数学分析期末考试模拟题
- 格式:doc
- 大小:118.50 KB
- 文档页数:3
数学分析下册期末模拟试卷及参考答案一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分)1、已知u =则u x∂=∂ ,u y ∂=∂ ,du = 。
2、设22L y a +=2:x ,则Lxdy ydx -=⎰ 。
3、设L ⎧⎨⎩x=3cost ,:y=3sint.(02t π≤≤),则曲线积分ds ⎰22L(x +y )= 。
4、改变累次积分32dy f dx ⎰⎰3y (x ,y )的次序为 。
5、设1D x y +≤:,则1)Ddxdy ⎰⎰= 。
二、判断题(正确的打“O ”;错误的打“×”;每题3分,共15分) 1、若函数f (x ,y )在点p 00(x ,y )连续,则函数f (x ,y )点p 00(x ,y )必存在一阶偏导数。
( )2、若函数f (x ,y )在点p 00(x ,y ) 可微,则函数f (x ,y )在点p 00(x ,y )连续。
( )3、若函数f (x ,y )在点p 00(x ,y )存在二阶偏导数00(,)xy f x y 和00(,)yx f x y ,则必有 0000(,)(,)xy yx f x y f x y =。
( ) 4、(,)(,)(,)(,)L A B L B A f x y dx f x y dx =⎰⎰。
( ) 5、若函数f (x ,y )在有界闭区域D 上连续,则函数f (x ,y )在D 上可积。
( ) 三、计算题 ( 每小题9分,共45分)1、用格林公式计算曲线积分 (sin 3)(cos 3)x x AOI e y y dx e y dy =-+-⎰ ,其中AO 为由(,0)A a 到(0,0)O 经过圆22x y ax +=上半部分的路线。
、计算三重积分22()Vx y dxdydz +⎰⎰⎰,是由抛物面22z x y =+与平面4z =围成的立体。
、计算第一型曲面积分 SI dS =⎰⎰ ,其中S 是球面2222x y z R ++=上被平面(0)z a a R =<<所截下的顶部(z a ≥)。
大一上数学分析期末考试题及答案一、选择题(每题3分,共30分)1. 极限的定义是:如果对于任意的正数ε,都存在正整数N,使得当n>N时,都有|a_n - A| < ε,则称序列{a_n}的极限为A。
A. 正确B. 错误答案:A2. 函数f(x)=x^2在区间(-∞, +∞)上是单调递增的。
A. 正确B. 错误答案:B3. 函数f(x)=x^3在区间(-∞, +∞)上是单调递增的。
A. 正确B. 错误答案:A4. 函数f(x)=sin(x)在区间[0, π]上是单调递增的。
A. 正确B. 错误答案:B5. 函数f(x)=x^2在区间[0, +∞)上是单调递增的。
A. 正确B. 错误答案:A6. 函数f(x)=x^3在区间(-∞, +∞)上是单调递增的。
A. 正确B. 错误答案:A7. 函数f(x)=e^x在区间(-∞, +∞)上是单调递增的。
A. 正确B. 错误答案:A8. 函数f(x)=ln(x)在区间(0, +∞)上是单调递增的。
A. 正确B. 错误答案:A9. 函数f(x)=1/x在区间(0, +∞)上是单调递减的。
A. 正确B. 错误答案:B10. 函数f(x)=x^2在区间(-∞, 0)上是单调递减的。
A. 正确B. 错误答案:A二、填空题(每题4分,共20分)11. 极限lim(x→0) (sin(x)/x) = ________。
答案:112. 极限lim(x→+∞) (1/x) = ________。
答案:013. 极限lim(x→0) (1 - cos(x))/x^2 = ________。
答案:1/214. 函数f(x)=x^3在x=0处的导数为 ________。
答案:015. 函数f(x)=e^x在x=0处的导数为 ________。
答案:1三、计算题(每题10分,共40分)16. 计算极限lim(x→0) (tan(x) - sin(x))/x^3。
解:利用洛必达法则,对分子分母分别求导三次,得到极限为1/2。
数学分析上学期期末考试试题(及答案)一、选择题(每小题2分,共20分)1. 下列哪个不是测度论中的重要定理?A. 开集的性质B. 测度的可贸易性C. 有限可加性定理D. 外测度的定义2. 设函数f(x)在[a, b]上可导,下列关于f(x)的结论中正确的是:A. f(x)在[a, b]上一定为增函数B. f(x)在[a, b]上一定为减函数C. f(x)在[a, b]上既可以是增函数也可以是减函数D. f(x)在[a, b]上一定为周期函数3. 以下哪个不是级数收敛的充要条件?A. 极限一致有界B. 积分收敛C. 极限值为零D. 部分和有界4. 若函数序列fn(x)在[a, b]上一致收敛于f(x),则f(x)在[a, b]上一定是A. 递增的B. 递减的C. 周期函数D. 连续函数5. 下列哪个不是积分的线性性质?A. ∫[a, b](f+g)(x)dx = ∫[a, b]f(x)dx + ∫[a, b]g(x)dxB. ∫[a, b]cf(x)dx = c∫[a, b]f(x)dx (c为常数)C. ∫[a, b]f(x)g(x)dx = ∫[a, b]f(x)dx * ∫[a, b]g(x)dxD. ∫[a, b]f(x)dx = -∫[b, a]f(x)dx6. 函数f(x)=|x|/(x^2+9)的不可导点是A. x=-3B. x=3C. x=-3和x=-sqrt(3)D. x=-3和x=sqrt(3)7. 设函数u(x, y)具有二阶连续偏导数,下列哪个条件可以确保u(x, y)为调和函数?A. u_xx + u_yy = 0B. u_xx + u_yy = 1C. u_xx - u_yy = 0D. u_xx - u_yy = 18. 设实数α为2π的有理数倍数,函数f(x)的周期为2π,下列哪个函数一定是f(x)的周期函数?A. f(x + α)B. f(x - α)C. f(-x)D. f(x/2)9. 设f(x)在区间[a, b]上一阶可导,且f(a)=f(b)=0,若存在c∈(a,b)使得f(c)=0,则函数f(x)在[a, b]上的其中一个极值点为A. aB. bC. cD. 以上都可能是10. 函数f(x)对任意的x∈(-∞, +∞)满足f'(x) = f(x),若f(x)在x=0处的值为2,则f(1)的值为A. -1B. 0C. 1D. 2二、填空题(每小题5分,共20分)1. 若函数f(x)可导,则f(x)________是可测的,且__________是可测的。
数列极限类 1. 证明: 112111lim 222=⎪⎪⎭⎫ ⎝⎛++++++∞→n n n n n . 证 因为11211122222+≤⎪⎪⎭⎫ ⎝⎛++++++≤+n n n n n n n n n又11limlim22=+=+∞→∞→n n nn n n n ,由迫敛原理得112111lim 222=⎪⎪⎭⎫ ⎝⎛++++++∞→n n n n n . 2. 设() ,2,121,1111=⎪⎪⎭⎫ ⎝⎛+=>=+n a a a a a a n n n ,证明{}n a 有极限,并求此极限的值. 证 由均值不等式得a a a a a a a a n n n n n =⎥⎦⎤⎢⎣⎡⋅≥⎪⎪⎭⎫ ⎝⎛+=+2212111,即{}n a 有下界. 又0212121=-⎪⎪⎭⎫ ⎝⎛+≤-⎪⎪⎭⎫ ⎝⎛+=-+n n n n n n n n n a a a a a a a a a a ,即{}n a 单调减,于是A a n n =∞→lim 存在,且由极限的保号性可得1≥A .对已知递推公式,令∞→n 和极限的唯一性得⎪⎭⎫⎝⎛+=A a A A 21, 解得a A =(负根舍去),即有a a n n =∞→lim .