变压器励磁涌流产生原因及解决措施探索
- 格式:docx
- 大小:2.01 MB
- 文档页数:6
220kV变压器励磁涌流及抑制措施分析励磁涌流是变压器合闸电源时的一种暂态状况,所有三个相以及接地中性点都有可能出现涌流。
对变压器差动保护来讲,励磁涌流可视为一种差动电流。
暂态涌流并不属于故障条件,保护仍需制动,这是变压器差动保护设计时需考虑的重要因素。
随着电力变压器制造中新型硅钢性能的改进以及采用速度很快的差动继电器,励磁涌流现象变得更为突出。
一、励磁涌流的产生原因及其影响变压器铁芯的非线性饱和特性会导致其空载合闸时产生励磁涌流。
涌流的波形、大小和持续时间取决于许多特性因素,如变压器容量、绕组接法、合闸时电压的相位角、合闸绕组所在部位、铁芯的剩磁及磁化特性等。
励磁涌流仅流进变压器一侧的保护区(即实际电源侧),由于在差动保护看起来为真实的差动电流而使继电器动作。
励磁涌流主要分为:合闸涌流、合应涌流和恢复涌流。
其中,合闸涌流的本质是合闸的时候,变压器磁通不能突变。
由于合闸角、主变剩磁等原因,会导致主变磁通饱和,产生很大的励磁电流。
变压器纵差(分相差动)保护用来保护主变三侧,但是励磁涌流始终是纵差(分相差动)保护无法完全解决的问题,其原因在于用电量保护来保护磁联系的元件,必然存在缺陷。
变压器在正常运行时,励磁电流的值最大仅为额定电流的2%~5%。
而在发生外部故障时,电压降低,励磁电流也将随之减小。
因此变压器正常运行或发生外部故障时,都不会出现励磁涌流。
但当变压器空载投入或将外部故障切除后变压器重新投入运行时,由于电压的突然变化,磁场急剧增大,导致变压器内部的铁心饱和。
饱和磁通的大小取决于铁心材料的磁导率、磁路长度及截面等因素,铁心磁通饱和导致励磁电感减小,励磁电流激增为励磁涌流。
设变压器的高压侧电压为U,Um为变压器正常运行时的电压最大值。
变压器稳态运行情况下设绕组端电压为忽略变压器漏抗和绕组电阻,则用标幺值表示的电压U与磁通Φ之间的关系为式中:N为变压器匝数;Φ为铁心磁通。
设N =1,当变压器空载合闸时,由电压U与磁通Φ之间的微分方程求解可得式中:θ为变压器投入时刻的初相角;ω为角速度;C为积分常数;Φm是变压器稳态工作时的磁通幅值。
变压器励磁涌流产生机理及抑制措施变压器是电力系统中不可或缺的电气设备,用于提高或降低交流电压。
然而,在变压器的日常运行中,会产生一种特殊的电流——励磁涌流。
励磁涌流的产生原因、影响及抑制措施,一直是电气领域研究的焦点问题之一。
一、变压器励磁涌流的产生机理变压器励磁涌流是由于变压器在没有负载的情况下,一侧电源给定电压后,产生的瞬时电流波动引起的。
其产生的原因主要有两个方面。
1. 变压器自身磁化特性变压器是由铁芯、线圈等部件组成的,当交流电源施加在一侧线圈上时,铁芯上会产生一个磁通量,使得另一侧线圈中也会产生一定的电势。
在低频条件下,变压器的铁芯上的磁场在每个电源周期内都会发生磁化与去磁化过程,即由于铁芯饱和,磁通量无法瞬间变化,从而在每个周期内形成一个磁滞回线。
当电源供给的电压陡然由0V变化到正常值时,铁芯中的磁场并不会即刻达到稳态,从而导致瞬间电流的波动,造成产生励磁涌流。
2. 电源特性影响电源的内阻、电源的输出电压质量均会影响励磁涌流的产生。
电源内阻较大时,输出电压下降幅度较大,对于变压器来说,电流的波动幅度会更大。
同时,电源产生电压的质量也会影响励磁涌流,例如,电源输出电压存在10%、20%的谐波成分时,变压器励磁涌流的幅值会更大。
二、励磁涌流的影响变压器励磁涌流产生后,将会对变压器和电力系统的安全及稳定性产生影响。
