爆破振动安全允许距离
- 格式:doc
- 大小:14.00 KB
- 文档页数:5
6.2 爆破振动安全允许距离6.2.1 评价各种爆破对不同类型建(构)筑物和其他保护对象的振动影响,应采用不同的安全判据和允许标准。
6.2.2 地面建筑物的爆破振动判据,采用保护对象所在地质点峰值振动速度和主振频率;水工隧道、交通隧道、矿山巷道、电站(厂)中心控制室设备、新浇大体积混凝土的爆破振动判据,采用保护对象所在地质点峰值振动速度。
安全允许标准如表4。
6.2.3 爆破振动安全允许距离,可按式(1)计算。
311Q V K R α⎪⎭⎫⎝⎛= (1)式中:R ——爆破振动安全允许距离,单位为米(m );Q ——炸药量,齐发爆破为总药量,延时爆破为最大一段药量,单位为千克(kg ); V ——保护对象所在地质点振动安全允许速度,单位为厘米每秒(cm / s ) ;K 、a ——与爆破点至计算保护对象间的地形、地质条件有关的系数和衰减指数,可按表5选取,或通过现场试验确定。
表5 解区不同岩性的K 、a 值群药包爆破,各药包至保护目标的距离差值超过平均距离的10%时,用等效距离R,和等效药量q分别代替R和Q值。
R c和Q e的计算采用加权平均值法。
对于条形药包,可将条形药包以1~1.5倍最小抵抗线长度分为多个集中药包,参照群药包爆破时的方法计算其等效距离和等效药量。
6.2.46.2没有包括的一般保护对象的爆破振动安全标准,可参照6.2的规定由设计论证提出;特别重要的保护对象的安全判据和允许标准,应由专家论证提出。
城镇拆除爆破安全允许距离由设计确定。
6.2.5在特殊建(构)筑物附近或爆破条件复杂地区进行爆破时,应进行必要的爆破振动监测或专门试验,以确保保护对象的安全。
6.2.6在复杂环境中多次进行爆破作业时,应从确保安全的单响药量开始,逐步增大到允许药量,并按允许药量控制一次爆破规模。
爆破振动的控制1爆破振动速度安全允许标准根据萨道夫斯基控制爆破振动速度公式α⎪⎪⎭⎫⎝⎛=R Q K V 31 计算爆破振动速度。
式中:R —爆破振动安全距离,m ,Q —装药量,微差爆破取最大一段药量,V —振动安全速度,新浇大体积混凝土允许振动速度:龄期3d 内V=2.0cm/s (洞内2.5cm/s ),3~7d V=4.0cm/s (洞内5cm/s ),7~28d V=8cm/s (洞内10cm/s )。
按3d 允许振动速度控制。
核岛振动加速度:0.03g ; k ,a —系数,取K=250,a=1.8;K 、α值得选择如表3-1所示:表3-1K 、α取值参考根据设计要求各建筑物爆破振动要求如下表:根据爆区周围各需保护目标的结构特征及距爆区的距离,通过振动速度公式校核可得下表数据。
爆破前期通过爆破试验以及振动监测单位的振动监测数据,由小到大逐步增大最大段齐爆药量,确保核电站各项设施的正常运行。
表3-2不同保护物项的最大单响数值由上表可知:核岛660m,Q=745kg; 8AW厂房130m,Q=703kg;3天内新浇混凝土60m, Q=42.8kg;(目前爆区300m范围没有浇筑混凝土,爆破实施前应掌握爆破区域周边环境变化情况,如被保护物项发生变化,应及时调整最大单响起爆药量)。
洞外爆破按单孔单响控制最大起爆药量(单孔装药量为60kg),洞内爆破按最大起爆药量41.4kg,如单孔装药量超过允许最大起爆药量时,采用孔内分段爆破或减小孔深降低单孔装药量措施。
.2爆破振动验算按主爆区最大单响药量为60kg,用公式V=K(Q1/3/R)α进行验算,式中字符含义同上。
