弹性力学复习题
- 格式:docx
- 大小:20.06 KB
- 文档页数:16
《弹性力学》复习学习材料试题与参考答案一、单选题1.利用有限单元法求解弹性力学问题时,不包括哪个步骤(D)A.结构离散化B.单元分析C.整体分析D.应力分析2.如果必须在弹性体上挖空,那么孔的形状应尽可能采用(C)A.正方形B.菱形C.圆形D.椭圆形3.每个单元的位移一般总是包含着(B)部分A.一B.二C.三D.四4.在弹性力学中规定,线应变(C),与正应力的正负号规定相适应。
A.伸长时为负,缩短时为负B.伸长时为正,缩短时为正C.伸长时为正,缩短时为负D.伸长时为负,缩短时为正5.在弹性力学中规定,切应变以直角( C ),与切应力的正负号规定相适应。
A.变小时为正,变大时为正B.变小时为负,变大时为负C.变小时为负,变大时为正D.变小时为正,变大时为负6.物体受外力以后,其内部将发生内力,它的集度称为(C )A应变B应力C变形D切变力7.平面问题分为平面(A)问题和平面( )问题。
A应力,应变B切变、应力C内力、应变D外力,内力8.在弹性力学里分析问题,要建立( C )套方程。
A一B二C三D四9.下列关于几何方程的叙述,没有错误的是(C)A.由于几何方程是由位移导数组成的,因此,位移的导数描述了物体的变形位移B.几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的位移C.几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的应变分量D.几何方程是一点位移与应变分量之间的唯一关系10.用应力分量表示的相容方程等价于(B)A.平衡微分方程B.几何方程和物理方程C.用应变分量表示的相容方程D.平衡微分方程.几何方程和物理方程11.平面应变问题的应力、应变和位移与那个(些)坐标无关(纵向为z轴方向)(C)A.xB.yC.zD.x,y,z12.在平面应力问题中(取中面作xy平面)则(C)A.σz=0,w=0B.σz≠0,w≠0C.σz=0,w≠0D.σz≠0,w=013.下面不属于边界条件的是(B)。
弹性力学考试和答案一、单项选择题(每题2分,共20分)1. 弹性力学中,应力状态的基本方程是()。
A. 平衡方程B. 几何方程C. 物理方程D. 边界条件答案:A2. 弹性力学中,位移场的三个基本方程是()。
A. 平衡方程B. 几何方程C. 物理方程D. 边界条件答案:B3. 弹性力学中,平面应力问题与平面应变问题的主要区别是()。
A. 应力分量不同B. 位移分量不同C. 应变分量不同D. 边界条件不同答案:C4. 弹性力学中,圣维南原理是指()。
A. 应力集中现象B. 应力释放现象C. 应力平衡现象D. 应力松弛现象答案:B5. 弹性力学中,莫尔圆表示的是()。
A. 应力状态B. 应变状态C. 位移状态D. 应力-应变关系答案:A6. 弹性力学中,平面问题的基本解法有()。
A. 直接积分法B. 叠加原理C. 变分法D. 能量法答案:A7. 弹性力学中,轴对称问题的基本解法是()。
A. 直接积分法B. 叠加原理C. 变分法D. 能量法答案:A8. 弹性力学中,扭转问题的解法是()。
A. 直接积分法B. 叠加原理C. 变分法D. 能量法答案:A9. 弹性力学中,平面应力问题的应力函数是()。
A. 单一函数B. 两个函数C. 三个函数D. 四个函数答案:A10. 弹性力学中,平面应变问题的应力函数是()。
A. 单一函数B. 两个函数C. 三个函数D. 四个函数答案:B二、多项选择题(每题3分,共15分)11. 弹性力学中,应力状态的基本方程包括()。
A. 平衡方程B. 几何方程C. 物理方程D. 边界条件答案:AC12. 弹性力学中,位移场的三个基本方程包括()。
A. 平衡方程B. 几何方程C. 物理方程D. 边界条件答案:BC13. 弹性力学中,平面应力问题与平面应变问题的主要区别包括()。