1. 变压器内部温度升高励磁涌流的产生将会引起变压器内部电阻损耗增加,从而导致变压器温度升高。
严重情况下,会导致变压器绝缘材料老化、泄漏及烧毁等事故发生。
2. 电力系统不稳定励磁涌流的存在会造成系统电压波动,电力系统的稳定性得不到保障,从而会降低其工作效率,甚至带来负面的经济损失。
三、励磁涌流的抑制措施为了避免励磁涌流带来的安全隐患及电力系统的不稳定性,有一些抑制措施可以采取。
1. 增加阻抗变压器防励磁涌流的一种常用方法是在变压器的一侧或两侧增加阻抗,这样可以限制励磁涌流的幅值并且控制其衰减时间。
变压器励磁涌流产生机理及抑制措施1、变压器励磁涌流及特点变压器是一种依据电磁感应原理制造而成的静止元件,是交流输电系统中用于电压变换的重要电气设备。
当合上断路器给变压器充电时,有时候,能够观察到变压器电流表的指针有很大摆动,随后,很快又返回到正常的空载电流值,这个冲击电流通常就被称为励磁涌流。
总的来说,变压器励磁涌流有以下几个特点:第一,波形呈现尖顶形状,表明其中含有相当成分的非周期分量和高次谐波分量,其中高次谐波以二次和三次为主,并且,随着时间推移,某一相二次谐波含量可能超过基波分量的一半以上。
第二,励磁涌流幅值与变压器空载投入的电压初相角直接相关。
对于单相变压器来说,当电压过零点投入时,励磁涌流幅值最大。
由于三相变压器各相间有120度相位差,所以涌流也不尽相同。
第三,在最初几个波形中,涌流将出现间断角。
第四,涌流衰减的时间常数与变压器阻抗、容量和铁心材料等都相关。
2、励磁涌流产生机理变压器励磁涌流是由变压器铁心饱和引起的。
在铁心不饱和时,铁心磁化曲线的斜率很大,励磁电流近似为零;一旦铁心出现饱和,磁化曲线斜率变小,电流随着磁通线性增长,最终演变为励磁涌流。
下面以单相变压器空载合闸为例分析励磁涌流产生机理。
设变压器在时间t=0时合闸,则施加于变压器上的电压为:(1)又,变压器电压与磁通间的关系为:(2)故:(3)式(3)中第一式为稳态磁通,后两式为暂态磁通,为铁心剩磁,与合闸时刻的电压相关。
计及成本和工艺,现代常用的电力变压器饱和磁通一般设为1.15~1.4,而变压器运行电压一般不应超过额定电压的10%。
因此,变压器稳态正常运行时,磁通不会超过饱和磁通,铁心也不会饱和。
但在暂态过程中,如变压器空载合闸时,由于剩磁的作用,运行磁通就有可能大于饱和磁通,从而造成变压器饱和。
例如,最严重的是电压过零时刻,合闸,假若此时铁心的剩磁,非周期磁通为经过半个周期后,磁通达到,将远大于饱和磁通,造成变压器严重饱和。
高阻抗变压器励磁涌流的产生
高阻抗变压器在空载合闸时,可能会产生较大的励磁涌流,导致保护装置的误动作,严重时影响电力系统的稳定运行。
下面将从以下几个方面具体分析高阻抗变压器励磁涌流的产生。
一、励磁涌流的产生
高阻抗变压器在正常运行时的阻抗较高,用于限制短路电流,但在铁芯饱和时,高阻抗特性会加剧励磁涌流的产生。
二、励磁涌流的特性
励磁涌流的数值很大,通常达到额定电流的6~8倍。
由于涌流通过饱和的铁芯时产生的非线性效应导致其含有明显的高次谐波;由于电流在铁芯未饱和时急剧下降导致了励磁涌流的波形出现间断角。
三、励磁涌流的影响
励磁涌流的大电流值和谐波含量可能导致继电保护装置误判为内部故障或短路,从而引发误动作。
因而,为了防止误动作,可能需要调整保护定值,如降低差动保护的灵敏度或采用二次谐波制动原理构成的保护,但这可能牺牲部分保护性能。
四、励磁涌流的防范措施
采用带有速饱和变流器的差动继电器、二次谐波制动原理或模糊识别闭锁原理构成的保护策略,可以有效避免励磁涌流导致的误动作。
