光纤激光器的工作原理及其发展前景(3)
- 格式:docx
- 大小:19.69 KB
- 文档页数:4
光纤激光器的工作原理及其发展前景光纤激光器的工作原理及其发展前景1 .引言光纤激光器于1963年发明,到20世纪80年代末第一批商用光纤激光器面市,经历了20多年的发展历程。
光纤激光器被人们视为一种超高速光通信用放大器。
光纤激光器技术在高速率大容量波分复用光纤通信系统、高精度光纤传感技术和大功率激光等方面呈现出广阔的应用前景和巨大的技术优势。
光纤激光器有很多独特优点,比如:激光阈值低、高增益、良好的散热、可调谐参数多、宽的吸收和辐射以及与其他光纤设备兼容、体积小等。
近年来光纤激光器的输出功率得到迅速提高。
已达到10—100 kW。
作为工业用激光器,现已成为输出功率最高的激光器。
光纤激光器的技术研究受到世界各国的普遍重视,已成为国际学术界的热门前沿研究课题。
其应用领域也已从目前最为成熟的光纤通讯网络方面迅速地向其他更为广阔的激光应用领域扩展。
2.光纤激光器的原理2.1光纤激光器的分类光纤材料的种类,光纤激光器可分为:(1)晶体光纤激光器。
工作物质是激光晶体光纤,主要有红宝石单晶光纤激光器和nd3+:YAG 单晶光纤激光器等。
(2)非线性光学型光纤激光器。
主要有受激喇曼散射光纤激光器和受激布里渊散射光纤激光器。
(3)稀土类掺杂光纤激光器。
光纤的基质材料是玻璃,向光纤中掺杂稀土类元素离子使之激活,而制成光纤激光器。
(4)塑料光纤激光器。
向塑料光纤芯部或包层内掺入激光染料而制成光纤激光器。
2.2光纤激光器的工作原理光纤激光器的结构和传统的固体、气体激光器一样。
光纤激光器基本也是由泵浦源、增益介质、谐振腔三个基本的要素组成。
泵浦源一般采用高功率半导体激光器(LD),增益介质为稀土掺杂光纤或普通非线性光纤,谐振腔可以由光纤光栅等光学反馈元件构成各种直线型谐振腔,也可以用耦合器构成各种环形谐振腔泵浦光经适当的光学系统耦合进入增益光纤,增益光纤在吸收泵浦光后形成粒子数反转或非线性增益并产生自发辐射所产生的自发辐射光经受激放大和谐振腔的选模作用后.最终形成稳定激光输出。
光纤激光器的研究与开发随着现代科技的不断发展,人们对于光纤激光器的需求越来越高。
光纤激光器是一种用于光通信、医学、工业制造等领域的重要器件,其高效率、高功率、高质量的输出光束,使它在现代外界应用中占据了重要地位。
一、光纤激光器的工作原理光纤激光器主要包含光泵浦、增益介质和谐振腔三个部分。
光泵浦能量通过半导体激光器、氘灯、Nd:YAG激光器等方式提供,达到激发掺杂在光纤中的掺杂离子,将激光能量转化为材料内的能量。
这种能量增益是通过光纤中材料的光吸收效应来实现的。
例如:19mm的长度、3mm的掺Yb3+光纤,其增益截面约为2.5x10^-20cm^-2。
增益介质的选择对光纤激光器的工作效能非常重要。
常用的增益介质有Nd3+、Yb3+、Tm3+、Er3+、Ho3+等元素离子。
其中,Yb3+因为其长寿命、跃迁截面大才被广泛地应用于光纤激光器之中。
谐振腔是光纤激光器的另一个重要组成部分。
谐振腔内包含两个反射镜,分别为输出反射镜和高反射镜。
高反射镜是指透反射率小于5%的反射镜,而输出反射镜则需要具有较高的透反射率。
当增益器中的激光与谐振腔中的光发生共振时,就会产生放大,从而形成了激光脉冲。
二、光纤激光器的优点光纤激光器具有许多优点,这使得其在许多应用领域具有广泛的应用。