A. 应力分量不同B. 位移分量不同C. 应变分量不同D. 边界条件不同答案:AC14. 弹性力学中,圣维南原理包括()。
弹性力学复习题答案弹性力学是固体力学的一个重要分支,主要研究在外力作用下固体材料的变形和应力分布。
以下是一些弹性力学的复习题及其答案,供学习者参考。
问题一:什么是弹性力学?答案:弹性力学是固体力学的一个分支,它研究在外部作用下,材料在弹性范围内的变形和内力的分布规律。
材料在弹性范围内,当外力去除后,能恢复到原始形状和状态。
问题二:简述胡克定律的内容。
答案:胡克定律是描述材料在弹性范围内应力与应变关系的定律。
它指出,在弹性范围内,材料的应力与应变成正比,比例常数称为杨氏模量(E)。
数学表达式为:σ = Eε,其中σ是应力,ε是应变。
问题三:什么是平面应力和平面应变问题?答案:平面应力问题指的是物体的应力只在一个平面内分布,而平面应变问题指的是物体的应变只在一个平面内分布。
在实际工程问题中,薄板和薄膜等结构常常可以简化为平面应力问题。
问题四:什么是圣维南原理?答案:圣维南原理是弹性力学中的一个基本原理,它指出在远离力作用区域的地方,物体的应力分布只与力的性质有关,而与物体的形状无关。
这意味着在远离力作用区域,应力分布是均匀的。
问题五:什么是弹性模量和剪切模量?答案:弹性模量,也称为杨氏模量,是描述材料抵抗拉伸或压缩的物理量,其数值等于应力与应变的比值。
剪切模量,也称为刚度模量,是描述材料抵抗剪切变形的物理量,其数值等于剪切应力与剪切应变的比值。
问题六:简述泊松比的概念。
答案:泊松比是材料在单轴拉伸或压缩时,横向应变与纵向应变的比值。
它是材料的一个固有属性,反映了材料在受力时的体积变化特性。
问题七:什么是主应力和主应变?答案:主应力是物体上某一点应力状态中最大的三个正应力,它们作用在相互垂直的平面上。
主应变是物体上某一点应变状态中最大的三个应变,它们也作用在相互垂直的平面上。
问题八:什么是应力集中?答案:应力集中是指在物体的某些局部区域,由于几何形状、材料不连续性或其他因素,应力值远大于周围区域的应力平均值的现象。
弹性力学复习题一.判断与改错1. 材料力学研究杆件,不能分析板壳;弹性力学研究板壳,不能分析杆件。
( × )2. 在弹性力学和材料力学里关于应力的正负规定是一样的。
(× )3. 在体力是常数的情况下,应力解答将与弹性常量无关。
( √ )4. 三次或三次以下的多项式总能满足相容方程。
(√ )5. 对于纯弯曲的细长梁,由材料力学得到的挠曲线是它的精确解。
(√ )二.简答题1. 什么是平面应力问题及平面应变问题?答:平面应力问题:对于含有以下条件:(1)等厚度的薄板; (2)体力x f 、y f 作用于体内,∥xy 面,沿板厚不变;(3)面力-x f 、-y f 作用于板边,∥xy 面,沿板厚不变; (4)约束u 、v 作用于板边,∥xy 面,沿板厚不变。
那么可以简化为应力中只有平面应力x σ,y σ,xy τ 存在并且只有xy 面内的面力或体力的问题。
平面应变问题:对于含有以下条件:(1)很长的常截面柱体 ;(2)体力x f 、y f 作用于体内,∥xy 面,沿长度方向不变;(3)面力-x f 、-y f 作用于柱面,∥xy 面,沿长度方向不变;(4)约束u 、v 作用于柱面,∥xy 面,沿长度方向不变。
那么可以简化为应变中只有平面应变x ε,y ε,xy γ 存在并且只有xy 面内的面力或体力的问题。
2. 简述圣维南原理 ?圣维南原理表明了什么?答:圣维南原理:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对同一点的主矩也相同),那么,近处的应力分量将有显著的改变,但远处所受的影响可以不计。