由此算得保护物象的振动速度值见下表:由此可知,理论计算按60kg最大齐爆药量控制符合允许振动要求,但应根据振动监测数据判断其理论计算取值的合理性,如有差异及时调整。
.3露天爆破振动防护措施(1)采用微差爆破技术,合理选取微差间隔时间及微差段数,根据施工进度实际情况合理安排,尽量多安排段的数量和延长微差时间,利用先爆孔爆破后造成附近岩体破碎和松裂为后爆孔开创内部自由面来达到降振的目的。
技术与市场技术应用2020年第27卷第11期露天采石场周边安全距离的确定张㊀科(广东中恒安检测评价有限公司ꎬ广东湛江524000)摘㊀要:露天采石场生产工艺流程涉及到凿岩(穿孔)㊁爆破㊁铲装㊁运输等主要工序ꎬ其中爆破作业风险极高ꎬ一旦发生放炮事故(如操作不当引起早爆㊁盲炮ꎬ处理不规范造成意外爆炸等)ꎬ势必造成现场作业人员伤亡㊁设备设施损坏㊁危及周边环境(设施)㊁人员或单位的安全ꎬ特别是当安全距离不足时ꎬ一旦发生事故(或事件)ꎬ势必造成各种不必要的纠纷ꎬ甚至造成第三方人员的伤亡ꎮ再者ꎬ我国法律法规等还针对特殊的保护对象(如电力设施㊁公路㊁铁路㊁通信设施㊁广播电视设施㊁石油天然气管道等)还规定了专门的安全距离要求ꎮ因此ꎬ合理㊁合规确定露天采石场与周边环境的安全距离显得尤为重要ꎮ关键词:爆破作业ꎻ爆破安全距离ꎻ保护对象doi:10.3969/j.issn.1006-8554.2020.11.0311㊀选择原则某市露天采石场主要开采矿种为建筑用花岗岩和玄武岩ꎬ大部分矿石质量检测报告显示ꎬ微(未)风化层矿石饱和单轴抗压强度在80~120MPaꎬ坚固性系数(普氏系数)f在8~12ꎬ周边环境中面临一般民用建筑物较多ꎬ但同时也有个别采石场周边有电力设施㊁公路㊁铁路等情况ꎮ特殊保护对象(如电力设施㊁公路㊁铁路等)可通过查阅相关法律法规等规定ꎬ如«公路安全保护条例»第十七条 禁止在下列范围内从事采矿㊁采石㊁取土㊁爆破作业等危及公路㊁公路桥梁㊁公路隧道㊁公路渡口安全的活动:(一)国道㊁省道㊁县道的公路用地外缘起向外100mꎬ乡道的公路用地外缘起向外50m ꎬ本文就不针对该项内容进行阐述ꎮ本文根据该市采石场的基本情况ꎬ主要从爆破安全的角度出发ꎬ分析爆破安全距离的确定方法ꎮ2㊀爆破安全距离确定方法根据«爆破安全规程»«GB6722-2014»(简称 规程 ) 13.1.1爆破地点与人员和其他保护对象之间的安全允许距离ꎬ应按各种爆破有害效应分别核定ꎬ并取最大值 的规定ꎬ露天采石场主要爆破有害效应为地震波㊁冲击波和个别飞散物(露天采石场主要指的是 爆破飞石 )ꎮ2 1㊀爆破振动安全允许距离根据规程第13.2.4条公式(萨道夫斯基公式):R=(KV)1α Q13Q 炸药量ꎬ齐发爆破为总药量ꎬ延时爆破为最大单段药量ꎬkgꎮV 保护对象所在地安全允许质点振速ꎬcm/sꎮKꎬα 与爆破点至保护对象间的地形㊁地质条件有关的系数和衰减指数ꎬ应通过现场试验确定ꎻ在无试验数据的条件下ꎬ根据规程中的 表1爆区不同岩性的K㊁α值 进行取值ꎮ分析公式可知ꎬ单考虑某一因素(其他因素不变)的前提下ꎬK值越大ꎬR越大ꎻα越小ꎬR越大ꎻV越小ꎬR越大ꎻQ越大㊁R越大ꎮ参数选取:该市露天采石场开采建筑用花岗岩㊁建筑用玄武岩碎石居多ꎬ岩石饱和抗压强度在80~120MPa居多ꎬ坚固性系数f(普氏系数)在8~12ꎬ属于下表和规程 表1爆区不同岩性的K㊁α值 表中的 中硬度岩石 