单调性的证明也可如下完成:11211212221=⎪⎪⎭⎫ ⎝⎛+≤⎪⎪⎭⎫ ⎝⎛+=+n n n n n a a a a a a ,或n n n n n a a a a a =⎪⎪⎭⎫ ⎝⎛+≤+2121. 3. 设() ,2,16,1011=+==+n x x x n n ,试证数列{}n x 存在极限,并求此极限.证 由4166,10121==+==x x x 知, 21x x >.假设1+>k k x x ,则21166+++=+>+=k k k k x x x x ,由归纳法知{}n x 为单调下降数列.又显然有0>n x ,所以{}n x 有下界.由单调有界原理知,数列{}n x 收敛.所以可令a x n n =∞→lim ,对n n x x +=+61两边取极限得0662=--⇒+=a a a a ,解得3=a 或2-=a (舍去),故3lim =∞→n n x .4. 设+N ∈∃N ,当N n >时,有n n b A a ≤≤且()0lim =-∞→n n n a b .求证极限n n a ∞→lim 与n n b ∞→lim 存在且等于A .证 由n n b A a ≤≤得n n n a b a A -≤-≤0,由迫敛原理得A a n n =∞→lim ,再由()0lim =-∞→n n n a b 及A a n n =∞→lim 可得n n b ∞→lim 存在且等于A .5. 设()n n n n n n y x y y x x b y a x +==>=>=++21,,0,01111.求证: (1) {}n x 与{}n y 均有极限; (2) n n n n y x ∞→∞→=lim lim .证 因为()1121++=+≤=n n n n n n y y x y x x ,所以()()n n n n n n y y y y x y =+≤+=+21211,即{}n y 单调减少有下界,而n n n n n n n x x x y x x y y =≥=≥≥++111,即{}n x 单调增加有上界.所以{}n x 与{}n y 都收敛.在()121+=+n n n y y x 两边取极限得n n n n y x ∞→∞→=lim lim .6. 设0>n a ,且1lim1<=+∞→q a a nn n ,求证{}n a 收敛且0lim =∞→n n a .证 因为1lim1<=+∞→q a a nn n ,对给定的+N ∈∃>-=00,021N qε,当0N n >时,有()n n n n n n a a r r q q q a a q q q q a a <⇒<=+=-+<<--⇒-<-+++111121212121, 所以,当0N n >时,有112210a r a r ra a n n n n ---<<<<< ,由迫敛原理得0lim =∞→n n a .闭区间上连续函数的性质7. 证明方程01sin =++x x 在⎪⎭⎫⎝⎛-2,2ππ内至少有一个根. 证 令()1sin ++=x x x f ,则()x f 在⎥⎦⎤⎢⎣⎡-2,2ππ上连续,且22ππ-=⎪⎭⎫ ⎝⎛-f ,222ππ+=⎪⎭⎫ ⎝⎛f ,即022<⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛-ππf f .由根的存在性定理得至少存在一点∈ξ⎪⎭⎫⎝⎛-2,2ππ,使得()0=ξf ,即方程01sin =++x x 在⎪⎭⎫⎝⎛-2,2ππ内至少有一个根.8. 证明方程12=⋅xx 至少有一个小于1的正根.(10分)证 令()12-=xx x f ,则f 在[]1,0上连续且()()()011110<-=⋅-=⋅f f ,由闭区间上连续函数的零点存在定理,()1,0∈∃ξ,使得()12012=⋅⇒=-⋅=ξξξξξf .9. 设函数f 在[)+∞,0上连续,且满足()1lim =+∞→x f x .若f 在[)+∞,0上能取到负值,试证明:(1) [)+∞∈∃,00x ,使得()00=x f ; (2) f 在[)+∞,0上有负的最小值.证 由条件可设[)+∞∈',0x 且()0<'x f ,由()1lim =+∞→x f x ,存在)(0x M M '>>使得()021>>M f ,由根的存在性定理,得()[)+∞⊂'∈∃,0,0M x x ,使得()00=x f .(1)得证. (2) 由()1lim =+∞→x f x ,存在)(0x M M '>>使得当M x ≥时,有()021>>x f .又f 在[]M .0上连续,故[]M ,0∈∃ξ,使得()[](){}()0min ,0<'<=∈x f x f f M x ξ.而当[)+∞∈,M x 时,()021>>x f ,故对[)+∞∈∀,0x 有()≥x f ()[](){}()0min ,0<'<=∈x f x f f M x ξ.所以结论成立.10. 设n 为正整数,n a a a 221,,, 为n 2个实常数,且02<n a .求证多项式函数()n n n n n a x a x a x x P 21212122++++=--在()+∞∞-,内至少有两个零点.证 因为()0022<=n n a P ,又()()+∞=+∞=+∞→-∞→x P x P n x n x 22lim ,lim ,所以存在0>M ,使得()()0,022>>-M P M P n n ,又n P 2在[]0,M -和[]M ,0上都连续,由根的存在性定理,()0,1M -∈∃ξ和()M ,02∈∃ξ,使得()()02212==ξξn n P P ,所以,结论成立.11. 设()xt x x t x t x f sin sin sin sin lim -→⎪⎭⎫⎝⎛=,求()x f 的表达式,并指明()x f 的间断点及其类型.解: ()xx xx x t x x t xt xx t ex x t x t x f sin sin sin sin sin sin sin sin sin sin 1lim sin sin lim =⎪⎭⎫ ⎝⎛-+=⎪⎭⎫⎝⎛=-→-→,所以0=x 为第一类可去间断点;() ,2,1±±==k k x π为第二类无穷间断点.12. 设()x f 在[]b a ,上连续,且满足()b x f a <<,求证:()b a x ,0∈∃,使得()00x x f =.证明:令()()x x f x F -=,则()x F 在[]b a ,上连续,()()()()()()0<-⋅-=⋅b b f a a f b F a F .由连续函数的零点定理,必存在()b a x ,0∈∃,使得()00=x F ,故()b a x ,0∈∃使得()00x x f =.13. 设()x f 是[]a 2,0上的连续函数,且满足条件()()a f f 20=.证明存在[]a x ,00∈,使得()()a x f x f +=00.证明: 令()()()a x f x f x F +-=,则()x F 在[]a ,0上连续,且()()()a f f F -=00,()()()()()()()02002=-=+⇒-=a f f a F F a f a f a F .若()()00==a F F ,则存在00=x 或a x =0使得()()a x f x f +=00.若()0F 与()a F 都不为零,则()()00<⋅a F F由连续函数的零点定理,必存在()a x ,00∈∃,使得()00=x F ,故()a x ,00∈∃使得()()a x f x f +=00.(注:两个数的和为零,则这两个数要么同时为零,要么,它们异号).14. 设函数()x f 在[)+∞,0上连续,且满足()1lim =+∞→x f x ,若存在()+∞∈,00x ,使得()00<x f ,求证:(1) ()+∞∈∃,0ξ使得()0=ξf ; (2) ()x f 在[)+∞,0上有负的最小值.证明: (1) 因为()1lim =+∞→x f x ,由函数的局部保不等式性,存在充分大的0>M (不妨设0x M >),使得M x >时,有()21>x f ,所以当M x >1时,()x f 在[]10,x x 上连续且()()010<⋅x f x f ,由连续函数的零点存在定理,存在[]()+∞⊂∈∃,0,10x x ξ使得()0=ξf .