圣维南原理表明:在小边界上进行面力的静力等效变换后,只影响近处(局部区域)的应力,对绝大部分弹性体区域的应力没有明显影响。
3. 何谓逆解法和半逆解法?答:所谓逆解法,就是先按某种方法给出一组满足全部基本方程的应力分量或位移分量,然后考察,在确定的坐标系下,对于形状和几何尺寸完全确定的物体,当其表面受什么样的面力作用或具有什么样的位移时,才能得到这组解答。
知识归纳整理一、挑选题1. 下列材料中,( D )属于各向同性材料。
A. 竹材;B. 纤维增强复合材料;C. 玻璃钢;D. 沥青。
2 对于弹性力学的正确认识是(A )。
A. 计算力学在工程结构设计的中作用日益重要;B. 弹性力学从微分单元体入手分析弹性体,与材料力学不同,不需要对问题作假设;C. 任何弹性变形材料都是弹性力学的研究对象;D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。
3. 弹性力学与材料力学的主要不同之处在于( B )。
A. 任务;B. 研究对象;C. 研究想法;D. 基本假设。
4. 所谓“彻底弹性体”是指( A )。
A. 材料应力应变关系满足胡克定律;B. 材料的应力应变关系与加载时光历史无关;C. 本构关系为非线性弹性关系;D. 应力应变关系满足线性弹性关系。
5. 所谓“应力状态”是指( B )。
A. 斜截面应力矢量与横截面应力矢量不同;B. 一点不同截面的应力随着截面方位变化而改变;C. 3个主应力作用平面相互垂直;D. 不同截面的应力不同,所以应力矢量是不可确定的。
6. 变形协调方程说明( B )。
A. 几何方程是根据运动学关系确定的,所以对于弹性体的变形描述是不正确的;B. 微分单元体的变形必须受到变形协调条件的约束;C. 变形协调方程是保证所有弹性体变形协调条件的必要和充分条件;D. 变形是由应变分量和转动分量共同组成的。
7. 下列对于弹性力学基本方程描述正确的是( A )。
A. 几何方程适用小变形条件;B. 物理方程与材料性质无关;C. 平衡微分方程是确定弹性体平衡的唯一条件;D. 变形协调方程是确定弹性体位移单值延续的唯一条件;8、弹性力学建立的基本方程多是偏微分方程,最终需结合( B )求解这些微分方程,以求得具体问题的应力、应变、位移。
A .几何方程B .边界条件C .数值想法D .附加假定9、弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程具有下列关系 ( B )。
弹性力学试题及答案一、选择题(每题10分,共40分)1. 在弹性力学中,下列哪个物理量表示应变能密度?A. 应力B. 应变C. 位移D. 应力能密度答案:D2. 在平面应力状态下,下列哪个方程是正确的?A. σ_x + σ_y = 0B. σ_x + σ_y = σ_zC. σ_x + σ_y = τ_xyD. σ_x + σ_y = 0答案:D3. 在弹性体中,应力与应变之间的关系可以用下列哪个关系式表示?A. σ = EεB. σ = GγC. τ = μγD. σ = λε答案:A4. 在弹性力学中,下列哪个方程表示平衡方程?A. σ_x + σ_y + σ_z = 0B. ε_x + ε_y +ε_z = 0 C. τ_xy = τ_yx D. σ_x + σ_y + σ_z = F答案:D二、填空题(每题10分,共30分)1. 弹性力学中的基本假设有:连续性假设、线性假设和________假设。
答案:各向同性2. 在三维应力状态下,应力分量可以表示为:σ_x, σ_y, σ_z, τ_xy, τ_xz, τ_yz。
其中,τ_xy表示________面上的切应力。
答案:xOy3. 在弹性力学中,位移与应变之间的关系可以用________方程表示。
答案:几何方程三、计算题(每题30分,共90分)1. 已知一弹性体在平面应力状态下的应力分量为:σ_x = 100 MPa,σ_y = 50 MPa,τ_xy = 25 MPa。