类ꎮ根据上述公式分析可知ꎬ按最不利参数取K=250㊁α=1.5ꎮ表1㊀爆区不同岩性的K㊁α值岩性岩石坚固性系数fKα坚硬岩石>1250~1501.3~1.5中硬岩石8~12150~2501.5~1.8软岩石<8250~3501.8~2.0㊀㊀该市露天采石场周边面临一般民用建筑物居多ꎬ露天深孔爆破主振频率f在10~60Hzꎬ根据上述公式分析可知ꎬ按最不利参数取V=2.0cm/sꎮ同时该市露天采石场采用导爆管雷管非电起爆法ꎬ分段延时爆破起爆ꎬ单段药量最大一般不超过500kgꎬ按最不利参数取单段最大药量Q=500kgꎮ将最不利参数K=250㊁α=1.5㊁V=2.0cm/s㊁Q=500kg代入上面公式进行计算ꎬ爆破振动安全允许距离Rʈ198mꎬ因此ꎬ爆破地震波引起的爆破振动安全允许距离不超过200mꎮ应说明的是ꎬ如果保护对象未列入规程 表2爆破振动安全允许标准 中时ꎬ爆破振动安全允许标准可参照类似工程或保护对象所在地的设计抗震烈度值来确定爆破振动速度极限值ꎬ如表2所示ꎮ该市抗震设防烈度在7~8度ꎬ根据«建筑工程抗震设防分类标准»(GB50223-2008) 7.1采煤㊁采油和矿山生产建筑 可知ꎬ该市露天采石场建筑物抗震设防类别属 标准设防类(丙类) ꎬ建筑物抗震烈度取抗震设防烈度即可ꎮ77技术应用TECHNOLOGYANDMARKETVol.27ꎬNo.11ꎬ2020从表2可知ꎬ随着建筑物设计抗震烈度增大ꎬ允许地面质点振动速度则相应增加ꎬ根据上述公式分析可知ꎬV越大ꎬ则R将会越小ꎬ小于V=2.0cm/s的数值ꎮ2 2㊀爆破空气冲击波安全允许距离由于爆破冲击波受围岩与土层性质㊁覆盖层厚度㊁装药量等诸多因素影响ꎬ目前国家标准中尚未有对中深孔爆破冲击波的统一计算公式(但对地表裸露爆破有冲击波计算公式)ꎬ所以一般参照地表裸露爆破冲击波计算结果ꎬ然后进行工程经验取值ꎻ由于炮孔具有一定的填塞长度㊁上部有覆盖层等因素ꎬ一般冲击波安全允许距离较小ꎮ表2㊀建筑物抗震烈度与相应地面质点振动速度的关系建筑物设计抗震烈度/度567允许地面质点振动速度/cm s-12~33~55~8㊀㊀露天采石场爆破一般属于松动爆破或减弱抛掷(加强松动)爆破ꎬ爆破作用指数n一般在0.75上下(不会超过1)ꎬ根据原规程6.6.3条 爆破作用指数n<3的爆破作业ꎬ对人员和其他保护对象的防护ꎬ应首先考虑个别飞散物和地震安全允许距离 的规定亦可知ꎬ露天采石场台阶爆破ꎬ爆破冲击波安全允许距离可不作为重点考虑ꎮ2 3㊀个别飞散物安全允许距离根据规程可知ꎬ露天岩土深孔台阶爆破个别飞散物的安全距离ꎬ应按设计且不小于200mꎻ浅孔台阶爆破在复杂地质条件下或未形成台阶工作面时不小于300mꎬ其他情况下可取200mꎮ露天采石场在掘沟阶段时(通常只有1个自由面㊁密集孔㊁药量大)ꎬ存在钻凿浅孔并逐层降坡形成符合设计规定高度台阶的过程ꎬ所以ꎬ露天岩土浅孔台阶爆破个别飞散物的安全距离ꎬ在未形成台阶工作面时不小于300mꎬ因此应根据实际情况分别进行对待ꎮ1)新设矿区(需进行表土剥离㊁爆破往下进行掘沟形成设计规定高度的台阶)ꎬ或已形成有多级台阶的采场(但未到达«采矿许可证»允许开采的最低标高水平ꎬ仍能继续往下进行掘沟㊁准备形成下一个台阶时)ꎬ由于在未形成设计规定高度的台阶前往下掘沟ꎬ需按浅孔爆破逐层降坡至下一个开采台阶水平㊁形成符合设计规定高度的台阶ꎬ因此ꎬ个别飞散物的距离要求应不小于300mꎮ2)已形成多级规整台阶的采场ꎬ且不能再往下继续开拓台阶(即已经开采至«采矿许可证»允许的最低开采标高)ꎬ个别飞散物的距离要求应不小于200mꎮ不管何种情形ꎬ如果沿山坡爆破时ꎬ下坡方向(坡度超过30ʎ时)的个别飞散物安全允许距离应增大50%ꎮ根据上述分析可知ꎬ爆破有害效应中ꎬ数值最大的是个别飞散物的安全允许距离ꎬ因此矿山爆破安全距离的取值应根据个别飞散物的数值而定ꎮ爆破安全距离确定后ꎬ在爆破安全影响范围内不得设置有其他工贸企业的生产和生活设施ꎬ不得有非本单位设置的建构筑物(主要指的是其他单位或个人的民居或其他设施)ꎮ3㊀结语对比从爆破施工安全角度出发确定的 