另外,通过改良变压器内部结构,如选择合适的铁芯材料、降低磁通密度的工作点、增加铁芯面积等,也可以降低励磁涌流的产生及其影响。
时间有限,今天就到这里。
想要了解更多变压器励磁涌流知识与治理方法,欢迎留言。
希望能够带给大家帮助,期待我们下期再见!。
变压器励磁涌流原理
变压器励磁涌流是指在刚开始接通变压器时,由于电感元件励磁过程中磁感应强度逐渐增大的关系,导致变压器中的电流迅速增加,形成一个短暂的高峰电流。
励磁涌流的主要原因有以下几点:
1. 电感元件的电流变化滞后于电压变化。
由于电感元件的特性,当电压突然改变时,电感元件中的电流并不会立即改变,而是需要一定的时间来达到稳态。
在这个过程中,电流会迅速增加,导致励磁涌流。
2. 初级绕组和次级绕组之间的电容效应。
变压器的初级绕组和次级绕组之间会存在一定的电容效应。
当变压器接通时,由于电容的充电过程,会导致涌流的产生。
3. 磁芯饱和和磁滞。
在刚开始接通变压器时,由于磁感应强度逐渐增大,磁芯中会出现饱和和磁滞现象。
这些现象会导致磁路中的电流迅速变大,从而产生涌流。
励磁涌流对变压器和电网造成的影响主要有以下几点:
1. 过大的励磁涌流会导致变压器绕组和瓷套的过热,甚至引发绝缘击穿,导致设备损坏。
2. 励磁涌流还会对电网造成短暂的过电压,对其他设备和线路造成影响。
为了减小励磁涌流的影响,可以采取以下措施:
1. 使用励磁变压器。
励磁变压器是在主变压器旁边并列连接一个励磁变压器,通过调节励磁变压器的励磁电流来抑制励磁涌流。
2. 采用软起动方式。
通过逐步升高初始电压,使得励磁涌流逐步增加,避免突然产生过大的涌流。
3. 提前预热变压器。
在正式接入电网之前,可以对变压器进行预热,使其达到临界电压之后再投入运行,从而减小励磁涌流的影响。
变压器励磁涌流抑制原理及现场应用优化引言:变压器是电力系统中重要的电能传输设备,其负责将高压电能转换为低压电能,并通过电能传输网络将电力供应到终端用户。
然而,在变压器投入运行时,励磁涌流可能会导致设备的电流波动和损耗,甚至造成电网的不稳定。
因此,为了保证系统的稳定运行,需要合理地抑制变压器励磁涌流并优化其现场应用。
一、励磁涌流抑制原理1.1励磁涌流的产生励磁涌流通常是由于变压器的磁路突然产生磁通时引起的。
在变压器的磁路中,磁通的变化速度往往比较快,导致励磁电流呈现出一个瞬时的增大过程,即励磁涌流。
1.2励磁涌流的影响励磁涌流对变压器和电网产生了不利影响,主要表现为:(1)变压器附加损耗:励磁涌流会导致变压器的额定电流上升,从而导致额外的电阻损耗。
(2)变压器振荡:励磁涌流在变压器铁芯和线圈之间产生电磁力,会引起变压器的震荡。
(3)电网不稳定:当变压器接入电网时,励磁涌流会产生电网的瞬时波动,影响电网的稳定性。
1.3励磁涌流抑制原理为了抑制励磁涌流,可以采用以下方法:(1)在变压器的电源供电系统中增加限流电抗器。
通过限制电源的短路能力,减少励磁涌流的电流峰值。
(2)使用励磁变压器。
励磁变压器是由辅励变压器和电抗器组成,通过控制辅助变压器的绕组电压来控制励磁涌流。
(3)通过安装软起动装置来逐步增加变压器的励磁电流,避免励磁涌流的冲击。
2.1选择适当的变压器为了减少励磁涌流对电网的影响,可以选择具有低励磁电流的变压器。
通常情况下,具有较低额定电压的变压器具有较低的励磁电流。
2.2控制变压器的励磁电流为了减少励磁涌流的影响,可以通过控制变压器的励磁电流来实现。
通过调节励磁变压器的绕组电压,可以减小励磁涌流的电流峰值,从而减少对电网的影响。
2.3优化励磁变压器的参数为了确保励磁变压器的效果,可以优化其参数。