弹性模量E = 200 GPa,泊松比μ = 0.3。
求应变分量ε_x, ε_y, γ_xy。
解:首先,利用胡克定律计算应变分量:ε_x = σ_x / E = 100 MPa / 200 GPa = 0.0005ε_y = σ_y / E = 50 MPa / 200 GPa = 0.00025γ_xy = τ_xy / G = 25 MPa / (E / 2(1 + μ)) = 25 MPa / (200 GPa / 2(1 + 0.3)) = 0.000375答案:ε_x = 0.0005,ε_y = 0.00025,γ_xy = 0.0003752. 一弹性体在三维应力状态下的应力分量为:σ_x = 120 MPa,σ_y = 80 MPa,σ_z = 40 MPa,τ_xy = 30 MPa,τ_xz = 20 MPa,τ_yz = 10 MPa。
弹性力学试题及答案一、选择题(每题5分,共20分)1. 弹性力学中,描述材料弹性特性的基本物理量是()。
A. 应力B. 应变C. 弹性模量D. 泊松比答案:C2. 在弹性力学中,下列哪项不是胡克定律的内容?()A. 应力与应变成正比B. 材料是均匀的C. 材料是各向同性的D. 材料是线性的答案:B3. 弹性模量E和泊松比ν之间的关系是()。
A. E = 2(1 + ν)B. E = 3(1 - 2ν)C. E = 3(1 + ν)D. E = 2(1 - ν)答案:D4. 根据弹性力学理论,下列哪种情况下材料会发生塑性变形?()A. 应力小于材料的弹性极限B. 应力达到材料的弹性极限C. 应力超过材料的屈服强度D. 应力小于材料的屈服强度答案:C二、填空题(每题5分,共20分)1. 弹性力学中,应力的定义是单位面积上的______力。
答案:内2. 弹性力学的基本假设之一是______连续性假设。
答案:材料3. 弹性力学中,应变的量纲是______。
答案:无4. 弹性力学中,当外力撤去后,材料能恢复原状的性质称为______。
答案:弹性三、简答题(每题10分,共30分)1. 简述弹性力学中应力和应变的区别。
答案:应力是描述材料内部单位面积上受到的内力,而应变是描述材料在受力后形状和尺寸的变化程度。
2. 解释弹性力学中的杨氏模量和剪切模量。
答案:杨氏模量(E)是描述材料在拉伸或压缩过程中应力与应变比值的物理量,反映了材料的刚度;剪切模量(G)是描述材料在剪切应力作用下剪切应变与剪切应力比值的物理量,反映了材料抵抗剪切变形的能力。
3. 弹性力学中,如何理解材料的各向异性和各向同性?答案:各向异性是指材料的物理性质(如弹性模量、热膨胀系数等)在不同方向上具有不同的值;而各向同性则是指材料的物理性质在各个方向上都是相同的。
四、计算题(每题15分,共30分)1. 已知一圆柱形试件,其直径为50mm,长度为100mm,材料的弹性模量E=210GPa,泊松比ν=0.3。
简明弹性力学复习资料一、单项选择题1.关于弹性力学的正确认识是(A)计算力学在工程结构设计中的作用日益重要(B)弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题做假设(C)任何弹性变形材料都是弹性力学的研究对象(D)弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析2.下列对象不属于弹性力学研究对象的是(A)(B)板壳(C)块体(D)质点3.下列关于几何方程的叙述,没有错误的是(A)由于几何方程是由位移导数组成的,因此,位移的导数描述了物体的变形位移。
(B)几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的位移。
(C)几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的应变分量。