爆破安全距离 与国家法律法规等规定的 特殊保护对象的安全距离 进行对比㊁分析ꎬ取二者最大值作为最终露天采石场与周边环境的安全距离ꎮ同时应注意的是ꎬ根据国家安全监管的角度和要求ꎬ起算位置应从矿区拐点组成的边界往外开始推算ꎬ而不是实际爆破作业点ꎮ参考文献:[1]㊀国家质量监督检验检疫总局ꎬ国家标准化管理委员会.GB6722-2014爆破安全规程[S].2014.[2]㊀汪旭光ꎬ于亚伦.台阶爆破[M].北京:冶金工业出版社ꎬ2017.[3]㊀于润沧.采矿工程师手册[M].北京:冶金工业出版社ꎬ2009.87。
第1篇一、引言抛掷爆破是一种常用的爆破方法,广泛应用于矿山、土木工程等领域。
然而,由于抛掷爆破具有强烈的爆炸冲击波、振动和飞散物等危害,因此在进行抛掷爆破作业时,必须严格遵守安全距离规定,以确保人员、设备和环境的安全。
本文将详细介绍抛掷爆破安全距离的规定,以指导实际爆破作业。
二、抛掷爆破安全距离的基本概念1. 抛掷爆破安全距离:指在抛掷爆破作业过程中,保证人员、设备和环境安全的距离。
2. 抛掷爆破安全距离的分类:根据危害类型,抛掷爆破安全距离可分为以下几类:(1)爆破振动安全距离;(2)空气冲击波安全距离;(3)飞散物安全距离;(4)有害气体安全距离。
三、抛掷爆破安全距离的规定1. 爆破振动安全距离(1)爆破振动安全距离的计算公式:R = K × Q × m × V,其中:R:爆破振动安全距离,单位为米;K:与爆破点地形、地质等条件有关的系数和衰减指数;Q:炸药量,单位为千克;m:药量指数,取1/3;V:地震安全速度,单位为厘米/秒。
(2)爆破振动安全距离的确定:根据不同类型的建筑物、构筑物和设备,确定相应的地震安全速度V,然后根据公式计算爆破振动安全距离R。
2. 空气冲击波安全距离(1)空气冲击波安全距离的计算公式:r = (k × q) / p,其中:r:爆破空气冲击波安全距离,单位为米;k:与装药条件和爆破程度有关的系数;q:装药量,单位为千克;p:人员或建筑物允许承受的空气冲击波超压,单位为帕斯卡。
(2)空气冲击波安全距离的确定:根据实际情况,确定人员或建筑物允许承受的空气冲击波超压p,然后根据公式计算空气冲击波安全距离r。
3. 飞散物安全距离(1)飞散物安全距离的确定:根据爆破飞散物的速度和距离,确定飞散物安全距离。
(2)飞散物安全距离的计算公式:r = v × t,其中:r:飞散物安全距离,单位为米;v:飞散物速度,单位为米/秒;t:飞散物飞行时间,单位为秒。
爆破安全允许距离验算参照《爆破安全规程》(GB6722-2014)P42计算。
爆破地点与人员和其他保护对象之间的安全允许距离,应按各种爆破有害效应(地震波、冲击波、个别飞散物等)分别核定。
本例为临近500KV高压铁塔高边坡爆破,为保证500KV铁塔不受爆破造成的扰动,现场施工第四级边坡采用破碎锤破碎(距离铁塔<30m),一级、二级、三级边坡采用控制爆破。
为确保铁塔安全,分别计算爆破振动安全允许距离、爆破空气冲击波安全允许距离、个别飞散物安全允许距离进行验算。
