(整理)电工学实验指导书
- 格式:doc
- 大小:1.25 MB
- 文档页数:22
实验一 正弦稳态交流电路相量的研究一、实验目的1.研究正弦稳态交流电路中电压、电流相量之间的关系。
2. 掌握日光灯线路的接线。
3. 理解改善电路功率因数的意义并掌握其方法。
二、原理说明 图1-11. 在单相正弦交流电路中,用交流电流表测得 各支路的电流值, 用交流电压表测得回路各元件两 端的电压值,它们之间的关系满足相量形式的基尔 霍夫定律,即 Σ0I =和Σ0U =。
2. 图1-1所示的RC 串联电路,在正弦稳态信 号U 的激励下,u R 与u C 保持有90º的相位差,即当 图1-2R 阻值改变时,U R 的相量轨迹是一个半圆。
U 、U C 与U R 三者形成一个直角形的电压三 角形,如图1-2所示。
R 值改变时,可改 变φ角的大小,从而达到移相的目的。
3. 日光灯线路如图10-3所示,图中 A是日光灯管,L 是镇流器, S 是启辉器,C 是补偿电容器,用以改善电路的功率因数(cos φ值)。
有关日光灯的工作原理请自行翻阅有关资料。
三、实验设备四、实验内容1. 按图1-1 接线。
R 为220V 、15W 的白炽灯泡,电容器为 4.7μF/450V 。
经指导教师检查后,接通实验台电源, 将自耦调压器输出( 即U)调至220V 。
记录U 、U R 、U C 值,U cR验证电压三角形关系。
日光2.灯线路接线及功率因数的改善按图1-4组成实验线路经指导老师检查后,接通实验台电源,将自耦调压器的输出调至220V ,记录功率表、电压表读数。
通过一只电流表和三个电流插座分别测得三条支路的电流,改变电容值,进行三次重复测量。
五、实验注意事项1. 本实验用交流市电220V ,务必注意用电和人身安全。
2. 功率表要正确接入电路。
3. 线路接线正确,日光灯不能启辉时, 应检查启辉器及其接触是否良好。
六、预习思考题1. 参阅课外资料,了解日光灯的启辉原理。
2. 在日常生活中,当日光灯上缺少了启辉器时, 人们常用一根导线将启辉器的两端短接一下,然后迅速断开,使日光灯点亮(DG09实验挂箱上有短接按钮,可用它代替启辉器做一下试验。
电工技术实验指导书电工电子实验中心实验五三相异步电动机正反转控制一、实验目的1.熟悉按钮、交流接触器和热继电器的构造和各部件的作用。
2.学习异步电动机正反转启动的继电器、接触器控制电路的接线及操作。
二、实验原理继电接触器控制大量应用于对电动机的起动、停转、正反转、调速、制动等控制, 从而使生产机械按既定的要求动作;同时也能对电动机和生产机械进行保护。
交流接触器有一个线圈, 还有三个主触点和四个辅助触点。
主触点接在主电路中, 对电动机起接通或断开电源的作用, 线圈和辅助触点接在控制电路中, 可起接通或断开控制电路某分支的作用。
接触器还可起欠压保护作用。
热继电器主要由热元件和触点组成。
热元件接在主电路中, 触点接在控制电路中。
当电动机过载一定时间, 主电路中的热元件动作, 使接在控制电路中的动断(常闭)触点断开, 使电动机主电路断开, 起到过载保护作用。
图1图1是异步电动机正反转的控制电路, 先接通电源开关Q1, 为电动机起动作好准备, 按下起动按钮SB1时, 交流接触器线圈KM1通电, 其主触点闭合, 使电动机M起动。
KM1动合(常开)辅助触点起自锁作用, 以保证松开按钮SB1时, 电动机仍能继续运转。
若需电动机停转, 可按停止按钮SB3。
图中熔断器FU起短路保护作用, 热继电器FR起过载保护作用。
为了避免接触器KM1(正转)、KM2(反转)同时得电吸合造成三相电源短路, 在KM1(KM2)线圈支路中串接有KM2(KM1)动断触头, 它们保证了线路工作时KM1、KM2不会同时得电(如图1), 以达到电气互锁目的。
三、实验内容按图1接线, 经指导教师检查后, 方可进行通电操作。
(1) 开启控制电源总开关。