(2) 又()x f 在[]0,0x 上连续,故由最值定理,存在[]1,0x ∈η,使当[]1,0x x ∈时,()()ηf x f ≥,而()()00<≤x f f η,且[)+∞∈,1x x 时,()()ηf x f >>>021.所以()x f 在[)+∞,0上有负的最小值()ηf .15. 设()nx a x a x a x f n sin 2sin sin 21+++= ,若()x x f sin ≤,求证1221≤+++n na a a .证法1(用导数定义)因为 ()()n n na a a f nx na x a x a x f +++='⇒+++=' 212120cos 2cos 2cos . 又()()0000sin 0=⇒=≤f f ,所以()()()()1sin lim lim 00lim0000=≤=--='→→→xx x x f x f x f f x x x ,所以1221≤+++n na a a .证法2(用重要极限1)()1sin lim sin lim 2sin lim sin lim lim 0002010=≤+++=→→→→→xx x nxa x x a x x a x x f x x n x x x 所以1sin lim 2021=≤+++→xx na a a x n .导数与微分证明16. 设()⎪⎩⎪⎨⎧=≠=.0,0,0,1sin 3x x xx x f 证明: ()x f 在0=x 处可微; ()x f '在0=x 处不可微 证 因为()()()01sin lim 00lim0200==--='→→xx x f x f f x x ,所以函数()x f 在处可导,由可导与可微的关系知()x f 在0=x 处可微;又当0≠x 时, ()xx x x x f 1cos 1sin32-=', 而()()⎪⎭⎫ ⎝⎛-=-'-'→→x x x x f x f x x 1cos 1sin 3lim 00lim00极限不存在,故()x f '在0=x 处不可导, 由可导与可微的关系知()x f '在0=x 处不可微; 17. 设()0x f ''存在,证明: ()()()()0200002limx f hx f h x f h x f h ''=--++→ 证:()()()()()()()()()()()[]()0000000000020000)21lim 212lim 2limx f x f x f h x f h x f h x f h x f h h x f h x f h x f h x f h x f h h h ''=''+''=⎥⎦⎤⎢⎣⎡-'--'+'-+'=-'-+'=--++→→→ 18. 设()x f 为()+∞∞-,内的可导函数,周期为T .求证:()x f '也是以T 为周期的函数.证明:因为()()()()x f T x f x f T x f '=+'⇒=+,所以()x f '也是以T 为周期的函数. 中值定理的应用 19. 设01210=++++n a a a n ,证明多项式()n n x a x a a x f +++= 10在()1,0内至少有一个零点.证 作辅助函数()12101121+++++=n n x a n x a x a x F ,则()x F 在闭区间[]1,0满足罗尔中值定理的三个条件,故存在()1,0∈ξ使得()010=+++='n n a a a F ξξξ ,故()n n x a x a a x f +++= 10在()1,0内至少有一个零点.20. 设g f ,都是可导函数,且()()x g x f '<',证明当a x >时,()()()()a g x g a f x f -<-证 因为()()⇒'<'≤x g x f 0()x g 严格单调增.当a x >时, ()()a g x g >. 又由柯西中值定理得,存在()x a ,∈ξ使得()()()()()()()()()()()()()()()()a g x g a f x f g f a g x g a f x f g f a g x g a f x f -<-⇒<''=--⇒''=--1ξξξξ.21. 对任意的[)+∞∈,0x ,有()x x ≤+1ln ,且等号只在0=x 时成立.证明: 令()()(),001ln =⇒-+=f x x x f 存在()x ,0∈ξ,使得()()x f x f ξ'=,而()()001<⇒<+-='x f f ξξξ,当且仅当0=x 时()00=f ,所以结论成立.22. 设()x f 在[]a ,0上连续,在()a ,0内可导,且满足()()00==a f f ,求证:存在()a ,0∈ξ,使得()()02='+ξξξf f .提示:令()()x f x x F 2=,用罗尔中值定理可证.23. 设函数f 在[]b a ,上连续,在()b a ,内二阶可导,连结点()()a f a A ,与点()()()b f b B ,的直线交曲线()x f y =于点()()c f c M ,,其中b c a <<.证明:存在()b a ,∈ξ,使得()0=''ξf .证 因为B M A ,,三点共线,所以()()()()()()cb c f b f a c a f c f a b a f b f --=--=--. 在[]c a ,及[]b c ,上分别应用中值定理得: 存在()c a ,1∈η,使()()()a c a f c f f --='1η;存在()b c ,2∈η,使()()()cb c f b f f --='2η,即()()21ηηf f '='.由于f 二阶可导,故函数f '在区间[]21,ηη上满足罗尔中值定理的条件,故()()b a ,,21⊂∈∃ηηξ,使得()0=''ξf .24. 设10<<<b a ,证明不等式:abab a b 2arctan arctan -<-. 提示:在[]b a ,上用拉格朗日中值定理,注意将分母放大!25. 设b a <<0,证明不等式aba b a b b a a 1ln ln 222<--<+.26. 设()1,0∈x ,证明不等式()x x x x 2arctan 1ln <++<. 证 将要证的不等式变形为()2arctan 1ln 1<++<xxx ,令()()x x x f arctan 1ln ++=,则()()()x f x f ,1,0,00∈∀=在[]x ,0上满足拉格朗日中值定理的条件,于是()(),01,0⊂∈∃x ξ使得()211110arctan 1ln ξξ+++=-++x x x , 又由x +11与211x +在[]1,0上的连续性与单调性可得11121,111212<+<<+<ξξ,所以 ()2arctan 1ln 1<++<xxx ,故要证的不等式成立.27. 已知()x f 在0=x 的某邻域内有二阶连续导数,且()()()00,00,00≠''≠'≠f f f ,证明:存在唯一的一组实数321,,λλλ,使当0→h 时,()()()()032321f h f h f h f -++λλλ是比2h 高阶的无穷小量.证法1 (洛比达法则)()()()()()()()()()()()()0942123924lim 23322lim032lim3213210321023210f h f h f h f h h f h f h f h f h f h f h f h h h ''++=''+''+'''+'+'=-++→→→λλλλλλλλλλλλ令()()009421321=''++f λλλ,并由要证可知,前三式的分子的极限都应是零,可得到 ⎪⎩⎪⎨⎧=++=++=++0940321321321321λλλλλλλλλ (2) 因为0941321111≠,故(2)有唯一非零解.故结论成立.28. 设函数f 在),(+∞a 内可导,且()x f x +∞→lim 及()x f x '+∞→lim 都存在.