⑴爆破振动安全允许距离依据《爆破安全规程》有关爆破振动计算与安全控制的有关规定,并参考有关材料,确定的铁塔的安全振速V=2.0cm/s,估算允许单响装药量按下式计算:R=(K/V)1/a·Q1/3式中:R-爆破振动安全允许距离,m;Q-炸药量,齐发爆破为总药量,延时爆破为最大单段药量,kg;取值根据不同距离计算确定V-保护对象所在地安全允许质点振速,cm/s;K,a-与爆破点至保护对象间的地形、地质条件有关的系数和衰减指数,可参考下表选取。
K,a的取值:标段主要为中硬岩石,K=200,a=1.6。
计算得如下参数:⑵冲击波安全允许距离地表进行大当量爆炸时,应根据保护对象所承受的空气冲击波超压值,按下式进行验算。
∆P = 14Q/R3 + 4.3Q2/3/R2 + 1.1Q1/3/R式中:∆P —空气冲击波超压值,105 Pa;∆P按保护对象基本无破坏验算,依据《爆破安全规程》表4建筑物的破坏程度与超压关系,∆P取值0.4。
Q —一次爆破梯恩梯炸药当量,秒延时爆破为最大一段药量,毫秒延时爆破为总药量,kg;R —爆源至保护对象的距离,m。
将上述1中表2参数经上式验算,∆P均<0.4。
⑶个别飞散物安全允许距离根据标段其余非临近高压铁塔段落爆破施工反馈,爆破区炮孔采用稻草覆盖后,可以保证爆破飞石安全距离Rf<30m。
综合上述1、2、3计算,表2 爆破最大单段药量参数表中相关参数满足爆破安全允许距离要求。
书山有路勤为径,学海无涯苦作舟爆破作业条件和安全距离的规定一、爆破作业条件规定 1.爆破前应对爆区周围的自然条件和环境状况进行调查,了解危及安全的不利环境因素,采取必要的安全防范措施。
2. 爆破作业场所有下列情形之一时,不应进行爆破作业(除应急抢险爆破外) : (1) 距工作面20m 以内的风流中瓦斯含量达到或超过1%或有瓦斯突出征兆的。
(2) 爆破会造成巷道涌水、堤坝漏水、河床严重阻塞、泉水变迁的。
(3) 岩体有冒顶或边坡滑落危险的。
(4) 榈室、炮孔温度异常的。
(5) 地下爆破作业区的有害气体浓度超过规程规定的。
(6) 爆破可能危及建(构)筑物、公共设施或人员的安全而无有效防护措施的。
(7) 作业通道不安全或堵塞的。
(8) 支护规格与支护说明书的规定不符或工作面支护损坏的。
(9) 危险区边界未设警戒的。
(10) 光线不足、无照明或照明不符合规定的。
(11)未按规程要求做好准备工作的。
3. 露天、水下爆破装药前,应与当地气象、水文部门联系,及时掌握气象、水文资料,遇有特殊恶劣气候、水文情况时,应停止爆破作业,所有人员应立即撤到安全地点。
4. 采用电爆网络时,应对高压电、射频电等进行调查,对杂散电进行测试;发现存在危险,应立即采取预防或排除措施。
5. 在残孔附近钻孔时应避免凿穿残留炮孔,在任何情况下均不允许钻残孔。
二、爆破作业安全允许距离的规定(一)一般规定 1. 爆破地点与人员和其他保护对象之间的安全允许距离,应按爆破各种有害效应(地震波、冲击波、个别飞散物等)分别核定,并取最大值。
2. 确定爆破安全允许距离时,应考虑爆破可能诱发滑坡、滚石、雪崩、涌浪、爆堆滑移等次生有害影响,适当扩大安全允许距离或针对具体情况划定附加的危险区。
(二) 各种爆破危害的安全允许距离 1.爆破震动安全允许距离(1)评估爆破对不同类型建(构)筑物、设施设备和其他保护对象的振动影响,应采用不同的安全。
爆破振动安全允许距离爆破振动是由于爆炸产生的振动波传播到周围地质体而引起的地面振动现象。