包括选择合适的励磁变压器容量、安装位置和接线方式等。
同时,还需要合理地进行维护和检修,确保其正常运行。
变压器励磁涌流及鉴别和防治方法摘要:电力变压器作为电力系统中极为关键的一种电气设备,在电力系统中是不可替代的转换枢纽,而变压器的励磁涌流过大会引起保护动作跳闸,因此针对电力变压器励磁涌流的研究一直是电力系统继电保护中备受关注的重要课题。
本文主要介绍了变压器励磁涌流产生的原因、危害、鉴别和防治方法。
关键词:变压器;励磁涌流;鉴别;防治1变压器励磁涌流出现的原因及特点变压器是基于电磁感应原理的电力设备,当变压器空载投入和外部故障切除后电压恢复时,则可能出现数值很大的励磁电流(又称为励磁涌流)。
这是因为在稳态工作情况下,铁芯中的磁通滞后于外加电压90°如图(a)所示。
如果空载合闸时,正好在电压瞬时值U=0时接通电路,则铁芯中应该具有磁通—Фm。
但是由于铁芯中的磁通不能突变,但此,将出现一个非周期分量的磁通,其幅值为+Фm。
这样在经过半个周期后,铁芯中磁通就达到2Фm。
如果铁芯中还有剩余磁通Фs,则总磁通将为2Фm+Фs,如图(b)所示。
此时变压器的铁芯严重饱和,励磁电流IL将剧烈增大,如图(c)所示,此电流就称为变压器的励磁涌流ILY,其数值最大可达额定电流的6-8倍,同时包含有大量的非周期分量和高次谐波分量,如图(d)所示。
励磁涌流的大小和衰减时间,与外加电压的相位、铁芯中剩磁的大小和方向、电源容量的大小、回路的阻抗以及变压器容量的大小和铁芯性质等都有关系。
例如正好在电压瞬时值为最大时合闸,就不会出现励磁涌流,而只有正常时的励磁电流。
由于变压器铁心材料具有非线性的特征,为了与绕组磁场变化相抵,铁心饱和程度将发生变化。
当铁心饱和程度较高时,其磁化曲线斜率极小,励磁电流随着磁通的增长而变大,最后变为励磁涌流。
若变压器存在剩磁,并且极性绕组偏磁一样,就会减小变压器绕组的励磁电抗,从而出现巨大的励磁涌流。
对三相变压器而言,无论在任何瞬间合闸,至少有两相要出现程度不同的励磁涌流。
励磁涌流具有如下特点:1.包含有很大成分的非周期分量,往往使涌流偏于时间轴的一侧;2.包含有大量的高次谐波,而以二次谐波为主,二次谐波的含量在一般情况下不低于基波分量的15%;3.励磁涌流波形为对称性,波形不连续且出现间断,在一个周期中间断角为α;2变压器励磁涌流的鉴别方法(1)二次谐波原理。
变压器励磁涌流特点及措施变压器励磁涌流,这个名字听上去就有点儿高深莫测,对吧?简单来说,励磁涌流就是在变压器接通电源的时候,瞬间产生的一种电流。
这股电流就像一阵狂风,来得快去得也快,但可别小看它,搞不好会给变压器带来不少麻烦。
这种情况尤其在变压器初次启动的时候,简直就像是在开一场电流的派对,喧闹得很。
想象一下,你一打开电源,变压器就像被打了兴奋剂似的,电流猛地蹿上去,瞬间达到了很高的水平。
这种现象发生的原因,其实是因为变压器内部的铁芯在电流的作用下,产生了磁场,这个磁场又带动了电流的流动。
就好比你在喝饮料的时候,气泡一下子涌上来,真是让人措手不及。
不过,这种强烈的涌流其实是短暂的,过不了多久就会回归到正常水平。
但在这短短的瞬间,它可能会带来设备的过热、老化,甚至损坏,想想都让人心惊。
面对这样的涌流,咱们应该怎么办呢?预防是关键,绝对不能掉以轻心。
在设计变压器的时候,就得考虑到这个问题,采用一些保护措施。
比如,选用合适的保护装置,像是限流器和保护继电器,这些可都是可以帮助咱们控制涌流的好帮手。
就像是在家里遇到突如其来的大雨,提前准备好雨具总是比临时慌忙找伞强多了。
还有一种常见的做法,就是设置一个合理的启动程序。