证明()0lim ='+∞→x f x .证 当a x >时,由条件知,函数f 在区间[]1,+x x 上连续可导,故()1,+∈∃x x ξ,使得()()()ξf x f x f '=-+1.因为()x f x +∞→lim 及()x f x '+∞→lim 都存在,所以()x f x '+∞→lim =()()()[]()()0lim 1lim 1lim lim =-+=-+='+∞→+∞→+∞→+∞→x f x f x f x f f x x x ξξ.29. 证明;当2021π<<<x x 时,1212tan tan x x x x >证 令()x x x f tan =,则 ()xx xx x xx x x f 2222cos 2sin 21tan sec -=-='. 令()()⎪⎭⎫⎝⎛∈>-='⇒-=2,0,02cos 12sin 21πx x x g x x x g ,所以()x g 在⎪⎭⎫ ⎝⎛2,0π内单调增,则当0>x 时, ()()00=>g x g ,从而()0>'x f ,所以()x f 在⎪⎭⎫⎝⎛2,0π内单调增, 则当2021π<<<x x 时, ()()1212112212tan tan tan tan x x x x x x x x x f x f >⇒>⇒>.用单调性证明不等式30. 证明;当0>x 时, ()xx x +>+1arctan 1ln证 令()()()x x x x f arctan 1ln 1-++=,()()()()2221211;111ln 1x xx x f x x x f +++=''+-++=',当0>x 时,()0>''x f ,所以()x f '在()+∞,0内单调增,故当0>x 时, ()()00='>'f x f 因而得()x f 在()+∞,0内单调增, 故当0>x 时, ()()()xxx f x f +>+⇒=>1arctan 1ln 00. 31. 设e x 31≤≤,证明不等式:()1ln ln 23ln 122≤-≤-x x .32. 设0>x ,证明不等式11≤--xe x。
填空题一、函数 1. 设()(]()⎩⎨⎧+∞∈∞-∈=.,0,,0,,0x x x x f ()(]()⎩⎨⎧+∞∈-∞-∈=.,0,,0,,02x x x x g 则()()=x g f 答: ()()0=x g f ; ()()=x f g (]()()⎩⎨⎧=+∞∈-∞-∈x g x x x .,0,,0,,022. 函数101log 5y x =-的定义域为 ()()()(),44,55,66,-∞⋃⋃⋃+∞ .3. 设函数()()2sin 1f x x =+,则()f f x =⎡⎤⎣⎦ ()22sin sin11x⎡⎤++⎣⎦.4.函数1ln x y x-=+的定义域为 ()(]0,11,4⋃ .5. 函数()239,33x f x x x ≤=-<<⎪⎩的定义域是 ()4,4- .6. 函数()5sin y x π=的最小周期是 2 .7. ()()()28f x x x =--,则()3f f =⎡⎤⎣⎦ 6 .8. 99log 3log y =+的反函数是 429x - .9. 若()11x f e x -=+,则()f x 的定义域为 ()1,-+∞ .二、数列极限1.22lim 1nn n →∞⎛⎫+= ⎪⎝⎭4e .2. 极限()=-+∞→n n n n 2lim1/2 .3. 设R k ∈,则=⎪⎭⎫ ⎝⎛-∞→nn n k 1lim ke- .4. 已知a 为常数,则=⎪⎭⎫ ⎝⎛-+∞→nn a n a n lim ae 2 .5. 已知极限9lim =⎪⎭⎫⎝⎛-+∞→nn a n a n ,则常数=a 3ln .6. 极限()=+-+-∞→2sin212lim1πn n nnn 2 .7. 极限=⎪⎭⎫⎝⎛-++++∞→2221lim n n n n 21- .8. 极限()[]=⋅-∞→πn nn cos 21lim 0 . 9. 极限=+∑=∞→nk n kn 121lim1 .10. 极限=∑=∞→nnk n k221lim0 .11. 2limn →∞= 3 .12. 123lim 22n nn n→∞++++⎛⎫-=⎪+⎝⎭-1/2.三、函数极限 1. 35lim 1xx k e x →∞⎛⎫+= ⎪⎝⎭,则k =53.2. 0lim cot 2x x x →= 1/2 .3. 设82lim =⎪⎭⎫⎝⎛-+∞→xx a x a x ,则常数=a 2ln .4. 极限=⎪⎭⎫ ⎝⎛+→xx x x 1sin lim 1 .5. 极限()[]=++→x x x 21ln 1lim 2e .6. 设82lim 2=⎪⎭⎫⎝⎛-+∞→xx a x a x ,则常数=a2ln 21 .7. 0sin limx x x→= 1 ,01lim sinx x x→= 0 .8. 2112lim 11x x x →⎛⎫-= ⎪--⎝⎭12 .9. 设函数()221lim1xxt t t e f x e→-=+,则()f x = 1,01,0x x -≤⎧⎨>⎩ .10 若lim100ln 1x x →=+,则()0lim x f x →= 200 .10. 当0x →时x 的32阶无穷小量.11若当x →∞时,()222351px f x qx x -=+++为无穷大量,则p 为 任意常数 ,q 为 非零常数 .四、连续函数1. 函数()23f x x x =--的连续区间是 [)()1,33,⋃+∞ ,间断点是 .2 设函数()⎪⎩⎪⎨⎧≤>-=.0,,0,arcsin 12tan x ae x x e x f x x 在0=x 处连续,则常数=a 1- .3 设函数()⎪⎪⎩⎪⎪⎨⎧≤>-=.0,,0,2arcsin12tan x ae x xe xf xx在0=x 处连续,则=a -2 . 4 若()⎪⎩⎪⎨⎧=≠-+=.0,,0,12sin 2x a x xe x xf ax 在()+∞∞-,内连续,则=a -2 .5 函数()()211xef x x x -=-的可去间断点为 0 .五、导数与微分 1 sin 2y x =,则()11y= 112cos 2x - .2 若等式35x dx ad ⎛⎫=-⎪⎝⎭成立,则a = -5 . 3 设(ln y x x=+,则y '= (ln x ++4 若()k a f =',则()()=-+→sinhlima f h a f h k .5 若()k a f =',则()()()=++--→h h a f h a f h 1ln limk 2- .6 若()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+=∞→txx x t t f 211lim ,则()='t f ()t e t212+ . 7 设()x y y =在任意点()+∞-∈,1x 满足()x x xy y ∆+∆+=∆ 1,若()20=y ,则()='1y 2 .8 设1lnarctan 22+-=x xxee e y ,则==1x dxdy112+-e e .9设x y xarcsin 2=,则='y ⎪⎪⎭⎫⎝⎛-+⋅211arcsin 2ln 2xx x. 10 ='⎪⎭⎫ ⎝⎛-xe x x cos sin xe x /cos 2 . 11设xay 1arctan=,则='y xaxa 1a r c t a n21ln +-.12设()()()321131x x x y --+=,则='y ()()()()()()1313113113222323-+--++--x xx x xxx x .13设函数()x y y =由方程22ln arctanyx xy +=确定,则()='x yyx y x -+ .14=⎪⎪⎭⎫⎝⎛x x d ln . 15设()1ln 2++=x x y ,则=dy 16设函数0,sin >=x xy x,则=dy ()dx x x x x xx⎥⎦⎤⎢⎣⎡+sin ln cos sin . 