以下是其中一些优点:1. 高功率:由于光泵浦能量提供的能量密度非常高,可以得到非常高的功率。
2. 窄谱:光纤激光器形成的光脉冲非常窄,其谱线也非常窄,这使得其在许多应用方面拥有较为优越的性能。
3. 高光束质量:光纤激光器输出的光束非常稳定,光束质量高,重合度也很好。
4. 省电:和其他激光器相比,光纤激光器更为节能,也更加可靠。
5. 环保:光纤激光器在生产和使用过程中对环境的影响也比较小。
三、光纤激光器的应用光纤激光器具有广泛的应用,特别是在工业和医学领域中,以下是其常见的应用:1. 切割和焊接:光纤激光器可以被用于对轻型材料进行切割和焊接的工作,在汽车工业、航空工业和电子工业中广泛应用。
激光器的工作原理及应用激光器是一种能够产生高度聚焦、高亮度、单色、相干性极强的光束的装置。
它的工作原理基于激光的放大过程,通过激发原子或分子的能级跃迁来实现。
1. 工作原理激光器的工作原理主要包括以下几个步骤:激发、放大、反射和输出。
首先,通过能量输入的方式(如电子激发、光或化学反应等),将激光介质中的原子或分子激发到高能级。
这个过程可以通过光泵浦、电子束激发、化学反应等方式实现。
接下来,激发态的原子或分子在经过一系列的非辐射跃迁后,会回到基态,并释放出光子。
这些光子会与其他激发态的原子或分子发生受激辐射,产生更多的光子。
这个过程称为光放大。
然后,放大后的光经过光学谐振腔的反射,使光在谐振腔内来回多次反射,增强光的能量和相干性。
最后,经过一系列的光学元件(如输出镜、偏振器等)的处理,将激光束输出为一束高度聚焦、单色、相干性极强的光。
2. 应用领域激光器由于其独特的光学性质和精确的控制能力,在许多领域中得到广泛应用。
2.1 制造业激光器在制造业中有着广泛的应用。
例如,激光切割可以用于金属板材、塑料、纺织品等材料的切割,具有高效、精确、无接触等优点。
激光焊接可以用于汽车、航空航天、电子等行业的焊接,具有焊缝小、热影响区小、焊接速度快等优势。
激光打标可以用于产品标识、二维码、防伪标识等方面。
2.2 医疗领域激光器在医疗领域中有着广泛的应用。
例如,激光手术可以用于眼科手术、皮肤整形、癌症治疗等。
激光治疗可以用于减轻疼痛、促进伤口愈合、去除皮肤病变等。
激光诊断可以用于医学成像、激光扫描等方面。
2.3 通信领域激光器在通信领域中有着重要的应用。
激光器可以作为光纤通信系统中的光源,通过光的调制和解调来实现信息的传输。
激光器的单色性和相干性使得光信号能够在光纤中传输更远距离,并且具有更高的传输速率。
2.4 科学研究激光器在科学研究中有着广泛的应用。
例如,激光干涉仪可以用于测量长度、表面形貌等。
激光光谱仪可以用于分析物质的组成和结构。
光纤激光器的原理及应用前言光纤激光器是一种利用光纤作为介质传输激光能量的器件,具有高效率、高可靠性和方便布线的特点。
本文将介绍光纤激光器的工作原理以及其在各个领域的应用。
工作原理光纤激光器是通过一系列的光学元件将光线限制在光纤内部,并利用光纤中的光耦合技术将激光能量传输到目标位置的设备。
下面将详细介绍光纤激光器的工作原理。
1.激光器结构光纤激光器一般由泵浦源、光纤增益介质、谐振腔和输出光纤组成。
泵浦源提供能量供给,激发光纤增益介质中的活性离子跃迁发射出光子。
谐振腔用于产生激光的振荡和放大。
2.光纤增益介质光纤增益介质一般采用掺杂了活性离子的光纤,并且活性离子的浓度要足够高以保证放大效果。
常用的增益介质有掺铒光纤、掺镱光纤、掺铥光纤等。