在工程施工中,爆破振动会对周围环境和结构物产生一定的影响和危害,因此需要对爆破振动进行控制和安全允许距离的确定。
爆破振动的安全允许距离是指在进行爆破作业时,周围建筑物和设施不会受到破坏或损害的最小距离。
根据国家相关标准和规范,确定爆破振动的安全允许距离需要考虑以下几个方面的因素:1. 周围建筑物和设施的性质和结构强度:不同的建筑物和设施对振动的敏感程度不同,而且其结构强度也不同。
对于结构比较脆弱或者对振动敏感的建筑物和设施,其安全允许距离应该相对较大。
2. 爆破参数和振动波特性:爆破参数主要包括爆炸药量、爆炸距离和爆炸深度等,这些参数直接影响到振动波的传播特性。
一般情况下,爆炸药量越大、爆炸距离越小、爆炸深度越浅,振动波的能量会越大,安全允许距离也就应该相对较大。
3. 地质和地下水条件:地质条件和地下水的存在会对振动波的传播产生较大的影响。
对于岩层坚硬且无地下水存在的地区,振动波的传播能力较强,因此安全允许距离相对较小;而对于岩层松软或者含有地下水的地区,振动波的传播能力较弱,安全允许距离应该相对较大。
在实际的工程施工中,可以通过以下几种方法来确定爆破振动的安全允许距离:1. 爆破振动预测模型:通过振动传播理论和数值模拟方法,可以建立爆破振动的传播模型,预测爆破振动的传播特性和能量衰减规律。
根据模型计算结果和相关标准,可以确定出不同爆破参数下的安全允许距离。
2. 野外振动监测:在进行爆破作业前后,可以在周围建筑物和设施附近设置振动监测点,实时监测和记录振动波的传播情况,获得实测的振动参数。
通过对监测数据的分析和比较,可以确定具体的安全允许距离。
3. 类似工程案例参考:根据以往类似的工程案例和经验,可以参考已有的安全允许距离进行决策。
当然,这种方法需要考虑相关工程的相似性和可比性,在确定安全允许距离时应该谨慎。
爆破安全允许振动距离报告一、引言爆破在矿山、建筑拆除和基础工作等领域有着广泛的应用,但由于爆破作业会产生振动,引起周围环境的震动和噪音,从而对周围建筑物和设施造成潜在的损害。
因此,确定爆破安全允许振动距离是必要的,可以确保爆破作业的安全性和周围环境的保护。
二、爆破振动距离计算方法爆破振动距离的计算可参考GB6722-2024《建筑物振动危害分类与防护标准》的相关规定。
根据该标准,爆破振动距离可通过以下公式计算:D=(A/E)^(1/3)其中,D为振动距离(米),A为最大振动速度(mm/s),E为岩石等级系数。
三、爆破振动距离的影响因素1.爆破药量和类型:爆破药量和类型直接影响着爆破振动的强度,药量大、类型炸药的爆破振动能量将更大,振动距离也会相应增加。
2.爆破距离和深度:离爆破点越近的建筑物,所受到的振动影响也越大。
同时,爆破距离和爆破深度也会对振动距离产生影响。
3.岩石的地质条件:不同的岩石类型和结构对振动传播具有不同的阻尼效应,因此,地质条件也是影响振动距离的重要因素之一四、爆破振动距离的安全要求为了确保爆破作业的安全性和周围环境的保护,根据GB6722-2024的要求,一般情况下,振动速度超过50mm/s的振动传播距离不得超过100米。
当建筑物的振动敏感性较高时,振动速度超过25mm/s的振动传播距离不得超过50米。
五、爆破振动距离的监测和控制措施为了确保爆破作业时的振动距离符合安全要求,应采取以下措施:1.定期监测:爆破作业前后,对周围建筑物、设施和地质环境进行振动监测,及时了解振动距离和强度的情况。
2.合理设置爆破参数:根据具体情况调整爆破药量、类型、距离和深度等参数,以确保振动距离符合安全要求。