17设f 为可导函数,⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=x f y 1cos ,则=dy dx x f x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛'-1cos 1sin2123. 18. 函数x x y sin 2=的100阶导数是 x x x x x sin 9900cos 200sin 2-- .19. 设()2312+-=x x x f ,则()()=x fn ()()().2,1,1!2!111≠⎥⎦⎤⎢⎣⎡----++x n n x n n n n. 20. 设()x y y =在任意点[]1,1-∈x 满足()()x xy xy ∆++⋅∆=∆ 21c o s ,其中[]1,1-∈∆+x x .若()00=y ,则()=1y 4a r c s i n π.(注:需微分方程的知识)21. 设()x y y =在任意点()+∞-∈,1x 满足()x xx y y ∆++∆⋅=∆ 1.若()20=y ,则()='1y2 .(注:需微分方程的知识).22. 设()x f 在0x 的某邻域内有定义,且a x ,20≠为常数.若满足()()()()2000021x x a x x x x f -+-+=∆π,则()='0x f()021x +π .23. 设非负函数()x y y =由方程222y x e xy +=确定,则==0x dydx 21 .24 设()xx x f -+=12,则()()=x fn()11!3+-⋅n x n .25. 若()x f 为奇函数,且()50='x f ,则()=-'0x f 5 。
《数学分析(二)》期末试题一、选择题(共20分) 1、dxx dxd b a⎰2sin =( ) A 、22sin sinab - B 、22cos cos ab - C 、2sinxD 、02、下列积分中不是非正常积分的是( ) A 、 dx x⎰+∞+0211 B 、dxx⎰-1211 C 、dx x⎰-42211 D 、dxx ⎰-22)1(13、若任意的),(b a x ∈,有0)0(,0)(>''>'f x f 则)(x f 在),(b a 内是( ) A 、单调增加的凸函数 B 、单调减少的凹函数 C 、单调减少的凸函数 D 、单调增加的凹函数4、cx dx x f x+='⎰2ln2)(ln 1且1)0(=f ,则=)(x f ( )A 、122+xB 、x 2ln 2C 、22xD 、c x +2ln 25.下列级数中条件收敛的是() A 、∑!sin n x B 、1)1(+-∑n n nC 、∑+-]11)1[(nnnD 、nn2sin)1(∑-6、曲线1)1(3--=x y 的拐点是( )A 、)0,2(B 、)1,1(-C 、)2,0(-D 、无拐点 7、若级数∑∞=+0)1(n nu 收敛,则=∞→n n u lim ()。
A 、1B 、-1C 、0D 、不存在。
8、设)(x f 为连续函数,则dtt f dxd xx⎰2)(=( )A 、)()(22x f x xf-B 、)(22x xf C 、)(x f D 、)()21(x f x -9、若1n n μ∞=∑收敛,1nn k k S μ==∑,则下列命题中正确的是( )。
A 、lim 0nn S →∞=B 、lim n n S →∞存在C 、lim n n S →∞不存在 D 、}{n S 单调 10、13n nn xn ∞=⋅∑的收敛半径为( )A 、0B 、1C 、3D 、13二、填空题(共20分) 1、=⎰-xdx x arccos117( )2、23sin limxx t dt x→=⎰( )3、=--⎰dx x x)cos 312(2( )曲线)10(,2≤≤=x x y 绕x 轴旋转一周所成的旋转体的体积是( ) 5、dxxx p⎰+∞1sin 条件收敛,那么p 的取值范围为( )6、设13--=ax x y 在1=x 处存在极值,则=a ( )7、函数)1()1()(>-+=p x xx f pp在]1,0[上的最大值为( )8、曲线2y x=和2y x=所围城的平面图形的面积为( ) 9.级数()111n n n ∞=+∑的和为( )。
数学分析期末试题A答案doc2024年数学分析期末试题A及答案一、选择题1、以下哪个函数在 x = 0 处连续? A. $f(x) = x^2$ B. $f(x) = \frac{1}{x}$ C. $f(x) = sin x$ D. $f(x) = e^x$ 答案:D解析:在 x = 0 处,只有选项 D 中的函数 e^x 是连续的。
因此,答案为 D。
2、设 $f(x) = x^2$,则 $f(3x - 2) =$ __________。
A. $x^2$ B. $(3x - 2)^2$ C. $(3x - 2)^3$ D. $(3x - 2)^2 + 1$ 答案:B解析:将 $x$ 替换为 $3x - 2$,得 $f(3x - 2) = (3x - 2)^2$。
因此,答案为 B。
3、下列等式中,错误的是: A. $\int_{0}^{1}x^2dx =\frac{1}{3}x^3|{0}^{1}$ B. $\int{0}^{\pi}\sin xdx = \cosx|{0}^{\pi}$ C. $\int{0}^{2\pi}\sin xdx = 0$ D.$\int_{0}^{1}(2x + 1)dx = (x^2 + x)|_{0}^{1}$ 答案:A解析:等式两边取极限,只有 A 选项等式两边不相等,因此 A 选项是错误的。
4、下列哪个导数是常数函数? A. $y = x^3$ B. $y = \sin x$ C. $y = e^x$ D. $y = log_a(x)$ 答案:C解析:常数函数的导数为零。
在选项中,只有 C 中的函数 e^x 的导数为常数函数,其导数为 $e^x$。
因此,答案为 C。
高一生物期末考试试题及答案doc高一生物期末考试试题及答案doc高一生物期末考试是一次重要的学业水平测试,旨在考察学生在本学期学习生物课程的效果。
以下是本次考试的部分试题及其答案,供大家参考。
一、选择题1、下列哪一种生物不是由细胞构成的? A. 细菌 B. 植物 C. 动物D. 病毒答案:D2、哪一个器官属于消化系统? A. 口腔 B. 食道 C. 胃 D. 大肠答案:C3、在光合作用中,哪一个物质是植物从空气中吸收的? A. 氧气 B. 二氧化碳 C. 葡萄糖 D. 水答案:B二、填空题1、病毒是一种生物,但它不能 _______ 和保持生命活动,必须_______ 在细胞内。
单项选择题一、函数 1. 设()⎩⎨⎧>≤=.1,0,1,1x x x f 则()[]{}x f f f 等于( B ).(A) 0; (B) 1; (C) ⎩⎨⎧>≤.1,0,1,1x x ; (D) ⎩⎨⎧>≤.1,1,1,0x x2. 设()⎩⎨⎧>+≤-=.0,2,0,2x x x x x g ()⎩⎨⎧≥-<=.,,0,2x x x x x f 则()[]=x f g ( D ).(A) ⎩⎨⎧≥-<+.0,2,0,22x x x x ; (B) ⎩⎨⎧≥+<-.0,2,0,22x x x x ; (C) ⎩⎨⎧≥-<-.0,2,0,22x x x x ; (D) ⎩⎨⎧≥+<+.0,2,0,22x x x x3. 若f 为连续奇函数,则()x f sin 为( A ).(A) 奇函数; (B) 偶函数; (C) 非负偶函数; (D) 既不是非正的函数,也不是非负的函数.4. 若f 为连续奇函数,则()x f cos 为( B ).(A) 奇函数; (B) 偶函数; (C) 非负偶函数; (D) 既不是非正的函数,也不是非负的函数.5. 若()()()x f x f x g --=,则g 为( A ).(A) 奇函数; (B) 偶函数; (C) 非负偶函数; (D) 既不是非正的函数,也不是非负的函数.6. 