3.泵浦源泵浦源一般采用激光二极管或固体激光器,通过泵浦能量将活性离子兴奋到激发态。
4.谐振腔谐振腔是光纤激光器中光的振荡和放大的地方。
谐振腔通常由两面具有高反射率的光纤光栅组成,形成一个光学腔,使激光在腔内进行反复反射,增强激光的能量。
5.输出光纤输出光纤负责将激光能量从激光器传输到目标位置。
输出光纤一般具有高纯度、低损耗和稳定的特点。
应用领域光纤激光器具有广泛的应用领域,下面将分别介绍光纤激光器在工业、医疗和通信领域的应用。
工业应用•材料加工:光纤激光器可以用于金属切割、焊接、打孔等材料加工工序,具有精确性高、速度快、不产生物理接触等优点。
•雷达测距:光纤激光器可以应用于测距仪器,利用激光器发射一束光线,通过测量光的反射时间来计算距离。
•光纤通信:光纤激光器可在光纤通信中作为信号的光源和放大器,具有高效率、高信号质量和大带宽等特点。
医疗应用•激光手术:光纤激光器可用于激光手术,如激光手术切割、焊接和去除异物等,具有创伤小、出血少、精确性高等优点。
•激光治疗:光纤激光器可用于激光治疗,如激光照射疗法、激光物理疗法和激光穿透疗法等,可以用于肌肤美容、康复和疾病治疗等。
光纤激光器的工作原理及其发展前景光纤激光器的主要构成部分包括泵浦源、激活介质、光纤和输出耦合器。
泵浦源通过吸收能量向激活介质提供能量,使激活介质达到激发态。
当激发态的粒子回到基态时,会释放出激光光子。
这些激光光子会在光纤中不断传输,并在反射镜的作用下进行多次反射,形成一束高度聚焦的激光束。
最后,输出耦合器将激光束从光纤中耦合出来,实现输出。
光纤激光器相较于传统的激光器有很多优势。
首先,光纤激光器具有更高的光束质量和光束稳定性,适用于高精度的应用需求。
其次,光纤结构使得激光器具有更小的体积和更好的抗干扰能力,适用于各种工作环境。
此外,光纤激光器还具有较高的效率和寿命,减少了能源消耗和维护成本。
光纤激光器的发展前景非常广阔。
首先,随着科技的进步和应用需求的增加,光纤激光器在通信领域的应用前景非常广阔。
光纤通信已经成为主流通信方式,而光纤激光器作为信号的发射源具有很大的潜力。
其次,光纤激光器在工业领域的应用也越来越多。
光纤激光器可以用于激光切割、激光焊接、激光打标等多种工业应用,具有高效、精确、灵活等特点。
此外,光纤激光器还可用于医疗、科学研究等领域。
未来,光纤激光器的发展方向主要包括提高功率、扩大波长范围、提高光束质量等。
随着需求的增加,光纤激光器的功率也在不断提高,可以满足更广泛的应用需求。
同时,根据不同的应用场景,光纤激光器的波长范围也在不断扩大,可以实现更多种类的材料加工。
此外,光束质量的提高可以进一步提高激光器的精度和稳定性。
总之,光纤激光器作为一种高效、精确、稳定的光源装置,具有广阔的应用前景。
随着科技的发展和需求的增加,光纤激光器的功能和性能也将不断提升,将在通信、工业、医疗等领域发挥更重要的作用。
对于激光器的研究和发展,还有很多潜力和挑战等待我们去探索和解决。
光纤激光器研究报告近年来,随着信息技术的快速发展,光通信和光存储技术的需求不断增加,光纤激光器作为一种重要的光源设备,其研究和应用也越来越受到关注。
本文将从光纤激光器的基本原理、研究现状、应用前景等方面进行探讨。
一、光纤激光器的基本原理光纤激光器是一种利用光纤作为激光介质的激光器。
其基本结构包括光纤、光纤耦合器、泵浦光源、光纤光栅等。
泵浦光源通过光纤耦合器将能量输送到光纤中,光纤光栅则用于调制光纤中的光场,使其产生激光输出。