(2) 按正向起动按钮SB1, 观察并记录电动机的转向和接触器的运行情况。
(3) 按反向起动按钮SB2, 观察并记录电动机和接触器的运行情况。
(4) 按停止按钮SB3, 观察并记录电动机的转向和接触器的运行情况。
《电工技术》实验指导书机电工程学院实验一电子元件伏安特性的测定一、实验目的1.掌握电压表、电流表、直流稳压电源等仪器的使用方法 2.学习电阻元件伏安特性曲线的测量方法3.加深理解欧姆定律,熟悉伏安特性曲线的绘制方法 4.认识测试其它电路元件二、原理若二端元件的特性可用加在该元件两端的电压U 和流过该元件的电流I 之间的函数关系I =f (U )来表征,以电压U 为横坐标,以电流I 为纵坐标,绘制I-U 曲线,则该曲线称为该二端元件的伏安特性曲线。
电阻元件是一种对电流呈阻力特性的元件。
当电流通过电阻元件时,电阻元件将电能转化为其它形式的能量,例如热能、光能等,同时,沿电流流动的方向产生电压降,流过电阻 R 的电流等于电阻两端电压U 与电阻阻值之比,即RUI (1-1)这一关系称为欧姆定律。
若电阻阻值R 不随电流I 变化,则该电阻称为线性电阻元件,常用的普通电阻就近似地具有这一特性,其伏安特性曲线为一条通过原点的直线,如图1-1所示,该直线斜率的倒数为电阻阻值R 。
线性电阻的伏安特性曲线对称于坐标原点,说明在电路中若将线性电阻反接,也不会不影响电路参数。
这种伏安特性曲线对称于坐标原点的元件称为双向性元件。
三、实验仪器和器材 1.电压表 2.电流表3.直流稳压电源 4.实验电路板5.线性电阻等元件 6.导线四、实验内容及步骤1. 常用电子仪器的使用1) 数字万用表目前用得比较多的是四位半数字万用表。
所谓半位是指最高位只能显示0和1,四位半的最大量程为 “19999”。
图1-1 线性电阻元件的伏安特性曲线主要使用方法和技术参数有:(1)测量电阻测量电阻的量程有:200Ω,2kΩ,20kΩ,200kΩ,2MΩ,20MΩ,200MΩ。
使用时应注意的事项:①被测电路不能带电,电容的电荷要放尽;②被测阻值超出量程时或开路时,显示“1”,需要更换量程。
③大于1MΩ或更高的电阻,有时几秒钟后读数才能稳定;④为了精确测量,应先将表笔短接,显示表笔线的电阻值,实验中,测量值减去这一电阻值,得到的才是实际被测值。
电⼯学实验指导书实验⼀线性电路叠加性和齐次性的研究⼀、实验⽬的1.验证叠加原理;2.了解叠加原理的应⽤场合;3.理解线性电路的叠加性。
⼆、原理说明叠加原理指出:在有⼏个电源共同作⽤下的线性电路中,通过每⼀个元件的电流或其两端的电压,可以看成是由每⼀个电源单独作⽤时在该元件上所产⽣的电流或电压的代数和。
具体⽅法是:⼀个电源单独作⽤时,其它的电源必须去掉(电压源短路,电流源开路);在求电流或电压的代数和时,当电源单独作⽤时电流或电压的参考⽅向与共同作⽤时的参考⽅向⼀致时,符号取正,否则取负。
在图1-1中:+'=UU''U叠加原理反映了线性电路的叠加性,线性电路的齐次性是指当激励信号(如电源作⽤)增加或减⼩K倍时,电路的响应(即在电路其它各电阻元件上所产⽣的电流和电压值)也将增加或减⼩K倍。
叠加性和齐次性都只适⽤于求解线性电路中的电流、电压。
对于⾮线性电路,叠加性和齐次性都不适⽤。
三、实验设备1.直流数字电压表、直流数字毫安表2.恒压源(含+6V,+12V,0~30V可调)3.EEL-74A组件(含实验电路)四、实验内容实验电路如图1-2所⽰,图中:R1 = 150Ω,R2 = R5 = 100Ω,R3 =200Ω,R4 = 300Ω,电源U S1⽤恒压源中的+12V输出端,U S2⽤0~+30V可调电压输出端,并将输出电压调到+6V(以直流数字电压表读数为准),将开关S3投向R3侧。
1.U S1电源单独作⽤(将开关S1投向U S1侧,开关S2投向短路侧),参考图1-1(b),画出电路图,标明各电流、电压的参考⽅向。