若f 为连续偶函数,则()x x f sin -为( B ).(A) 奇函数; (B) 偶函数; (C) 非负偶函数; (D) 既不是非正的函数,也不是非负的函数.7. 若f 为连续偶函数,g 为非负偶函数,则g f 为( B ).(A) 奇函数; (B) 偶函数; (C) 非负偶函数; (D) 既不是非正的函数,也不是非负的函数.8. 设()xex x x f cos sin ⋅=,则在()+∞∞-,上()x f 是( D )(A) 有界函数 (B) 单调函数 (C) 周期函数 (D) 偶函数. 8. 设()⎩⎨⎧>+≤=.0,,0,22x x x x x x f 则( D ).(A) ()()⎩⎨⎧>+-≤-=-.0,,0,22x x x x x x f (B) ()⎩⎨⎧>-≤+-=-.0,,0),(22x x x x x x f(C) ()⎩⎨⎧>-≤=-.0,,0,22x x x x x x f (D) ()⎩⎨⎧≥<-=-.0,,0,22x x x x x x f9.设()1,0∈x 则下列选项正确的是( B ).(A) ()x x ln ln sin <; (B) ()x x ln ln sin >; (C) ()x x ln ln sin ≤; (D) (A)、(B )、(C )都不正确.10 设1121x f x x ⎛⎫-=⎪-⎝⎭,则()f x =( C )(A)11x+; (B) 1x-; (C)11x-; (D) 以上都不对.11 下列各对函数中,相同的是( D )(A) ()cos f x x =与()g x = (B) ()f x =()g x =;(C) ()x f x x=与()1g x =; (D) ()()2ln 1x x f x x-与()()ln 1x g x x-=.12. 将函数()22f x x =--表示为分段函数时,()f x =( B ) (A) 4,0,x x x x -≥⎧⎨<⎩; (B) 4,2,2x x x x -≥⎧⎨<⎩; (C) 4,04,0x x x x -≥⎧⎨+<⎩; (D) 4,24,0x x x x -≥⎧⎨+<⎩ .13. 设()132x f x x -=-与()g x 的图形关于直线y x =对称,则()g x =( A )(A)123x x ++; (B) 132x x --; (C)312x x++; (D)213x x--.14. 已知()f x 的定义区间是()0,1,则函数( D )的定义区间仍为()0,1. (A) ()()11f x f x ++-; (B) ()2f x ; (C) ()()11f x f x +⋅-; (D) 11x f x -⎛⎫⎪+⎝⎭. 15. 函数()y f x =与()y f x =-的图形关于( A )(A) x 轴对称; (B) y 轴对称; (C) 原点对称; (D) y x =对称.16. 设函数(()log 0,1a y x a a =+>≠,则该函数是( A )(A) 奇函数; (B) 偶函数; (C) 非奇非偶函数; (D) 既是奇函数又是偶函数.二、数列极限1. 已知2lim >=∞→A a n n ,则正确的选项是( B ).(A) 对+N ∈∀n ,有2>n x ; (B) +N ∈∃N ,当N n >时,有2>n a ;(C) N N N >∃N ∈∀+0,,使20=N x ; (D) 对2,≠N ∈∀+n a n .2. 设+N ∈∃N ,当N n >时,恒有n n b a >,已知A a n n =∞→lim ,B b n n =∞→lim .则正确的选项是: ( A ).(A) B A ≥; (B) B A ≠; (C) B A >; (D) A 和B 的大小关系不定. 3. 若()0tan 1lim1cos1≠=---∞→a neknn π,则 ( A )(A) 2=k 且π21=a ; (B) 2-=k 且π21=a ;(C) 2=k 且π21-=a ; (D) 2-=k 且π21-=a ;4. 设32lim 1knn en -→∞⎛⎫+= ⎪⎝⎭,则k =( C )(A) 3/2; (B) 2/3; (C) -3/2; (D) -2/3.5. 设数列{}n x 与{}n y 满足lim 0n n n x y →∞=,则下列命题正确的是( D )(A) 若{}n x 发散,则{}n y 必然发散; (B) 若{}n x 无界,则{}n y 必然有界; (C) 若{}n x 有界,则{}n y 必为无穷小量; (D) 若1n x ⎧⎫⎨⎬⎩⎭为无穷小量,则{}n y 必为无穷小量.三、函数极限 1. 极限=+-∞→3321213limx x x ( D ).(A)323; (B) 323-; (C) 323±; (D) 不存在.2. 极限=⎪⎭⎫ ⎝⎛-→210sin lim x x x x ( A )(A) 13e-; (B) 13e ; (C) 3e -; (D) 不存在.3. 极限=-→xxx x sin lim( B ).(A) 等于1; (B) 等于1-; (C) 不存在; (D) 等于21.4. 极限()=+-+∞→122lim22x x x x ( D )(A) 221; (B) 21; (C) 221-; (D) 不存在.5. 极限=⎪⎪⎭⎫⎝⎛-∞→1lim 1x x e x ( A )(A) 1; (B) 1-; (C) 0; (D) 不存在. 6 若极限()x f x x 0lim →存在,则( B )(A)()()00lim x f x f x x =+→;(B) ,0>∃M 及0>δ,当()δ;00x Ux ∈时,()M x f ≤;(C) ,0>∃M 及0>δ,当()δ;0x U x ∈时,()f x M >; (D),0>∃M ()M x f ≤.7. 若()A x f x x =-→0lim ,且0<A ,则( C )(A) ∃0>δ,当()δ;0x U x ∈时,恒有()0<x f ; (B) ∃0>δ,当δ<-0x x 时,恒有()0<x f ; (C) ∃0>δ,当00<-<-x x δ时,恒有()0<x f ; (D) ∃0>δ,当δ->-0x x 时,恒有()0<x f . 8.设f 在()U 内有定义.()x f x +∞→lim存在的充要条件是:对 数列{}⊂n x()U且=∞→n n x lim,()lim n n f x →∞都 且相等.正确的选项是( C )(A) 0x ,∃,0x ,∞,∀; (B) ∞,∀ ,∞,0x ,∃;(C) ∞+,∀,∞+,+∞,∃; (D) ∞+,∃,∞+,0x ,∃.9. 设k 为正整数,极限=-++→xkx x e xe 2132lim( D )(A)32; (B) 0; (C) 与k 的奇偶性有关; (D) 不存在.10 若()32211lim21x xa bx x →∞+++=-+,则常数,a b 分别为( C ).(A) 0,2; (B) 1,-2; (C) -1,-2; (D) 以上对不对. 11 已知212lim31x x ax x →-+=-,则当1x →时,22x ax -+( B )(A) 与1x -是等价无穷小; (B) 与1x -是同阶无穷小但不等价; (C) 是比1x -较高阶的无穷小量; (D) 是比1x -教低阶的无穷小量.12. 若()()()97350211lim81x x ax x→∞++=+,则常数a =( C )(A) 1; (B) 8; (C) 2; (D) 以上都不对.13. 函数()()1122,1ln 1,11,sin ,1x ex f x x x x x x -+⎧<-⎪⎪=--<<⎨⎪≤⎪⎩当( D )时为无穷大量.(A) x →-∞; (B) x →+∞; (C) 1x →; (D) 1x →-. 14. 若()()lim ,lim x ax af xg x →→=∞=∞,下列式子成立的是( D )(A) ()()lim x a f x g x →+=∞⎡⎤⎣⎦; (B) ()()lim 0x a f x g x →-=⎡⎤⎣⎦; (C) ()()1lim0x af xg x →=+; (D) ()1lim0x af x →=.15. 