光纤激光器的输出波长和功率可以通过调节光纤光栅的参数来控制。
光纤激光器的工作原理是基于光纤的增益介质特性。
当泵浦光经过光纤时,会激发光纤中的掺杂物(如铒离子、钕离子等)发生跃迁,产生光子,并激发周围的光子参与共振反馈,形成光纤中的激光场。
光纤激光器具有波长可调、功率稳定、光斑质量好等优点,因此在光通信、激光加工、医学等领域有广泛的应用。
二、光纤激光器的研究现状目前,光纤激光器的研究主要集中在以下几个方面:1.光纤激光器的波长调制技术光纤激光器的波长调制技术是实现光纤激光器波长可调的关键技术之一。
目前,波长调制技术主要包括电光调制、热光调制、机械调制等。
其中,电光调制技术是最常用的一种技术,其原理是利用电场控制光纤光栅的折射率,从而调制激光的波长。
2.光纤激光器的高功率输出技术光纤激光器的高功率输出是实现光纤激光器广泛应用的必要条件之一。
目前,高功率输出技术主要包括多段光纤放大、光纤叠加等。
多段光纤放大技术通过将光纤分成多段进行放大,从而提高激光器的输出功率。
光纤叠加技术则是利用多根光纤叠加的方法,将多个低功率的激光器输出合并成一个高功率的激光器输出。
3.光纤激光器的光学降噪技术光学降噪技术是提高光纤激光器光斑质量的关键技术之一。
目前,光学降噪技术主要包括光纤光栅滤波、光纤光栅反馈等。
其中,光纤光栅滤波技术是将光纤光栅的带通滤波器替换为带阻滤波器,从而实现对光纤激光器输出波长的滤波。
光纤激光器的理论与实验研究光纤激光器是一种利用光纤作为工作介质的激光器。
相比于传统激光器,光纤激光器具有结构简单、体积小、功率稳定等优点,因此在光通信、医疗、工业加工等领域得到广泛应用。
本文将介绍光纤激光器的基本原理、结构和性能,并重点探讨了光纤激光器的实验研究进展和应用前景。
一、光纤激光器的基本原理和结构光纤激光器的工作原理基于三个部分:激光介质、激光刺激源和反射器。
光纤激光器与传统激光器最大的不同在于光纤作为激光介质。
激光刺激源可以是电流、光或热等刺激方式,可以通过电子激发将参数转化为光信号,进而在光纤内扩散并被反射器反射形成激光器。
光纤激光器的结构、形式比较多样,但它们一般包括:激光介质、激光刺激源、反射器、光纤耦合器、光学输出部分。
其中,激光介质是光纤,由于光纤的细长、柔性、低价格、可靠性高等特点,提高了光纤激光器的光学特性,比如波导效应,从而实现了实际应用的复杂化程度。
激光刺激源选择与否,一般根据不同应用场合有区别,在医疗领域如SOLED为主流光源,但在工业领域,高压氙或钠灯光源通常采用。
反射器是锥形反射器或圆柱形镜反射器,两者的反射作用都可达到100%。
光纤耦合器主要用于将激光器的输出与其他的光学设备相连,各种传感器、医疗领域、工业领域都可以使用。
光学输出部分是机械永久码和钛焦散镜的组合,多项光学组件共同完成激光输出成型。
二、光纤激光器的性能特点光纤激光器具有很多优点,比如小体积、低噪声、功率稳定等,这些特点使其在各个领域中受到了广泛应用。
(1)大功率输出光纤激光器可以产生1W-100kW持续功率输出,而且功率稳定,颜色较浅。
随着技术不断发展,光纤激光器在功率输出上的性能不断得到提升。
(2)宽波段光纤激光器可以产生宽波段光信号,从紫外线到红外线都可以实现输出,具有很高的信噪比和相干特性。
多种波长的信号可以在同一个光纤内同时传输和操控。
(3)高可靠性由于光纤激光器的光学部件与常规激光器的光学元件相比,具有比较好的机械结构和散热系统,因此在使用时也具有较高的可靠性。