比如,逐步加压,慢慢来,而不是一下子给它来个“电量满格”。
想象一下,像是在给小猫喂食,慢慢地让它适应,不然一下子喂太多,它可受不了。
逐步启动的好处就是能够有效降低涌流的强度,给设备一个缓冲期,减少冲击。
此外,定期维护也是不可或缺的环节。
就像我们的身体需要定期检查,变压器也需要定期检修。
检查铁芯的状态,看看有没有松动的情况,或是绝缘材料是否老化。
保持设备在最佳状态,能让我们在关键时刻减少涌流对设备的冲击。
当然了,理论归理论,实践才是王道。
有些情况下,即使做足了准备,涌流还是会出现。
这个时候,咱们就得冷静应对,快速启动保护措施,让设备安全度过这个“狂欢派对”。
有些高级一点的变压器,甚至会配备自动保护系统,一旦检测到涌流过大,立马就会切断电源,简直是个聪明的小家伙。
变压器励磁涌流产生原因及解决措施探索摘要:变压器是铁路电力系统的中重要组成部分,在铁路发展的过程中,随着电力需求不断增加,进而带动电力系统建设的增多。
在电力系统中,变压器作为经常出现在其中的重要组件,却经常因为各种各样的问题,导致电力系统的实际运行效果并不理想。
本文以变压器励磁涌流产生原因及解决措施探索为重点,对变压器励磁涌流出现的原因进行了分析,并依据分析的结果提出了三种解决励磁涌流的方法,这三种方法均可有效的对变压器的励磁涌流进行有效抑制,进而提高了变压器整体的工作效率,降低了变压器损耗,有利于保障电力系统的正常运行,满足铁路发展过程中的电力需求,推动国家的进一步发展。
关键词:产生原因;变压器;解决措施;励磁涌流作为工区工长,我依照严防死守供电安全的要求,带领工区职工在2021年砍伐危树5000余棵,超额完成段外部环境治理的目标要求,大幅度减少了外部环境隐患。
优化枢纽站场供电方式,对北一、北四、北三、北五线路等设备的改造方案进行编排、上报,在段及车间的支持下,按时完成了全部的更新改造工作。
工区设备运行质量得到了极大的提高,近半年以来,从未发生责任临修。
将枢纽站场设备路径图以及固定行走路线图进行了合并,并组织工区所有职工学习,大幅度降低了职工受到车辆伤害的风险,得到了段的肯定并在全车间推行。
2021年的检修、接杆整治、灯塔拆除改建、设备改造等工作时间紧、任务重,我作为工长合理安排作业时间,各项施工稳步开展的同时,兼顾到其他工作的顺利进行,累计完成了接杆整治8根,灯塔除锈刷漆、更新改造、拆除共计18座。
随着设备的更新改造,用户用电设备数量与容量的增加,以及大型用电设备的投入使用,使得铁路供电负荷逐渐提高,为了满足日益增长的供电负荷要求,需要新建供电线路,以及对既有线路进行升级改造,在改造过程中变压器是铁路供电设备中的关键点,其可以连接两个不同电压等级的回路并对电路中的电能进行转换。
随着铁路系统的更新建设,电务段、通信段等单位非线性元器件的增多,电压、电流等监测设备的增加,使得保障铁路稳定安全运行的供电可靠性尤为重要,进而实现旅客和行车设备的安全运行目标。
但是供电系统中的变压器在实际的运行中常常面临着各种各样的问题,这将导致其控制电压、保障电路安全及维护电力系统稳定的作用难以发挥,不利于铁路电力设备的安全运行。
对过去一年工区中的故障跳闸进行统计,这期间共发生两起故障跳闸,其中包含变压器故障一起,在故障中占比50%。
(a)(b)图1 变压器故障录波通过对图1中变压器故障录波的波形进行分析,可以确认本次变压器故障的原因是由励磁涌流造成的,为了确保电力设备的稳定运行,需要对励磁涌流的产生原因进行分析,并在此基础上采取对应的措施对其进行抑制,以减少变压器再次出现此类故障的可能性,这对于工区设备的安全运行尤为重要,而且还可以降低既有电力系统的故障率,有助于提高供电系统的可靠性,进而满足铁路发展的电能需要。
