带和增加地震采集密度.理想地震信号的频带至少为5个倍频程以上,而炸药震源的效率和成本无法解决高密度炮点带来的高成本问题,常规可控震源的低频起始扫描频率通常在5~6 Hz,也不能满足低频需求.为此,通过对地震资料野外采集和室内处理需求的具体分析,触摸探索了地震信号的激发及辨识瓶颈.指出:①高精度可控震源不是简单的宽频可控震源,而是涵盖了高精度可控震源模型控制下的低畸变激发信号和宽频地震信号激发2个概念;②未来可控震源地震信号的激发不仅仅需要解决高频激发的问题,更要解决低频激发的稳定性问题;③完全可以采用点激发来实现深部探测.【期刊名称】《天然气勘探与开发》【年(卷),期】2018(041)003【总页数】6页(P1-6)【关键词】可控震源;1.5 Hz低频信号;160 Hz高频信号;稳定;频带宽度;信号畸变;激发能量【作者】陶知非【作者单位】中国石油集团东方地球物理勘探公司【正文语种】中文0 引言地球物理勘探技术是目前寻找地下地质目标的一种有效的科学研究手段。
早期地震勘探采用的主动震源激发技术主要是应用炸药,但随着社会的发展与进步,炸药源在应用中的一些弊端逐渐显露出来。
可控震源技术源于20世纪50年代,1975年开始进入大规模工业化生产,初步解决了地震作业中如何实现低公害、高效、安全环保作业的难题。
但是,由于可控震源采用连续信号激发与炸药震源采用脉冲信号激发在信号特征上的显著区别,提高可控震源的激发信号频宽与改善地震激发信号的信噪比,一直是全球业内技术人员努力攻克的难题。
可控震源的激发能量从早期16 000磅级逐步发展到51 000磅级,随着60 000磅级的大吨位可控震源出现,地球物理工作者仿佛认识到提高激发信号能量的重要性,于是在野外应用中出现了多达8~10台的60 000磅级震源的强组合激发方式,很快超过80 000磅级的更大激发能级的震源也横空出世,但是,实际效果并未朝人们希望的方向发展,原本寄希望大吨位震源能够提高信噪比,实现高分辨率地震勘探效果,却发现大吨位震源在激发高频信号时反而缺失高频能量,更要命的是这种超大吨位的震源在性价比上出现了严重失配,表现为:在复杂地区的应用灵活性受到极大限制,且还在运输过程中受到超重限制。
第四章 地震数据采集系统及相关技术第一节 地震数据采集系统组成地震勘探技术、电子技术、计算机技术及信息技术共同推动了地震数据采集仪器的不断发展和更新换代,共经历了模拟光点地震仪、模拟磁带地震仪、集中式数字地震仪和分布式遥测地震仪。
一、 集中式地震数据采集系统:上个世纪70年代中期,数字地震仪的出现,把地震勘探带入了一个崭新的时代, 出现了以DFS -V 和SN338为代表的集中式数字地震仪。
集中式地震数据采集仪器成功用于野外地震勘探约20年。
集中式地震勘探数据采集系统的最大特点是:采用IFP 与14位逐次逼近型A/D 转换器,IFP 采用3~4位增益码,A/D 转换器采用15位(1位符号位,14位尾数)逐次逼近型,集中式数字地震仪动态范围理论上可达168dB ,但实际考虑仪器噪声等因素的影响,仪器的系统动态范围一般不超过120dB 。
()20log DR =⨯记录的最大不失真电平理论(dB )最小有效电平()max min ()20log 6DR G G n =⨯+⨯理论()20logDR =⨯记录的最大不失真电平系统(dB )仪器系统等效输入噪声电平其中:min max ~G G 为IFP 放大器的增益范围,n 为模数转换器的位数。
二、分布式遥测地震数据采集系统把数据采集系统中的放大器、滤波器、A/D转换器、数据传输控制逻辑以及整个控制用CPU做在一个小箱体内,称为“采集站”,将采集站放置在检波点上,每个采集站用小线与1~8道检波器连接,各采集站用数字大线或以无线方式与中央控制主机相连,构成分布式(Distributed)数据采集系统。
⒈由于受到采样间隔和大线重量的限制,集中式地震仪生产道数一般不超过120道,适应不了三维地震勘探对道数的要求。
而分布式遥测地震仪的道数可达到上千道甚至上万道,完全能够满足三维地震勘探的需要。
⒉集中式数字地震仪的检波器通过大线与采集系统连接,由于大线上传输的是模拟信号,传输的距离又比较远,因此,信号易受各种干扰因素的影响。