光纤激光器的原理和应用光纤激光器是一种以光纤为介质的激光器,其主要原理是利用激光二极管或其他激励源,通过特定的激光工作介质,通过非线性光学效应来产生激光。
光纤激光器的原理和应用广泛,是现代科学技术领域的重要组成部分。
本文将着重探讨光纤激光器的原理和应用。
一、光纤激光器的原理光纤激光器的工作原理基于光纤内部的非线性光学效应。
光纤内部由纯净的石英或玻璃制成,具有高折射率和低损耗的特点。
通过在光纤内部放置激光介质,可以在光纤内部产生激光。
具体而言,光纤激光器主要包括光纤、激光介质、泵浦光源、激光反馈回路、输出光束及功率控制电路等几大部分。
泵浦光源通过激发激光介质的原子或分子转化,激发出粒子之间的能级跃迁,从而实现激光器的起振。
光波被泵浦到光纤内部,通过高折射率的光纤材料逐渐聚焦在光纤核心。
激光介质将泵浦光转化为激发能量,通过非线性光学效应形成激光。
激光反馈回路将激光反馈到泵浦光源中,通过反馈系统反复得到增加,从而提高激光器的输出功率。
输出光束则是将激光发送到需要的地方,功率控制电路则负责控制整个激光器的功率和稳定性。
二、光纤激光器的应用光纤激光器在现代科学技术领域有着广泛的应用,我们仅列举一些比较典型的应用场景:1. 通信领域随着数字化和互联网的发展,通信成为人们日常生活中不可或缺的一部分。
而光纤激光器亦得到了广泛的应用。
光纤激光器的小型化、高可靠性、稳定性以及在通信网络中的低损耗等优点使其成为现代通信传输的主要方式。
2. 材料加工领域光纤激光器可以提供高能量、高亮度和小点位等优质的激光,广泛应用于各种科学和工程领域中。
特别是在材料加工领域,在金属、非金属等材料的切割、焊接、微机械加工等方面具有独特的优势。
光纤激光器在钢管开槽、卷板整平,以及铝、钛、不锈钢等金属加工方面的应用越来越广泛。
3. 医疗领域光纤激光器可以通过光纤导引可见光线照射到身体内部,特别是在泌尿系、胃肠道、喉部等狭窄部位的检查和治疗方面拥有独特优势。
2024年光纤激光器市场前景分析光纤激光器是一种基于光纤的激光发射器,具有高功率、高效率、高稳定性和高光质量的特点。
它被广泛应用于通信、医疗、材料加工、制造业和科学研究等领域。
本文将对光纤激光器市场的前景进行分析。
1. 光纤激光器市场的现状目前,光纤激光器市场呈现出快速增长的趋势。
其主要原因包括通信行业对高速数据传输的需求增加、工业领域对高精度材料加工的追求以及医疗领域对精确治疗设备的需求增长。
1.1 通信领域随着移动互联网的普及和数据传输速度的提高,光纤激光器在通信领域扮演着至关重要的角色。
其高功率和高效率使得光纤激光器能够满足传输高速数据的需求,促使其在光纤通信设备中得到广泛应用。
1.2 工业领域在制造业和材料加工领域,光纤激光器提供了高质量、高精度的切割和焊接能力。
它可以在金属、塑料和其他材料上进行精确的加工,因此被广泛应用于汽车制造、电子设备制造和航空航天领域。
1.3 医疗领域在医疗领域,光纤激光器被用于实施精确的手术和治疗。
其高能量和精确控制的特性使其成为激光眼科手术、皮肤治疗和微创手术等领域的理想选择。
2. 光纤激光器市场的增长驱动因素2.1 技术进步随着科学技术的进步,光纤激光器的技术也得到了不断改进和突破。
新材料的引入、激光器功率的提高和光纤激光器的集成化等技术创新推动了光纤激光器市场的增长。
2.2 应用拓展光纤激光器已经逐渐应用到更多的领域,如高速数据传输、智能制造、新能源等领域。