3.需要时采取防护措施:当爆破作业的振动距离超出安全要求时,可以采取降低药量、增加重质岩石、采用减振器等防护措施,保护周围建筑物和设施的安全。
六、结论爆破安全允许振动距离是确保爆破作业安全和周围环境保护的重要依据。
爆破安全距离各种爆破、爆破器材销毁以及爆破器材意外爆炸时,爆破源与人员和其他保护对象之间的安全距离称为爆破安全距离。
为保证爆破安全,爆破地点与人员或其他应保护对象之间必须保持最短的相隔长度。
爆破有害效应随距离的增加有规律地衰减,用距离作为安全尺度可限定爆破有害效应在允许限度之内。
中国《爆破安全规程》规定了爆破地震安全距离,个别飞散物安全距离,以及爆炸冲击波的安全距离。
爆破作业安全允许距离的规定(一)一般规定1.爆破地点与人员和其他保护对象之间的安全允许距离,应按爆破各种有害效应(地震波、冲击波、个别飞散物等)分别核定,并取最大值。
2. 确定爆破安全允许距离时,应考虑爆破可能诱发滑坡、滚石、雪崩、涌浪、爆堆滑移等次生有害影响,适当扩大安全允许距离或针对具体情况划定附加的危险区。
(二)各种爆破危害的安全允许距离1.爆破震动安全允许距离(1)评估爆破对不同类型建(构)筑物、设施设备和其他保护对象的振动影响,应采用不同的安全判据和允许标准。
(2) 地面建筑物、电站(厂)中心控制室设备、隧道与巷道、岩石高边坡和新浇大体积混凝土的爆破震动判据,采用保护对象所在地基础质点峰值振动速度和主振频率。
安全允许标准的具体要求由《爆破安全规程》规定。
(3) 高耸建(构)筑物拆除爆破安全允许距离包括建(构)筑物塌落触地振动安全距离和爆破震动安全距离。
2. 爆破空气冲击波及水中冲击波与浪涌安全允许距离(1)露天地表爆破一次爆破炸药量不超过 25kg 时,应按规定计算确定空气冲击波对在掩体内避炮作业人员的安全允许距离。
(2) 水下裸露爆破,当覆盖水厚度小于. 3 倍药包半径时,对水面以上人员或其他保护对象的空气冲击波安全允许距离计算原则,与地表爆破相同。
(3) 在重要水工、港口设施附近及水产养殖场或其他复杂环境中进行水下爆破,应通过测试和邀请专家对水中冲击波和浪涌的影响作出评估,确定安全允许距离。
(4) 水中爆破或大量爆渣落人水中的爆破,应评估爆破涌浪影响,确保不产生超大坝、水库校核水位涌浪,不淹没岸边需保护物和不造成船舶碰撞受损。
爆破振动安全允许距离
引言:
爆破振动是在爆破作业中产生的一种特殊的振动现象。
爆破振动不仅对周围的建筑物和地下设施造成一定的影响,而且可能对地震监测、地质灾害预警等相关工作带来干扰。
因此,确定爆破振动的安全允许距离是进行破岩爆破作业的重要依据之一。
本文将从爆破振动的基本原理、影响因素、国内外规范以及实际应用等方面来探讨爆破振动安全允许距离的问题。
一、爆破振动的基本原理
爆破振动是指由于爆炸产生的冲击波在地下岩体或者建筑物中的传播而引起的振动现象。
爆炸产生的冲击波在地下岩体中传播时,会产生一定的振动。
这种振动会沿着冲击波的传播方向向外扩散,并在传播过程中逐渐减弱。
爆炸振动的特点主要有以下几个方面:
(一)爆炸振动的频率范围较宽,通常在1Hz至100Hz之间。
(二)爆炸振动的振幅在炸药能量消耗过程中逐渐减小。
(三)由于地质力学条件的差异,不同地层中的岩石对爆破振动的传播和衰减有着不同的响应。
(四)受到限制的爆破振动传播会在地下岩石中产生反射和折射,导致振动能量的分散。
爆破振动产生的主要原因是爆炸产生的冲击波在地下岩石中的传播。