(D)几何方程是一点位移与应变分量之间的唯一关系。
4.应力状态分析是建立在静力学基础上的,这是因为(A)没有考虑面力边界条件;(B)没有讨论多连域的变形;(C)没有涉及材料本构关系;(D)没有考虑材料的变形对于应力状态的影响5.切应力互等定理根据条件成立(A)纯剪切(B)任意应力状态(C)三向应力状态(D)平面应力状态6.下列关于“刚体转动”的描述,认识正确的是(A)刚性转动描述了微分单元体的方位变化,与变形位移一起构成弹性体的变形(B)刚性转动分量描述的是一点的刚体转动位移,因此与弹性体的变形无关(C)刚性转动分量可以确定弹性体的刚体位移(D)刚性转动位移也是位移的导数,因此它描述了一点的变形7.变形协调方程说明(A)几何方程是根据运动学关系确定的,因此关于弹性体的变形描述是不正确的;(B)微分单元体的变形必须受到变形协调条件的约束;(C)变形协调方程是保证所有弹性体变形协调条件的必要和充分条件;(D)变形是由应变分量和转动分量共同组成的。
8.各向异性材料的弹性常数为(A)9个(B)21个(C)3个(D)13个9.弹性力学的解的唯一性定理在条件成立(A)具有相同体力和面力边界条件;(B)具有相同位移约束;(C)相同材料;(D)上述3条同时成立10.关于弹性力学的叠加原理,应用的基本条件不包括(A)小变形条件;(B)材料变形满足完全弹性条件;(C)材料的本构关系满足线性弹性条件(D)应力应变关系是线性完全弹性体二、填空题1.在弹性力学中规定:切应变以直角时为正,时为负,与的正负号规定相适应。
弹性力学期末考试复习题
一、选择题
1. 弹性力学的基本假设是什么?
A. 材料是均匀的
B. 材料是各向同性的
C. 材料是线弹性的
D. 所有选项都是
2. 弹性模量和泊松比之间有什么关系?
A. 它们是独立的
B. 它们之间存在数学关系
C. 弹性模量总是大于泊松比
D. 泊松比总是小于0.5
二、简答题
1. 简述胡克定律的基本内容及其适用范围。
2. 解释什么是平面应力问题和平面应变问题,并给出它们的区别。
三、计算题
1. 给定一个矩形板,尺寸为2米×1米,厚度为0.1米,材料的弹性
模量为200 GPa,泊松比为0.3。
若在板的一侧施加均匀压力为1 MPa,求板的中心点的位移。
2. 一个圆柱形压力容器,内径为2米,外径为2.05米,材料的弹性
模量为210 GPa,泊松比为0.3。
求在内部压力为10 MPa时,容器壁
的最大应力。
四、论述题
1. 论述弹性力学在工程实际中的应用及其重要性。
2. 讨论材料的非线性行为对弹性力学分析的影响。
五、案例分析题
分析一个实际工程问题,如桥梁、大坝或高层建筑的结构设计,说明
在设计过程中如何应用弹性力学的原理来确保结构的稳定性和安全性。
结束语
弹性力学是一门理论性和实践性都很强的学科,希望同学们能够通过
本次复习,加深对弹性力学基本原理的理解和应用能力,为解决实际
工程问题打下坚实的基础。
祝大家考试顺利!。
弹性力学期末考试试题及答案一、名词解释(每题5分,共25分)1. 弹性力2. 弹簧常数3. 应力4. 应变5. 胡克定律6. 弹性模量7. 弹性体的形变8. 弹性位移9. 弹性能量10. 弹性碰撞二、选择题(每题2分,共20分)1. 以下哪种材料不属于弹性材料?A. 钢铁B. 橡胶C. 玻璃D. 水2. 在弹性限度内,弹性力与形变量之间的关系遵循哪一定律?A. 平方律B. 立方律C. 直线律D. 反比律3. 一弹簧的弹簧常数为50N/m,当一个力作用于弹簧上使其压缩0.1m时,弹簧的弹性势能为多少?A. 0.5JB. 1JC. 2JD. 5J4. 下列哪种情况下,弹簧的弹性力最大?A. 弹簧处于自然长度时B. 弹簧被压缩时C. 弹簧被拉伸时D. 弹簧被压缩或拉伸到极限时5. 两个相同的弹性球碰撞,如果它们的弹性系数不同,那么碰撞后它们的速度关系是?A. 速度大小不变,方向相反B. 速度大小不变,方向相同C. 速度大小发生变化,方向相反D. 速度大小发生变化,方向相同三、填空题(每题5分,共25分)1. 一弹性体的形变是指其_________的变化。