⽤直流数字毫安表接电流插头测量各⽀路电流:将电流插头的红接线端插⼊数字毫安表的红(正)接线端,电流插头的⿊接线端插⼊数字毫安表的⿊(负)接线端,测量各⽀路电流,按规定:在结点A,电流表读数为‘+’,表⽰电流流出结点,读数为‘-’,表⽰电流流⼊结点,然后根据电路中的电流参考⽅向,确定各⽀路电流的正、负号,并将数据记⼊表1—1中。
《电工学》实验指导书实验一 戴维宁定理一、实验目的1.加深对戴维宁定理的理解;2.学习有源二端网络等效电动势和等效内阻的测量方法;3.熟悉稳压电源、数字万用表的使用;二、实验器材1.数字万用表 一块2.直流稳压电源 两台3.电阻 若干只4.导线 若干根5.面包板 两块三、实验原理简述任何一个线性有源二端网络都可以用一个电动势为E 、内阻为R 0 的等效电压源代替。
如图1-1所示。
等效电压源的电动势E 就是有源二端网络的开路电压U OC ,如图1-2(a )所示。
等效电压源的内阻R O 就是有源二端网络除源后(有源二端网络变为无源二端网络)两端之间的等效电阻,如图1-2(b )所示。
除源是指将原有源二端网络内所有电源的作用视为零,即将理想电压源视为短路、理想电流源视为开路。
(a )原电路 (b )戴维宁等效电路图1-1 戴维宁等效电路(a )开路电压 (b )等效电阻图1-2 等效量的求解在电路分析中,若只需计算某一支路的电流和电压,应用戴维宁定理就十分方便。
只要将该待求支路划出,其余电路变为一个有源二端网络,根据戴维宁定理将其等效为一个电压源,如图1-1(b )所示。
只要求出等效电压源的电动势E 和内阻R O ,则待求支路电流即为LR R EI +=四、实验内容和步骤1.实验电路连接及参数选择实验电路如图1-3所示。
由R1、R2 和R3 组成的T 型网络及直流电源U S 构成线性有源二端网络。
可调电阻箱作为负载电阻R L。
图1-3 验证电路在实验台上按图1-3所示电路选择电路各参数并连接电路。
参数数值及单位填入表1-1中。
根据图1-3给出的电路及实验步骤1 所选择参数计算有源二端网络的开路电压U OC、短路电流I SC 及等效电阻R O 并记入表1-2中。
图1-4测开路电压U OC 图1-5 测短路电流I SC (1)开路电压U OC 可以采用电压表直接测量,如图1-4所示。
直接用万用表的电压档测量电路中有源二端网络端口(N-P)的开路电压U OC,见图1-4,结果记入表1-2中。
实验一 三相交流电路电压、电流的测量一、实验目的1. 掌握三相负载作星形联接、三角形联接的方法, 验证这两种接法下线、相电压及线、相电流之间的关系。
2. 充分理解三相四线供电系统中中线的作用。
二、原理说明1. 三相负载可接成星形(又称“Y”接)或三角形(又称"△"接)。
当三相对称负载作Y 形联接时,线电压U L 是相电压U p 的3倍。
线电流I L 等于相电流I p ,即 U L =P U 3, I L =I p在这种情况下,流过中线的电流I 0=0, 所以可以省去中线。
当对称三相负载作△形联接时,有I L =3I p , U L =U p 。
2. 不对称三相负载作Y 联接时,必须采用三相四线制接法,即Y o 接法。
而且中线必须牢固联接,以保证三相不对称负载的每相电压维持对称不变。
倘若中线断开,会导致三相负载电压的不对称,致使负载轻的那一相的相电压过高,使负载遭受损坏;负载重的一相相电压又过低,使负载不能正常工作。
尤其是对于三相照明负载,无条件地一律采用Y 0接法。
3. 当不对称负载作△接时,I L ≠3I p ,但只要电源的线电压U L 对称,加在三相负载上的电压仍是对称的,对各相负载工作没有影响。
四、实验内容1. 三相负载星形联接(三相四线制供电)按图24-1线路组接实验电路。
即三相灯组负载经三相自耦调压器接通三相对称电源。
将三相调压器的旋柄置于输出为0V 的位置(即逆时针旋到底)。