这些应用的不断拓展为光纤激光器市场提供了更大的发展空间。
2.3 市场需求增长随着全球经济的发展和人们对高质量、高效率产品的需求增加,光纤激光器的市场需求也在不断增长。
特别是在新兴市场和发展中国家,对光纤激光器的需求呈现出快速增长的趋势。
3. 光纤激光器市场的挑战尽管光纤激光器市场前景广阔,但仍面临一些挑战。
3.1 技术壁垒光纤激光器的研发和制造需要高水平的技术支持和专业知识。
技术壁垒限制了一些企业进入市场,从而导致市场竞争不充分。
光纤激光器的原理及应用光纤激光器的工作原理是通过受激辐射的过程产生激光。
首先,通过把电能、光能等能量输入石英玻璃纤维中,激发其中的电子从基态跃迁到激发态,电子在激发态寿命极短,相互作用强烈,从而形成了大量的受激辐射和激光产生,最后在光纤的末端通过光束输出。
1.制造业:光纤激光器在制造业中有广泛的应用,如切割、焊接和打标。
由于激光光束的高能量密度和小发散性,激光切割和激光焊接在金属加工中得到了广泛应用。
光纤激光器的高功率和高能量密度可实现更精确的切割和焊接,提高生产效率。
2.医疗领域:光纤激光器被广泛应用于医疗领域,例如激光手术、激光美容和激光治疗等。
光纤激光器的小尺寸和光纤的柔性使其能够在医疗设备中灵活使用,激光的高能量密度可精确控制和切割组织,可以用于手术刀替代、病变组织消融和切割等医疗操作。
3.通信领域:光纤激光器也广泛应用于通信领域,例如光纤通信和光纤传感。
光纤激光器的窄线宽和高功率输出能够提供更高的传输速率和传输距离,同时它的稳定性也能够保证信息的可靠传输。
光纤激光器在光纤传感中的应用主要是通过改变激光器输出的光强度或频率来检测物理变量,如温度、压力和应力等。
4.科学研究:在科学研究中,光纤激光器也扮演着重要的角色。
例如,在原子物理研究中,光纤激光器可用于冷却和操纵原子,使其接近绝对零度,从而研究量子行为。
在激光光谱学中,光纤激光器的高能量密度和带宽可用于光谱分析和材料表征等。
总之,光纤激光器凭借其小巧灵活、可靠性高、能量密度高、功率稳定等特点,在制造业、医疗、通信、科学研究等领域得到了广泛的应用。
随着光纤技术的不断发展和完善,光纤激光器在未来将继续发挥重要的作用,为各个领域的创新和发展提供有力支持。
光纤激光器的工作原理及其发展前景(3)
光纤激光器的工作原理及其发展前景
以形成相干性很好的激光。
激光发射是受激辐射远远超过自发辐射的物理过程,为了使这种过程持续发生,必须形成离子数反转.因此要求参与过程的能级应超过2个,同时还要有泵浦源提供能量。
光纤激光器实际上也可以称为波长转换器.通过它可以将泵浦波长光转换为所需的激射波长光。
例如,掺铒光纤激光器将980nm的泵浦光进行泵浦,输出1550nm的激光。
激光的输出可以是连续的,也可以是脉冲形式的。
激光输出是连续的还是脉冲输出形式主要依赖于激光工作介质.如果是连续形式输出,激光上能级的自发发射寿命必须高于激光下能级以获得较高的粒子数反转。
如果是脉冲形式输出.激光下能级的寿命就会超过上能级,此时就会以脉冲的形式输出光纤激光器有2种激射状态:三能级和四能级激射。
3 光纤激光器的分类
(1)按增益介质分类:稀土离子掺杂光纤激光器(Nd3+、Er3+.yb3+、Tm3+等,基质可以是石英玻璃、氟化锆玻璃、单晶)。
非线性效应光纤激光器(利用光纤中的SRS、SBS非线性效应产生波长可调谐的激光)。
在光纤中掺人不同的稀土离子,并采用适当的泵浦技术,即可获得不同波段的激光输出。