2. 在弹性碰撞中,两个物体的速度满足_________定律。
3. 弹簧的弹簧常数_________,表示弹簧的_________。
4. 当一个力作用于弹性体上时,该力与弹性体的_________之比称为应力。
5. 弹性模量是衡量材料_________的物理量。
四、计算题(共40分)1. 一弹簧的弹簧常数为200N/m,当一个力作用于弹簧上使其压缩0.5m时,求弹簧的弹性势能。
(5分)2. 质量为2kg的物体从静止开始沿斜面滑下,斜面与水平面的夹角为30°,斜面长度为10m,摩擦系数为0.2。
求物体滑到斜面底部时的速度。
(5分)3. 两个弹性球A和B,质量分别为m1和m2,弹性系数分别为k1和k2。
它们从静止开始相互碰撞,求碰撞后A和B的速度。
弹性力学复习题弹性力学复习题(11水工)一、选择题1、下列材料中,()属于各向同性材料。
A、竹材B、纤维增强复合材料C、玻璃钢D、钢材2、关于弹性力学的正确认识是()。
A、计算力学在工程结构设计的中作用日益重要;B、弹性力学从微分单元体入手分析弹性体,与材料力学不同,不需要对问题作假设;C、任何弹性变形材料都是弹性力学的研究对象;D、弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。
3、弹性力学与材料力学的主要不同之处在于()。
A、任务B、研究对象C、研究方法D、基本假设4、所谓“应力状态”是指()。
A、斜截面应力矢量与横截面应力矢量不同B、一点不同截面的应力随着截面方位变化而改变C、三个主应力作用平面相互垂直D、不同截面的应力不同,因此应力矢量是不可确定的。
5、变形协调方程说明()。
A、几何方程是根据运动学关系确定的,因此对于弹性体的变形描述是不正确的;B、微元体的变形必须受到变形协调条件的约束;C、变形协调方程是保证所有弹性体变形协调条件的必要和充分条件;D、变形是由应变分量和转动分量共同组成的。
6、下列关于弹性力学基本方程描述正确的是()。
A、几何方程适用小变形条件B. 物理方程与材料性质无关C. 平衡微分方程是确定弹性体平衡的唯一条件D. 变形协调方程是确定弹性体位移单值连续的唯一条件7、弹性力学建立的基本方程多是偏微分方程,最后需结合()求解这些微分方程,以求得具体问题的应力、应变、位移。
A、几何方程B、边界条件C、数值方法D、附加假定8、弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程具有下列关系()。
A、平衡微分方程、几何方程、物理方程完全相同B、平衡微分方程、几何方程相同,物理方程不同C、平衡微分方程、物理方程相同,几何方程不同D、平衡微分方程,几何方程、物理方程都不同9、根据圣维南原理,作用在物体一小部分边界上的面力可以用下列()的力系代替,则仅在近处应力分布有改变,而在远处所受的影响可以不计。
A、静力等效B、几何等效C.平衡D、任意10、不计体力,在极坐标中按应力求解平面问题时,应力函数必须满足()。
①区域内的相容方程;②边界上的应力边界条件;③满足变分方程;④如果为多连体,考虑多连体中的位移单值条件。
A、①②④B、②③④C、①②③D、①②③④11、应力函数必须是()。
A、多项式函数B、三角函数C、重调和函数D、二元函数12、要使函数axy3 bx3y作为应力函数,则a、b满足的关系是()。
A、a、bB、a bC、a bD、a 213、三结点三角形单元中的位移分布为()。
A、常数B、线性分布C、二次分布D.三次分布14、应力、面力、体力的量纲分别是()。