经指导教师检查合格后,方可开启实验台电源,然后调节调压器的输出,使输出的三相线电压为220V ,并按下述内容完成各项实验,分别测量三相负载的线电压、相电压、线电流、相电流、中线电流、电源与负载中点间的电压。
将所测得的数据记入表24-1中,并观察各相灯组亮暗的变化程度,特别要注意观察中线的作用。
图24-12. 负载三角形联接(三相三线制供电)按图24-2改接线路,经指导教师检查合格后接通三相电源,并调节调压器,使其输出线电压为220V表五、实验注意事项1. 本实验采用三相交流市电,线电压为380V,应穿绝缘鞋进实验室。
目录实验一线性与非线性元件伏安特性的测绘实验二戴维南定理和诺顿定理的验证实验三常用电子仪器使用练习实验四单管交流放大电路实验五门电路附录常用电子仪器介绍…………………………………………直流稳压电源…………………………………………………万用表…………………………………………………………单相功率表……………………………………………………单相功率因数表………………………………………………EM系列函数信号发生器……………………………………YB1643函数发生器…………………………………………双踪示波器……………………………………………………DA-16型晶体管毫伏表………………………………………集成电路管脚排列图…………………………………………图 1-2实验一 线性与非线性元件伏安特性的测绘一.实验目的1.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法。
2.学习恒电源、直流电压表、电流表的使用方法。
二.原理说明任一二端电阻元件的特性可用该元件上的端电压U 与通过该元件的电流I 之间的函数关系U =f(I )来表示,即用U -I 平面上的一条曲线来表征,这条曲线称为该电阻元件的伏安特性曲线。
根据伏安特性的不同,电阻元件分两大类:线性电阻和非线性电阻。
线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1中(a )所示,该直线的斜率只由电阻元件的电阻值R 决定,其阻值为常数,与元件两端的电压U 和通过该元件的电流I 无关;非线性电阻元件的伏安特性是一条经过坐标原点的曲线,其阻值R 不是常数,即在不同的电压作用下,电阻值是不同的,常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性如图1-1中(b )、(c )、(d )。
在图1-1中,U >0的部分为正向特性,U <0的部分为反向特性。
绘制伏安特性曲线通常采用逐点测试法,即在不同的端电压作用下,测量出相应的电流,然后逐点绘制出伏安特性曲线,根据伏安特性曲线便可计算其电阻值。
实验一基尔霍夫定律和叠加原理的验证一、实验目的1、验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。
2、验证线性电路中叠加原理的正确性及其适用范围。
3、加深对线性电路的叠加性和齐次性的认识和理解。
4、进一步掌握仪器仪表的使用方法。
二、实验原理(一)基尔霍夫定律基尔霍夫定律是电路理论中最基本的定律之一,它阐明了电路整体结构必须遵守的规律,应用极为广泛。
基尔霍夫定律有两条:一是电流定律,另一是电压定律。
测量某电路的各支路电流及多个元件两端的电压,应能分别满足基尔霍夫电流定律和电压定律。
(1)基尔霍夫电流定律(简称KCL)是:在任一时刻,流入到电路任一节点的电流总和等于从该节点流出的电流总和,换句话说就是在任一时刻,流入到电路任一节点的电流的代数和为零。
这一定律实质上是电流连续性的表现。
运用这条定律时必须注意电流的方向,如果不知道电流的真实方向,可以先假设每一电流的正方向(也称参考方向),根据参考方向就可写出基尔霍夫的电流定律表达式。