设()232xxf x =+-,则当0x →时( B )(A) ()f x 与x 是等价无穷小量; (B) ()f x 与x 是同阶但非等价无穷小量 ; (C) ()f x 是比x 高阶的无穷小量; (D) ()f x 是比x 较低阶的无穷小量. 16. 下列各式正确的是( C )(A) 01lim 11x x x +→⎛⎫+= ⎪⎝⎭; (B) 01lim 1xx e x +→⎛⎫+= ⎪⎝⎭ ;(C) 11lim 1xx e x -→∞⎛⎫-= ⎪⎝⎭; (D) 1lim 1xx e x -→∞⎛⎫+= ⎪⎝⎭.17. 当0x →时,等价的无穷小量是( A )(A) x ; (B) 2x ; (C) 2x ; (D) 22x .18. 若当0x →时,11x ax e bx +-+是2x 的高阶无穷小,则( D )(A) 0,0a b ==; (B) 1,1a b ==; (C) 11,22a b =-=; (D) 11,22a b ==-.四、连续函数 1. 设函数()bxea x x f +=在()+∞∞-,内连续,且()0lim =-∞→x f x ,则常数b a ,满足( D ).(A) 0,0<<b a ; (B) 0,0>>b a ; (C) 0,0>≤b a ; (D) 0,0<≥b a .2. 设函数()⎪⎩⎪⎨⎧=≠⋅⎪⎭⎫ ⎝⎛-=.0,0,0,sin 11x x xex f x则0=x 是函数()x f 的( D )(A) 连续点; (B) 第一类间断点; (C) 跳跃间断点; (D) 无穷间断点.3. 设()xxe x e x xf 2152sin 1++++=,则0=x 是()x f 的( B )(A )可去间断点; (B )跳跃间断点; (C )无穷间断点; (D ) 震荡间断点. 4. 设函数()⎪⎩⎪⎨⎧==≠≠-=-.10,01,0,111x x x x e x f x x或且则( B )(A) 0=x 与1=x 均为()x f 的可去间断点;(B) 0=x 为()x f 的无穷间断点;1=x 为()x f 的第一类间断点,但不为可去间断点; (C) 0=x 为()x f 的无穷间断点;1=x 为()x f 的可去间断点; (D) 0=x 和1=x 均为()x f 的第一类间断点.5. 设()x f 与()x ϕ均为()+∞∞-,上有定义的函数,()x f y =在()+∞∞-,上连续且()0≠x f ,()x y ϕ=有间断点,则下列选项中正确的是( D )(A)()[]x f ϕ有间断点;(B)()()x f ϕ有间断点; (C) ()[]2x ϕ有间断点; (D)()()x f x ϕ有间断点.6. 设()x y y =是二阶常系数微分方程xe qy y p y 3=+'+''满足处始条件()()000='=y y 的特解,则当0→x 时,函数()()x y x 21ln +的极限( C ).(A) 不存在; (B) 等于1 ; (C) 等于2; (D) 等于3. 7. 方程x e x =--21在()+∞,0内实根的个数为( B ). (A) 0; (B) 1; (C) 2; (D) 3.8 函数()()1,12ln 10,11,2x x x f x x x ⎧>≠⎪-⎪⎪==⎨⎪=⎪⎪⎩且的连续区间是( C )(A) [)1,+∞; (B) ()1,+∞; (C) [)()1,2,2,+∞; (D) ()()1,2,2,+∞.9. 设()ln,1,1,1x f x x x ≥⎧=⎨-<⎩则()f x 在1x =处( D ) (A) 不连续; (B) 连续但不可导; (C) 连续且()10f '=; (D) 连续且()11f '=.10. 设()21cos sin ,0,1,0x x x f x xx x ⎧+<⎪=⎨⎪+≥⎩则0x =是()f x 的( D ) (A) 可去间断点; (B) 跳跃间断点; (C) 振荡间断点; (D) 连续点.11 设函数()()1,0,0mx kx x f x a x ⎧⎪+≠=⎨=⎪⎩,若函数()fx 在0x =连续,则常数a =( D ).(A) m e ; (B) k e ; (C) km e -; (D) km e .五、导数与微分 1. 若极限()()A eh a f ha f hh =-+--→1lim222,则函数()x f 在a x =处( A )(A) 不一定可导; (B) 不一定可导,但()A a f ='+; (C) 不一定可导,但 ()2A a f ='-; (D) 不一定可导,但()A a f ='-.2. 若极限()1lim1h f a f a h A →+∞⎛⎫-- ⎪⎝⎭=-,则函数()x f 在a x =处( C ) (A) 可导,且()2A a f =' (B) 不一定可导,但()2A a f ='+;(C) 不一定可导,但 ()2A a f ='-; (D) 不一定可导,但()A a f ='-.3. 若极限()()A eh a f ha f hh =-+--→1lim222,()()B ha f ha f h =--→22lim则函数()x f 在a x =处( B )(A) 不可导; (B) ()A B a f -='+; (C) ()A B a f -='-; (D) ()B A a f -='-. 4. 设函数f 是可导函数,则( A )(A) f 为奇函数时,f '为偶函数; (B) f 为单调函数时,f '为单调函数; (C) f 为非负函数时,f '也为非负函数; (D) f '为连续函数.5. 设()x f ,0>δ在区间()δδ,-内有定义,若当∈x ()δδ,-时,恒有()2x x f ≤,则0=x 必是f 的( C )(A) 间断点; (B) 连续而不可导的点; (C) 可导点,且()00='f ; (D) 可导的点,且()0≠'x f .6. 设()⎪⎩⎪⎨⎧=≠--=.1,2,1,112x x x x x f 则在1=x 处,函数()x f ( ) (A) 不连续 (B) 连续但不可导 (C) 可导,但导数不连续 (D) 可导,且导数连续7. 设雨滴为球体状,若雨滴聚集水份的速率与表面积成正比,则在雨滴行成过程中(一直保持球体状),雨滴半径的增加率( D )(A) 与球体体积的立方根成正比 (B) 与球体半径成正比 (C) 与球体体积成正比 (D) 为一常数.解 因为表面积()24,S r t π=体积()343Vrt π=,其中t 为时间,球体体积增长的速率()()24V rt r t π''=,而已知()24V kSk rt π'==,故答案为D 。
数学分析考试题一、 判断题(每小题2分,共20分)1.开域是非空连通开集,闭域是非空连通闭集. ( )2.当二元函数的重极限与两个累次极限都存在时,三者必相等. ( )3.连续函数的全增量等于偏增量之和. ( )4.xy y x f =),(在原点不可微. ( )5.若),(),(y x f y x f yx xy 与都存在,则),(),(y x f y x f yx xy =. ( )6.dy y x xyy )1(sin 21+⎰+∞在)1,0(内不一致收敛. ( ) 7.平面图形都是可求面积的. ( ) 8.学过的各种积分都可以以一种统一的形式来定义. ( )9.第二型曲面积分也有与之相对应的“积分中值定理”. ( ) 10.二重积分定义中分割T 的细度T 不能用}{max 1i ni σ∆≤≤来代替. ( )二、 填空题(每小题3分,共15分) 1.设)sin(y x e z xy +=,则其全微分=dz .2.设32),,(yz xy z y x f +=,则f 在点)1,1,2(0-P 处的梯度=)(0P grad .3.设L 为沿抛物线22x y =,从)0,0(O 到)2,1(B 的一段,则⎰=+Lydx xdy .4.