A、M L-1 T-2, M L-2 T-2, M L-2 T-2B、M L-1 T-2, M L-2 T-2, M L-1 T-2C、M L-1 T-2, M L-1 T-2, M L-2 T-2D、M L-2 T-2, M L-2 T-2, M L-1 T-215、应变、Airy应力函数、势能的量纲分别是()。
A、1, M L T-2, M L2 T-2B、1, M L T-2, M L T-2C、M L-1 T-2, M L T-2, M L2 T-2D、M L-2 T-2, M L-2 T-2, M L2 T-216、下列力不是体力的是()。
A、重力B、惯性力C、电磁力D、静水压力17、下列问题可能简化为平面应变问题的是()。
A、受横向集中荷载的细长梁B、挡土墙C、楼板D、高速旋转的薄圆板18、在有限单元法中是以()为基本未知量的。
A、结点力B、结点应力C、结点应变D、结点位移19、弹性力学平面问题的基本方程共有8个,平衡方程、几何方程和物理方程分别是()。
A、3个,4个,1个B、3个,3个,2个C、2个,3个,3个D、3个,2个,3个二、填空题1、2、已知一点的三个应力分量为x 12, y 10, xy 6,则其主应力分别3、在选取应力函数时,由于双调和方程是四阶的,故低于三次的多项式都是双调和函增添或除去x和y4、弹性力学的三类边值问题是:,5、对于平面应变问题,只需将对应的平面应力问题的解答作材料常数的替换即可,即E ,。
6、为基本未知量,。
7、对于平面应变问题z ,z ;对于平面应力问题z ,z 。
8、9、用应力函数求解平面问题,当体力为常量时,在直角坐标系下的应力分量表达式为x ,y ,xy ;应力函数10、满足,而在次要边界上可以满足。
11、解答受内外压力的厚壁圆筒问题,除用边界条件外,还用条件确定常数。
12、刚体位移相应于应变状态。
13、一组可能的应力分量应满足:和。
14、;面;体力和面应力是作用于截面单位面积的力,应力的量纲。
15、,即孔附近的应力远大于远处的应,由于孔口存在而引起的应力扰动范围主要集中在距孔边1.5倍孔口尺寸的范围内。
16、的面。
17、、、三个主要步骤。
18、在有限元计算中,需要将体力、面力等荷载向结点移植,这种移植必须按照静力等效的原则进行。
对于变形体,所谓静力等效是指19、20、单元刚度矩阵的第一行第二列元素k12的物理意义是无关。
21、。
22、一般而言产生轴对称应力状态的条件是弹性体的和是轴对称的。
23、由于求解微分方程边值问题的困难,在弹性力学中先后发展了三种数值解法,分别是。
三、简答题1、弹性力学中引用了哪五个基本假定?五个基本假定在建立弹性力学基本方程时有什么用途?2、面力、体力与应力的正负号规定是什么,要会标明单元体指定面上的应力、面力及体力。
3、什么是主平面、主应力、应力主方向。
课本P174、弹性力学分析问题,要从几方面考虑?各方面反映的是那些变量间的关系?5、常体力情况下,按应力求解平面问题可进一步简化为按应力函数求解,应力函数必须满足哪些条件?6、平面应力问题与平面应变问题各有什么特点,典型工程实例有哪些?在什么条件下,平面应力问题的x, y, xy与平面应变问题的x, y, xy是相同的。
7、平面应力和平面应变各指什么?哪种情况下有近似?为什么?弹性力学平面问题三类基本方程。
8、简述应变协调方程的物理意义,并写出平面条件下的应变协调方程;9、在建立弹性力学平衡微分方程、几何方程、物理方程时分别应用了哪些基本假设?10、常体力情况下,用应力函数表示的相容方程形式为4Φ 4Φ 4Φx4 2 x2 y2 y4 0,请问:相容方程的作用是什么?两种解法中,哪一种解法不需要将相容方程作为基本方程?为什么?11、按应力求解平面问题时,应力分量应满足哪些条件?12、简述圣维南原理的两种表述方法及其举例,并说明它在弹性力学分析中的作用。