例如图1.1a所示为电路中某一节点N,共有五条支路与它相连,五个电流的参考正方向如图所示,根据基尔霍夫定律就可写出:I1+ I2+ I3= I4+ I5如果把基尔霍夫定律写成一般形式就是ΣI=0。
显然,这条定律与各支路上接的是什么样的元件无关,不论是线性电路还是非线性电路,它是普遍适用的。
电流定律原是运用于某一节点的,我们也可以把它推广运用于电路中的任一假设的封闭面,例如图1.1b所示封闭面S所包围的电路有三条支路与电路其余部分相连接,其电流为I1、I2、I3,则I1+I2+I3=0,因为对任一封闭面来说,电流仍然必须是连续的。
(2)基尔霍夫电压定律(简称KVL)是:在任一时刻,沿闭合回路电压降的代数和总等于零。
把这一定律写成一般形式,即为ΣU=0,例如在图1.1c所示的闭合回路中,电阻两端的电压参考正方向如箭头所示,如果从节点a出发,顺时针方向绕行一周又回到a点,便可写出:U1+U2-U3-U4=0,显然,基尔霍夫电压定律也是和沿闭合回路上元件的性质无关,因此,不论是线性电路还是非线性电路,它是普遍适用的。
电工学实验(I)华南师范大学物理与电信学院电路分析、电工实验室2008.3目录电工实验概述(2)实验一电路元件伏安特性的测定(6)实验二叠加原理验证(9)实验三正弦稳态交流电路相量研究(11)实验四三相交流电路负载的连接(15)实验五单相变压器实验(18)电工实验概述一﹑实验前的准备工作1.认真预习实验指导书及教材中的有关部分,通过预习,充分了解本次实验的目有﹑原理﹑步骤和仪器的使用方法,并将实验目的﹑基本原理﹑实验电路﹑实验数据填写的表格写画在实验报告上。
2.进入实验室后,要熟悉电工综合实验台实验装置的结构及电源配备情况,选中本实验所用电源及接通电源时各开关动作顺序。
按指导书所列仪器清单,挑选所用实验电路板及测量仪表单元板,检查所用其他仪器设备是否齐全和符合实验要求。
二﹑根据实验电路图,联接实验电路1.导线的长短和两端接头种类的选择要合适,联接导线应尽可能少用,并力求简捷﹑清楚,尽量避免导线间的交叉。
接头要插紧,每个接线柱上最好不要多于二个播头。
图0—1画出了实验电路图及两种不同的接线方法,显然图0—1(C)接线方法较好。
2.一般应先接串联电路,后接并联回路;或先接主电路,后接辅助电路,最后接通电源电路。
3.任何负载应先经过开关和保险才能和电源联接,并根据负载电流的大小选择保险丝。
4.线路接好后,先由同组同学做好复查工作,再经经教师检查,方可接通电源。
5.实验过程中,如需改变接线,必须先切断电源,待改完线路并再次进行检查后,方可接通电源继续进行实验。
6.为避免电路过渡过程冲击电流表和功率表电流线圈而损坏仪表,一般电流表和功率表电流线圈并不接死在电路中,而是通过电流测量插口来代替它。
这样既可以保护仪表不受意外损坏,并且可以提高仪表的得用率。
电流测量插口是专门为电流表方便地串入电路而设计的。
插口两极是用插头制成。
当将电流插头插入插口时,插头的绝缘层将电路切断,又通过电流表将电路接通,从而达到测量电路电流的目的。
当将插头拨出插口时,电路又自动闭合。
三﹑数据的观测与记录观测并记录实验中的现象和数据是实验过程中最主要的步骤,必须认真仔细地进行。
1.测量数据前的试做检查为保证实验结果的正确,接通电路以后,不要忙于马上测量数据,而要先大致试做一遍,主要观察各被测量的变化情况和出现的现象是否与理论预料结果相符,如果出现非正常情况,应及时找出原因进行处理。
试做过程还可以发现仪表种类和量程选择是否合适,设备的放置及操作是否方便等。
若有问题都应在正式实验之前解决。
2.数据的测量与记录试做无问题就可以读取数据,如果要测某一变化曲线,测量点的数目和间隔应选得合适。
被测量的最大值或最小值相应的点一定要测出;在变化曲线的较弯曲处,测量点应选得密一些,变化曲线较平滑处,测量点可取得稀一些。
测量点要分布在所研究的整个范围内,不要仅局限于某一小部分。