边长为a 密度为b 的立方体关于其任一棱的转动惯量等于.5.曲面273222=-+z y x 在点(3,1,1)处的法线方程为 . 三、计算题(每小题5分,共20分) 1.求极限xy y x y x )(lim 22)0,0(),(+→.2. 设),(y x z z =是由方程ze z y x =++所确定的隐函数,求xy z .3.设]1,0[]1,0[⨯=A ,求⎰⎰++=Ay x ydxdyI 2322)1(. 4.计算抛物线)0()(2>=+a axy x 与x 轴所围的面积.四、(10分)密度22),,(y x z y x +=ρ的物体V 由曲面222y x z +=与2=z 所围成,求该物体关于z 轴的转动惯量. 五、(10分)求第二类曲面积分⎰⎰++Sdxdy z dzdx y dydz x222其中S 是球面2222)()()(R c z b y a x =-+-+-并取外侧为正向. 六、(第1小题8分,第2小题7分,共15分).1.求曲线6222=++z y x ,22y x z +=在点(1,1,2)处的切线方程和法平面方程. 2.证明:22114π=+⎰+∞dx x . 七、(10分)应用积分号下的积分法,求积分)0(ln )1cos(ln 10>>-⎰a b dx xx x x ab .第三学期数学分析参考答案及评分标准一、 判断题(每小题2分,共20分)1.开域是非空连通开集,闭域是非空连通闭集. (⨯) 2.当二元函数的重极限与两个累次极限都存在时,三者必相等. ( √ ) 3.连续函数的全增量等于偏增量之和. ( ⨯) 4.xy y x f =),(在原点不可微. ( √ )5.若),(),(y x f y x f yx xy 与都存在,则),(),(y x f y x f yx xy =. ( ⨯)6.dy y x xyy )1(sin 21+⎰+∞在)1,0(内不一致收敛. ( √ )7.平面图形都是可求面积的. ( ⨯) 8.学过的各种积分都可以以一种统一的形式来定义. ( √ )9.第二型曲面积分也有与之相对应的“积分中值定理”. (⨯)10.二重积分定义中分割T 的细度T 不能用}{max 1i ni σ∆≤≤来代替. ( √ ) 二、 填空题(每小题3分,共15分) 1.设)sin(y x e z xy +=,则其全微分=dzdy y x y x x e dx y x y x y e xy xy )]cos()sin([)]cos()sin([+++++++.2.设32),,(yz xy z y x f +=,则f 在点)1,1,2(0-P 处的梯度=)(0P grad (1,-3,-3).3.设L 为沿抛物线22x y =,从)0,0(O 到)2,1(B 的一段,则⎰=+Lydx xdy 2.4.边长为a 密度为b 的立方体关于其任一棱的转动惯量等于b a 532. 5.曲面273222=-+z y x 在点(3,1,1)处的法线方程为111193--=-=-z y x . 三、计算题(每小题5分,共20分) 1.解:先求其对数的极限)ln(lim22)0,0(),(y x xy y x +→.由于)0,(0ln )ln(2222222+→=+→≤+r r y x r r y x xy 令,所以)ln(lim22)0,0(),(y x xy y x +→=0,故xy y x y x )(lim 22)0,0(),(+→=1.2.解:方程ze z y x =++两边对x ,y 求偏导数,得x z e x z z ∂∂=∂∂+1yze y z z ∂∂=∂∂+1 解得 11-=∂∂=∂∂z e y z x z 32)1()1()11(-=∂∂⋅--=-∂∂=zzz z z xy e e y z e e e y z 。
数学分析期末考试题
一、
单项选择题(从给出的四个答案中,选出一个最恰当的答案填入括号内)
1、 函数)(x f 在[a,b ]上可积的必要条件是( B ) A 连续 B 有界 C 无间断点 D 有原函数
2、函数)(x f 是奇函数,且在[-a,a ]上可积,则( B ) A ⎰⎰=-a
a
a
dx x f dx x f 0
)(2)( B 0)(=⎰-a
a dx x f
C ⎰⎰-=-a
a a
dx x f dx x f 0
)(2)( D )(2)(a f dx x f a
a
=⎰-
3、 下列广义积分中,收敛的积分是( A ) A
⎰
1
1dx x
B
⎰
∞
+1
1dx x
C
⎰
+∞
sin xdx D
⎰-1
131
dx x
4、级数∑∞
=1
n n a 收敛是∑∞
=1
n n a 部分和有界且0lim =∞
→n n a 的( C )
A 充分条件
B 必要条件
C 充分必要条件
D 无关条件 5、下列说法正确的是( C ) A
∑∞
=1n n
a
和∑∞=1n n b 收敛,∑∞
=1n n n b a 也收敛
B
∑∞
=1n n
a
和∑∞
=1
n n b 发散,∑∞
=+1
)(n n n b a 发散
C
∑∞
=1n n
a
收敛和∑∞=1
n n b 发散,∑∞
=+1
)(n n n b a 发散
D ∑∞
=1
n n a 收敛和∑∞
=1
n n b 发散,∑∞
=1
n n n b a 发散
6、)(1
x a n n ∑∞
=在[a ,b ]收敛于a (x ),且a n (x )可导,则( D )
A )()('1'x a x a n n =∑∞
= B a (x )可导
C ⎰∑⎰=∞
=b
a
n b a
n dx x a dx x a )()(1
D
∑∞
=1
)(n n
x a
一致收敛,则a (x )必连续
7、下列命题正确的是( ) A )(1x a n n ∑∞
=在[a ,b ]绝对收敛必一致收敛
B )(1
x a n n ∑∞=在[a ,b ] 一致收敛必绝对收敛
C 若0|)(|lim =∞
→x a n n ,则)(1
x a n n ∑∞
=在[a ,b ]必绝对收敛
D )(1
x a n n ∑∞
=在[a ,b ] 条件收敛必收敛
8、∑∞
=++-0
121
21
)1(n n n
x n 的和函数为 A x e B x sin C )1ln(x + D x cos
9、函数)ln(y x z +=的定义域是( ) A {}0,0|),(>>y x y x B {}x y y x ->|),(
C {}0|),(>+y x y x
D {}0|),(≠+y x y x 10、函数f (x,y )在(x 0,,y 0)偏可导与可微的关系( ) A 可导必可微 B 可导必不可微 C 可微必可导 D 可微不一定可导
二、计算题:(每小题6分,共30分) 1、⎰=91
4)(dx x f ,求⎰+2
2)12(dx x xf
2、计算
⎰
∞
++0
2
221
dx x x
3、计算∑∞
=11n n x n 的和函数并求∑∞
=-1
)1(n n
n
4、设023=+-y xz z ,求
)
1,1,1(x
z ∂∂
5、求2
220
0lim y x y
x y x +→→
三、讨论与验证题:(每小题10分,共20分)
1、 讨论⎪⎩⎪⎨⎧=≠+-=)
0,0(),(0)0,0(),(),(2
22
2y x y x y x y x xy
y x f 在(0,0)点的二阶混合偏
导数 2、 讨论∑∞
=+-221
sin 2)
1(n n n n n
x
的敛散性 四、证明题:(每小题10分,共30分)
1、设)(1x f 在[a ,b ]上Riemann 可积,
),2,1()()(1 ==⎰+n dx x f x f b
a
n n ,证明函数列)}({x f n 在[a ,b ]上一致收敛于0
2、设y
x
e z =,证明它满足方程0=∂∂+∂∂y
z y x z x
3、 设)(x f 在[a ,b ]连续,证明
⎰
⎰=
π
π
π
)(sin 2)(sin dx x f dx x xf ,并求
⎰
+π
2
c o s 1s i n dx x
x
x。