一、变压器励磁涌流出现的原因要想明确变压器励磁涌流出现的原因,就要借助磁链守恒定理的作用进行研究。
磁链守恒定律的含义为:用电设备回路中的全体磁链综合在换路的瞬间时刻都是处于不变的[1]。
同时研究发现,变压器出现励磁涌流的问题时,变压器中的磁链仍然是满足磁链守恒定理的,以此为切入点对变压器的投运过程进行分析,变压器由空载运行转为带载运行时,在其接入负载的瞬间,变压器绕组上电压会突然增加,突增的电压将促使变压器内部出现一个的新磁通,与此同时,为了抵消这个突增电压导致的新磁通,变压器的绕组中将会产生一个与其大小相等但是极性相反的磁通,称为偏磁。
变压器铁芯存在着一个饱和的上限,在铁芯不饱和时,变压器的励磁电流随磁通增长的很慢,励磁电流可以忽略不记,但当变压器铁芯饱和之后,励磁电流的增长将会非常迅速,这将直接导致励磁电流远远超过变压器的额定电流。
当变压器产生偏磁抵消磁通时常常会引起铁芯过饱和的问题,其直接表现就是励磁电流将显著增大[2]。
此外变压器并非理想原件,其内阻也会在一定程度上影响励磁电流的变化,因此在接入负载的过程中,变压器的内阻也会促使偏磁数值发生变化,这一变化也将反映在励磁电流上,并且其主要是以下降的趋势为主,在这一过程中二者均逐渐减小,直至变压器内的磁通保持不变,这也意味着新磁通已经建立,变压器的上电过程结束。
在这一过程中的磁通按照种类进行划分,主要分为以下几方面[3]:①剩磁:这是变压器在断电之后存在于磁路中的磁通的总称,其值的大小受到断电的过程中交流电压分闸相位角的影响;②偏磁:这也是本文主要的研究内容,其由接入负载时绕组上产生的突增电压生成,随时间推移逐渐减小,并受合闸相位角影响;③稳定磁通:变压器稳定运行时其内部存在的磁通。
通过对这部分内容的研究和分析可知,当变压器中某一磁通过大时,将导致总磁通大于变压器铁芯能够承受的最大值,进而导致变压器的磁路呈现饱和现象,在这个现象的影响下,将会出现励磁涌流,对变压器的正常运行造成影响。
二、解决变压器励磁涌流出现的措施(一)对合闸相位角进行控制要想解决变压器励磁涌流的问题,就要对合闸相位角进行控制。
因为在变压器绕组电压出现突然增加的时候,就有可能出现磁路饱和的现象。
而在整个过程中,产生的磁通,无论是剩磁还是偏磁等均与电压相位角有关系的。
同时集合变压器的分闸动作存在的特点,也就是突然性等,进行控制措施,常见的方法有安装保护装置动作跳闸[4]。
但是通过人工控制分闸相位角的这种操作方式,难以准确实现,很难满足变压器的实际使用需求,因此从控制变压器合闸相位角的方向来抑制变压器励磁涌流较为合适。
实验表明,当相位角在90°和270°时对变压器上电,磁路中没有新的磁通产生,此时变压器中的磁通以稳定时的磁通为主,偏磁与剩磁基本可以忽略,变压器的铁芯中也不会出现过饱和的现象,因而不会产生励磁涌流。
所以对变压器的励磁涌流进行控制时候,可以在交流电压相位角在90°和270°时上电。
此外还可以在变压器的低压侧设置一个预励磁设备,通过这套设备对剩磁进行控制,并辅以合适的合闸相位角,进而实现对磁路的不饱和控制,防止励磁涌流的出现。
通过这样的方式,可以实现保障变压器正常工作的目的,推动电力系统的正常运行,满足铁路行车信号等设备的用电需求。
(二)在合闸回路串联中使用阻尼电阻为了控制变压器励磁涌流,还可以通过在合闸回路中串联使用阻尼电阻的方式来降低励磁涌流的峰值。
通过阻尼电阻分压,降低上电瞬间绕组上瞬间增加的电压,达到降低偏磁的目的,使变压器的铁芯始终处于非饱和状态,进而降低励磁电流。