(2)按谐振腔结构分类:F—P腔、环形腔、环路反射器光纤谐振腔以及”8”字形腔、DBR光纤激光器、DFB光纤激光器(3)按光纤结构分类: 单和双包层光纤激光器、光子晶体光纤激光器、特种光纤激光器。
(4)按输出激光类型分类: 连续光纤激光器.超短脉冲光纤激光器、大功率光纤激光器。
(5)按输出波长分类:S一波段(1460~1530 nm)、C一波段(1530~1565 nm)、L一波段(1565~ 1610 nm)。
4 光纤激光器的特点
在激光振荡中.将能量集中于谐振腔所选的驻波以产生相干光。
在光技术中,只有光纤和波导能对光轴方向和横模方向进行三维模控制。
在以单模光纤作增益介质的光纤激光器中无竞争横模,因此可进
行稳定的激光振荡。
在由激光引起的热损伤、受激喇曼散射和受激布里渊散射发生之前,如果没有模的竞争,那么只要注入泵浦光,就能增大激光输出功率。
激光的增益和损耗比限制存储于激光介质中的能量转换效率。
因光纤本身的损耗低,与其他激光器相比,具有超长(5—10 m以上)特征的光纤激光器的增益和损耗比大100倍一1000倍。
因此,即使进行模控制,也可将存储能量几乎无损耗地转换成激光(光能)。
实际上,光纤激光器的输出功率与泵浦光成正比地线性增大,其转换效率达到85%。
在950 nm波段激励,在1080 nm波段振荡的镱量子效率为88%。
由此可知,激光功率几乎无损耗。
例如,芯径为40 m,长度为10 m,输出功率为1.36 kW 的单模光纤激光器,其实际激光介质的体积只不过为9 mm。
这表明,尺寸为2 mmx2 mm~2.5 mm的微芯片激光器能产生1.36 kW的输出功率。
图2 千瓦级光纤激光器的体积与微芯片激光器相同
光纤激光器具有无竞争模、冷却效率和激光效率较高的优异特性。
就具有超长增益泵浦和低损耗特性的光纤激光器而言,如果予以泵浦功率,则仅端面反射很容易实现激光振荡,因此技术开发的关键在于如何注入泵浦光。
光纤激光器的供应商美国IPG和SPI公司现已开发出一种将单条LD进行光纤耦合,然后注入双包层中第l包层的方式。
这是一种以长寿命、高亮度光纤耦合型LD作为基本部件的最佳方式。
另外,科研人员还提出了光纤盘形方式,这种方式适用于光纤传输光的LD泵浦固体激光元件,该泵浦方式同样可以满足放大千瓦以上输出功率的要求。
光纤激光器使用光纤布喇格衍射光栅(FBG)。
对石英光纤照射紫外光,写入调制折射率便形成一维FBG。
与普通的`衍射光栅相比,这种折射率略差的光栅写入长度>l cm,几乎无损耗,可成为选择多波长的反射镜。
因此,即使组成多级叠加FBG激光谐振腔,也能保持高效率的能量转换。
例如喇曼光纤激光器,通过三级FBG谐振腔在多波长移位的情况下,也能获得近50%的转换效率。
若将光纤连接到环上,使双向传输的光发生干涉以形成动态衍射光栅。
科研人员以用于重力波检测的激光为基础,成功研制出单频光纤激光器。
Yb光纤激光器具有准三能级的能量结构,所以未被激发时,略有基态吸收。
左
侧长为16 m的环形反射镜等于因光干涉而形成3 000万个吸收型衍射光栅,可进行单纵模振荡,其谱线宽度仅为2 kHz。
在单频T作时,输出稳定性极好,3 h平均稳定性仅为0.8%。
除以纯模振荡的光纤激光器达不到这种稳定性外,已商品化的光纤激光器的稳定性为2%。
利用光纤熔接技术,可通过光纤光学系统将激光全部耦合,这也是其优点之一。
未来在宇宙空间进行重力波检测时,这种全光纤窄带主振动功率放大(MOPA)系统有望发挥更大作用。