测量点的选择,在试做时就要给予考虑。
图0-2是合理选择测量点的一个例子。
利用指针式仪表测量数据时,目光应正对仪表(对有反射镜的仪表,在看到指针与它在镜中的影像重合时方可读数)。
一般指针式仪表可读出三位有效数字,未位数字根据指针在小格中的位置来估计。
实验数据应记在事先列好的数据表格中,一定要注明被测量的名称﹑单位。
保持定值的量可单独记录。
四﹑安全用电1.实验中应严肃﹑认真﹑细心地进行测试,因电压一般在220-380伏左右,所以不得用手触及未经绝缘的电源或电路中的裸露部分。
在接线﹑拆线和改接线路时均应切断电源。
2.闭合或断开闸刀开关时应迅速果断,同时用目光监视仪表和电机设备有无异常现象。
例如,有无指针反偏或超量程现象,有无发热﹑冒烟﹑电机转速过高等现象。
如果有这些现象应立即切断电源,停止实验,并进行检查。
3.电源接通后,应培养单手操作习惯,能用单手操作的尽量不用双手操作,以防双手触及线电压电路。
4.万一出现某种事故,应迅速切断电源,本实验台上有一桔红色“急停”按钮,按下此钮将会迅速切断电源(在正常情况下不要随便按动此钮,以影响实验的正常进行)。
五﹑实验总结与报告1.实验后,应先核对实验数据是否齐全﹑合理,并经教师审核,以便在电路拆除前有核对和重新测量的机会。
拆除线路前应首先切断所有电源,然后逐一拆除线路,并将仪器﹑工具﹑导线放置整齐。
2.实验报告的内容应包括:(1)实验目的与要求。
(2)实验原理(主要画出实验电路及写出计算公式)。
(3)整理实验数据,计算实验结果及绘制特性曲线。
实验曲线应绘制在坐标纸上,并标明坐标轴所代表的物理量﹑单位。
绘制曲线时,应用光滑细线条连接,不能用曲折线连接,不要强求曲线通过所有的实验数据点。
图0-3给出了(A)(B)图0-3实验曲线的绘制二种绘制实验曲线的方法,其中图0-3(A)的绘制方法是正确的。
(4)回答实验指导书中提出的间题;总结实验中的心得体会和对实验的改进意见。
3.实验报告与上述要求相差较大时,指导教师可退还学生,并指定学生重做。
实验报告应在做下一个实验前交给指导教师批阅,逾期不交者应停止参加下一个实验。
六﹑关于有效数字及实验数据的运算处理在许多情况下,测量仪表的指示位置不一定恰好与表盘刻度线相符合,这就需要用估计法来读取最后一位数,这个估计出来的数字称为存疑数字(或欠准数字),超过一位存疑数字的估计是没有意义的。
存疑数字前面的几位数字称为可靠数字。
可靠数字加上未位的存疑数字称为有效数字。
在记录有效数字时应注意以下几点:1.有效数字的位数与小数点无关。
例如1326与13.26都是四位有效数字。
2.“0”在数字之间或数字之未,均算作有效数字,在数字之前不算是有效数字。
例如1.05﹑4.50都是三位有效数字,而0.45﹑0.015只是二位有效数字。
还要注意3.5和3.50的意义是不同的,前者中的“3”是可靠数字,“5”是存疑数字;后者“3”和“5”均可靠数字,“0”是存疑数字。
故3.50中的“0”是不能省略的。
3.对于较大的数,有效数字的记法采用指数形式,以10的方次前面的数字代表有效数字。
例如:4.5×102,5.8×103等分别为二位及三位有效数字 5.80×103不能与成5.8×103 。
对于很小的数,例如:0.0036可写成3.6×10-3。
4.进行数字运算时,应注意只保留一位存疑数字,它后面数字完全可以省去,在去掉第二位存疑数字时要用四舍五入的方法。
例子. 44.6+3.67=?式中第一个数的“6”是存疑数字,第二个数的“7”是存疑数字(在数字下面加一横表示),做加法时有44.6+ 3.6748.27因为44.6中的“6”是存疑数字,所以“6”加“6”进位后的“2”也一定是存疑的,而它后面的“7”更是存疑数了。