13、若引用应力函数求解平面问题,应力分量与应力函数的关系式2x y2 fxx、22y x2 fyy、xy x y是根据弹性力学哪一类基本方程推导出来的。
14、何谓逆解法和半逆解法。
15、有限单元法主要有哪两种导出方法?16、有限单元法特点有哪些?17、为了保证解答的收敛性,位移模式应满足哪些条件?18、有限单元法解题的步骤有哪些。
19、单元刚度矩阵k中的子块kij是一2 2矩阵,其每一元素的物理意义是什么?要会利用公式来求单元劲度矩阵。
20、关于有限单元法,回答以下问题:1)单元结点力是什么?2)单元结点荷载是什么?3)单元劲度矩阵的某一个元素的物理意义?4)整体劲度矩阵的某一个元素的物理意义?5)有限单元法结点的平衡方程是什么力和什么力的平衡?6) 三节点三角形单元中,位移与应力哪个精度更高,哪个误差更大,并说明原因。
21、弹性力学问题按应力和位移求解,分别应满足什么方程?22、写出直角坐标下弹性力学平面问题的基本方程和边界条件?23、求解弹性力学问题时,为什么需要利用圣维南原理?24、设图中之短柱体处于平面应力状态,试论证在牛腿尖端C四、计算题1. 试问22x ay, y bx, xy (a b)xy,是否可能成为弹性力学问题中的应变分量?2. 下面给出平面问题(单连通域)的一组应变分量,试判断它们是否可能。
x C(x2 y2), 2y Cy, xy 2Cxy。
提示:考察是否满足变形协调方程。
3. 检查下面的应力分量在体力为零时是否能成为可能的解答。
2x 4x, y 4y2, xy 8xy提示:是否满足应力表达的相容方程。
4. 已知物体内某点的应力分量为x 100,y50,xy ,试求该点的主应力1, 2和1。
5. 已知一点处的应力分量x 30Mpa, y 25MPa, xy 50Mpa,试求主应力1、2以及1与x轴的夹角。
6. 已知过P点的应力分量x 15Mpa, y 25Mpa, xy 20Mpa。
求过P 点,l cos300、m cos600斜面上的XN、YN、N、N。
7. 已知:(a)Ay2 y2 x2 Bxy C x2 y2(b)Ax4 Bx3y Cx2y2 Dxy3 Ey4以上两式能否作为平面问题应力函数的表达式?若能,则需要满足什么条件。
8. 试写出应力边界条件,用极坐标形式。
9. 10. 界条件。
南昌工程学院11. 试列出下图问题的边界条件。
在其端部边界上,应用圣维南原理列出三个积分的应力边界条件。
12. 单位厚度的楔形体,材料比重为1,楔形体左侧作用比重为的液体,如图所示。
试写出楔形体的边界条件。
13. 试列出图示弹性体的全部边界条件,在其端部边界上,应用圣维南原理列出三个积分的应力边界条件。
(板厚1)14. 试列写图示半无限平面问题的边界条件。
15. 图示三角形截面水坝,材料的比重为,承受比重为液体的压力,已求得应力解为x ax by;y cx dy gy;xy dx ay,试写出直边及斜边上的边界条件。
16. 图示曲杆,在r b边界上作用有均布拉应力q,在自由端作用有水平集中力P。
试写出其边界条件(除固定端外)。
17. 试考察应力函数cxy3 ,c 0,能满足相容方程,并求出应力分量(不计体力),画出图5-2所示矩形体边界上的面力分布,并在次要边界上表示出面力的主矢和主矩。
18. 试用应力函数Axy Bxy3 求解图示悬臂梁的应力分量(设l h)。
19. 已知如图所示的墙,高度为h,宽度为b,h b,在两侧面上受到均布剪力q作用,不计体力,试用应力函数Axy Bx3y求解应力分量。
20. 设有矩形截面竖柱,密度为,在一边侧面上受均布剪力q,试求应力分量。
提示:假设0 2x 2y21. 图示无限大薄板,在夹角为90°的凹口边界上作用有均匀分布剪应力q。
已知其应力函数为:r2(Acos2 B)。
不计体力,试求其应力分量。
22. 图示半无限平面体在边界上受有两等值反向,间距为d的集中力作用,单位宽度上集中力的值为P,设间距d很小。