冲击波与岩石之间的相互作用会引起岩石的破碎和变形,从而产生振动。
爆破振动的强度与冲击波的能量、冲击波的传播距离以及地质条件等因素有关。
二、影响爆破振动的因素
爆破振动的强度与很多因素有关,主要包括:
(一)爆炸药量和炸药性质:爆炸药量越大,爆破振动的强度越大;不同性质的炸药对振动的影响也不同,一般来说,爆速较高的炸药会产生较强的振动。
(二)爆破距离:爆破振动的强度随着爆破距离的增加而逐渐减小。
(三)岩石性质:不同类型的岩石对振动的响应有所差异,例如,花岗岩、片麻岩等硬岩比石灰岩、页岩等软岩对振动的响应更为敏感。
(四)地质条件:不同地区的地质条件的差异也会影响爆破振动的强度,例如,岩层的厚度、断裂带的存在等。
(五)爆破设计参数:爆破设计参数包括孔的布置、装药量、装药方式、引爆顺序等,这些参数的选择会直接影响爆破振动的强度。
三、国内外爆破振动的规范
为了保障爆破作业的安全和正常进行,各国都制定了相应的爆破振动规范。
这些规范主要包括爆破振动的控制标准、监测要求以及相应的安全允许距离。
1.国内规范
国内主要有以下几个爆破振动规范:
(一)《爆破振动安全规范》(GB6722-2014):该规范是我国最基本的爆破振动规范,主要建议了爆破振动对各类建筑物、地下设施以及地面上的影响限值。
该规范对爆破振动的限制主要以峰值振动速度和振动频率为依据,不同建筑物和设施的限值不尽相同。
(二)《地质灾害爆破处理技术规程》(DG/T5046-2018):该规范是针对地质灾害爆破处理而制定的,主要规定了爆破振动监测的要求以及安全允许距离的计算方法。
2.国外规范
国外主要有以下几个爆破振动规范:
(一)美国《振动限值设计指南》(USBM RI8507):该指南是美国最早的关于爆破振动的规范,主要规定了爆破振动的限制标准和监测要求。
(二)英国《振动工程指南》(BS7385-2):该指南对爆破振动的控制和监测提出了详细的要求,涵盖了建筑物、地下设施以及地面上各类设施的限制标准和监测方法。
(三)澳大利亚《爆破振动与飞石控制实施指南》:该指南主要规定了爆破振动的限制标准和监测方法,并给出了不同地质条件下的安全允许距离。
四、实际应用
爆破振动的安全允许距离是根据爆破振动的强度和影响范围确定的。
在实际应用中,通常采用以下几种方法来计算爆破振动的安全允许距离:
(一)根据爆破振动的经验公式进行计算:爆破振动的经验公式是根据大量实测数据和经验总结出来的公式,它可以通过炸药量、矩形炮孔排列的参数、岩石性质等因素来计算爆破振动的强度和距离。
(二)根据爆破振动监测数据进行分析:通过爆破现场的振动监测,可以获取到实际的振动数据,进而判断爆破振动的安全允许距离。
(三)通过数值模拟进行计算:利用数值模拟软件可以对爆破振动进行模拟计算,通过改变爆炸参数和地质条件等因素,来确定不同条件下的爆破振动安全允许距离。
不同的方法有各自的优缺点,但它们都是在一定的理论和实践基础上得出的。
在实际应用中,应根据具体情况选取合适的方法来确定爆破振动的安全允许距离。
结论:
爆破振动的安全允许距离是进行破岩爆破作业的重要依据之一。
爆破振动受到很多因素的影响,如爆炸药量、炸药性质、爆破距离、岩石性质、地质条件以及爆破设计参数等。
为了保障爆破作业的安全和正常进行,各国都制定了相应的爆破振动规范,这些规范主要包括爆破振动的限制标准、监测要求以及相应的安全允许距离。
在实际应用中,可以采用经验公式计算、振动监测数据分析以及数值模拟等方法来确定爆破振动的安全允许距离。