舍去第二位存疑数字时,按四舍五入的原则,“7”应进上一位,故44.6 + 3 .67=48.3例2. 12.36×1.35=?式中有疑数字有四位,应只保留一位,去掉第二位存疑数字“8”时,应进上一位﹑故 12.36×1.35=16.7一般说来,几个数相乘或相除时,最后结果的有效数字位数与几个数中有效数字位数最少的那个数相同。
实验一电路元件伏安特性的测定一、实验目的(1)熟悉直流电流电压表、电流表及万用表的使用方法(2)增强对线性、非线性电阻及电源伏安特性的感性认识。
(3)学会绘制实验曲线。
二、原理说明电阻元件的伏安特性是指元件的端电压与通过该元件的电流之间的函数关系。
线性电阻元件的伏安特性满足欧姆定律,其伏安特性曲线是一条过坐标原点的直线;非线性电阻元件的阻值不是常量,其器伏安特性不是直线。
实际电源的伏安特性是指实际电压源(或实际电流源)的输出电压、电流关系曲线。
由于直流稳压电源的内阻很小,可近似看作恒压源。
测量电压时应该将电压表并联在被测元件两端,测量电流时应该将电流表串联在被测电路中,测量直流时应严格注意选择正确的极性和合适的量程。
三、实验设备四、实验内容1.元件伏安特性的测试(1)将200Ω电阻作为待测元件R1,按图1-1(a)所示电路接线,将稳压电源输出电压调至0V,逐步改变输出增加到10V,每隔2V,记下电压表和对应电流表读数,填入表1-2.(2)改变图1-1(a)的连接如图1-1(B) 电路所示,按上述步骤重做一次,并将测量数据填入表1-3.2、电源伏安特性的测定(1)按图1-2所示电路接线,图中用可变电阻箱作可调电阻。
(2)断开开关S,通过测量电压U AC,并调节直流稳压电源,使电源电压的输出为15V;合上开关S,调节电阻箱使电流表指示分别为10mA、20mA、30mA、40mA、50mA,并测量相应的电压值U AC,将测试数据记入表1-4。
五、实验报告a)根据实验内容与步骤,记录各项测试数据。
b)用坐标纸分别绘制电阻、电压源的伏安关系。
c)根据测量数据,用公式表示电阻、电压源的端电压U与电流的关系。
d)讨论表1-2和表1-3的数据有何差别?为什么会出现这些差别?e)总结直流电压表和电流表的使用方法和使用中要注意的问题。
实验二叠加原理的验证一、实验目的验证线性电路叠加原理的正确性,加深对线性电路的叠加原理的认识和理解。
二、原理说明叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。
F图2-1四,实验内容实验线路如图2-1所示,用“基尔夫定律/叠加原理”线路。
1.将两路稳压源的输出分别调节为12V和6V,接入U1和U2处。
2.令U1电源单独作用(将开关K1投向U1侧,开关K2投向短路侧。
)用直流数字电压表和毫安表(接电流插头)测量各支路电流及各电阻元件两端的电压,数据记入表2-1。
表2-13.令U2电源单独作用(将开关K1投向短路侧,开关K2投向U2侧),重复实验步骤2的测量和记录,数据记入表2-1。
4.令U1和U2共同作用(开关K1和K2分别投向U1和U2侧),重复上述的测量和记录,数据记入表2-1。
5.将U2的数值调至﹢12V,重复上述第3项的测量并记录,数据记入表2-1。
五,实验注意事项1.用电流插头测量各支路电流时,或者用电压表测量电压降时,应注意仪表的极性,正确叛断测得值的“﹢,-”号后,记入数据表格。
2.注意仪表量程的及时更换。
六,实验报告1.根据实验数据表格,进行分析﹑比较,归纳﹑总结实验结论,即验证线性电路的叠加原理。
2.各电阻器所消耗的功率能否用叠加原理计算得出?试用上述实验数据,进行计算并作结论。
实验三 正弦稳态交流电路相量研究 一、二、 实验目的1.研究正弦稳态交流电路中电压、电流相量之间的关系。
2.掌握日光灯线路的接线。
3.理解改善电路功率因数的意义并掌握其方法。
三、原理说明1.在单相正弦交流电路中,用交流电流表测得各支路的电流值,用交流电压表测得回路各元件两端的电压值,它们之间的关系满足相量形式的基尔霍夫定律,即∑I=0和∑U=0 。