图3 全光纤窄带MOPA系统光纤激光器具有光束质量好和输出功率稳定性高的特点,因此10—100 W级的小型单模光纤激光器在工业领域的应用价值较高。
从理论上解释,单模光纤发出的激光应是点光源,如果充分利用光学系统.则可用理论极限的光斑直径进行微细加工。
利用这种高质量光束很容易实现掩模、微细焊接和微细加工等.并可在形状记忆合金上加工复杂网格制成冠脉支架等。
无排斥性的激光器最适于对厚度为0.2 mm的形状记忆合金细管进行微米级加工。
与其他激光器相比,光纤激光器具有外形紧凑体积小、高输出功率稳定、不需水冷、综合激光效率高达20%一25%,且可用墙壁电等特点。
可以认为.光纤激光器是一种激光输出极其方便的激光器。
5 光纤激光器的发展前景光纤激光器以光纤作为波导介质,耦合效率高,易形成高功率密度,散热效果好,无需庞大的制冷系统,具有高转换效率、低阈值、光束质量好和窄线宽等优点。
光纤激光器通过掺杂不同的稀土离子可实现380—3 900 nm波段范同的激光输出,通过光纤光栅谐振腔的调节可实现波长选择且可调谐。
与传统的固体激光器相比,光纤激光器体积小,寿命长,易于系统集成,在高温高压,高震动,高冲击的恶劣环境中皆可正常运转,其输出光谱具有更高的可调谐性和选择性医疗及生物市场的强劲需求驱动了飞秒(超快)激光技术在分析仪器应用方面的快速发展。
人们正在努力对活体细胞、组织以及病毒转移特质进行实时测量和分析.这些应用对人类攻克癌症等方面的研究至关重要。
超快激光使得在对患者进行快速,非介入性诊断时可以取得实时信息。
现有超快激光的制造技术成本太高,系统的尺寸也非常庞大,这些制约了市场的发展。
光纤激光器的很大一部分应用可以走到超快激
光.而且光纤激光器的生产厂商也着重从尺寸小巧方面推荐光纤的应用。
生命和健康科学是一个非常强劲的市场.因为那里会永远不断地出现新的应用,其中很多是基于激光的应用,并且医药也在不断寻求改进。
激光不再只局限为一种外科手术工具,将会更加广泛地应用于医学诊断(如细胞影像)、药检、DNA排序、细胞分类以及蛋白质分析等方面。
激光现已广泛应用于人们前所未闻的领域中。
未来光纤激光器的发展趋势将体现在以下几个方面:(1)提高光纤激光器的本身性能:如何提高输出功率和转换效率,优化光束质量,缩短增益光纤长度,提高系统稳定性并使其更加小巧紧凑,上述目标将是未来光纤激光器领域研究的重点;(2)新型光纤激光器的研制:在时域方面,具有更小占空比的超短脉冲锁模光纤激光器一直是激光领域的研究热点。
高功率飞秒量级脉冲光纤激光器一直是人们长期追求的目标,该领域研究的突破不仅可以给光通信时分复用(OTDM)提供理想的光源,而且可以有效带动激光加工、激光打标及激光加密等相关产业的发展;在频域方面,宽带输出并可调谐的光纤激光器将成为研究热点。
近年来,一种采用ZEBLAN材料(zr,Ba,La,Al,Nd)为激光介质的非线性光纤激光器引起了人们的重视。
这种激光器具有相当宽的带宽和低损耗.可实现波长上转换几个波段。
可以预见,随着相关技术的完善,光纤激光器将向更广阔的领域发展,并有可能成为替代固体激光器和半导体激光器的新一代光源,形成一个新兴的产业。
综上所述,光纤激光器技术是一个正在得到高度重视和迅速发展的新型技术研究热点,所涉及的科学研究和产品应用领域十分广泛,具有巨大的潜在应用价值和广阔的市场前景。
随着各种类型光纤激光器技术的逐步成熟和商业化应用,将对相关领域的发展产生巨大的推动作用,同时也将引起相关技术领域的深刻变革。