此外,这种方法中加入的阻尼电阻还可以发挥对电力设备的保护作用。
尤其是在铁路电力系出现短路故障时,或者变压器在合闸的时候,出现的瞬间电流过大现象,这时阻尼电阻将会起到抑制短路电流或者瞬间过电流的作用,将电力系统的电流控制在一个合适的范围内,可以有效地保护行车等重要电力设施的安全性。
但是这种方案需要一套额外的控制装置将上电完成后的阻尼电阻进行旁路,这样势必增加了系统成本,此外尽管对励磁电流进行了控制,但是变压器上电时的电流仍然可观,为了抑制如此大的电流其阻尼电阻的体积也较大,这又增加了系统的体积。
总的来说通过这样的方式,可以实现控制变压器出现励磁涌流现象的目的,提高变压器的工作的稳定性和安全性,为国家铁路电力设备发展提供助力,最终实现提高设备供电质量可靠性的目的。
(三)安装涌流抑制器在变压器励磁涌流出现的过程中,还可以通过安装涌流抑制器的方式对其进行解决。
涌流抑制器的原理是在变压器的铁芯中产生一个与能够抵消剩磁的偏磁,此时磁路中也只有变压器稳定运行时的磁通,铁芯不饱和,励磁电流很小,可以有效的减少变压器的励磁涌流。
为了准确的生成这个偏磁还需要对变压器中剩磁进行计算,在计算中还应考虑到接线方式及相位差对计算结果的影响,通常选用变压器的某一侧为基准并保证其合闸角与分闸角一致,进而可以保障二者可以相互抵消,最终实现控制励磁涌流的目的。
实验结果表示,涌流抑制器的安装后,当接收到变压器投载运行命令时,涌流抑制器根据断路器合闸所需时间、上一次分闸时记录的分闸相位角以及当前电压的相位角选择合适的时间执行合闸动作,测量变压器的合闸电流,其值与不安装涌流抑制器相比有了显著降低,此外这种方式还有区间选择的特点,得益于涌流抑制器的使用,断路器不需要再承受过高的励磁涌流,因而可以适当降低其规格要求,提升经济效益。
但是在使用的过程中,随着断路器使用及老化,其各部件的一致性也将出现一定程度的下降,导致其动作时间出现偏差,这将对涌流抑制产生较大的影响甚至导致涌流抑制失效,为了保证良好的涌流抑制效果,涌流抑制器每运行一段时间或者固定次数便需要重新设定其相关参数,这对后续的维护保养提出了一定程度的要求。
根据铁路的供电特性,快速处理故障,节约成本,满足行车设备的不间断供电,此次我们采用更改保护装置参数,对合闸相位角进行控制的方法,调整合适的合闸相位角,最终实现保障变压器正常工作的目的,保证设备的安全运行。
三、结束语通过本文的分析可知,解决变压器励磁涌流可以更好地保障变压器的正常工作,进而维护铁路电力系统的正常工作,以此满足铁路发展的需求。
因此,在新时期铁路以及高铁的快速发展过程中,就要对变压器励磁涌流产生原因及解决措施进行探索,出现励磁涌流的原因,以此为依据,实行相应的解决措施。
通过这样的方式,保障变压器的正常工作,维持电力系统的稳定发展,提高其工作的效率,满足铁路设备的用电需求,提高行车设备用电的安全性和可靠性,保障旅客的安全出行。
参考文献:[1]王继豪,曹志伟,孙福春,辜超,商攀峰. 空载合闸励磁涌流对变压器绕组受力的影响[J]. 山东电力技术,2021,48(9):33-39.[2]刘畅,汤雪鹏,宁威,陈玉明. 变压器启动过程中励磁涌流及和应涌流现象分析[J]. 安徽电气工程职业技术学院学报,2021,26(3):38-41.[3]刘仲钦. 一起220 kV变电站主变励磁涌流引起的保护动作分析[J]. 机电信息,2021,(23):32-34.[4]刘盛,李焱,李天浩,吴桂良. 广义S变换鉴别电力变压器励磁涌流特征量的仿真研究[J]. 自动化仪表,2021,42(8):23-26.。