第22章二次函数易错点汇总
- 格式:docx
- 大小:27.83 KB
- 文档页数:1
二次函数复习知识点一、二次函数概念:1.二次函数的概念:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数a≠0,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数y=ax2+bx+c的结构特征:⑴等号左边是函数,右边是关于自变量x的二次多项式。
(①含自变量的代数式是整式,②自变量的最高次数是2,③二次项系数不为0.)⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式1. y=ax2的性质:2. y=ax2+k的性质:(k上加下减)3. y=a(x-h)2的性质:(h左加右减)4. y =a (x -h)2+k 的性质:5. y =ax2+bx+c 的性质:三、二次函数的图象与各项系数之间的关系1. 二次项系数a.(a 决定了抛物线开口的大小和方向)二次函数2y ax bx c =++中,a 作为二次项系数,显然a ≠0 ① 当0a >时,抛物线开口向上,当0a <时,抛物线开口向下;②a 的绝对值越大,开口越小,反之a 的绝对值越小,开口越大。
总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b (a 和b 共同决定抛物线对称轴的位置).抛物线c bx ax y ++=2的对称轴是直线abx 2-=,故:①0=b 时,对称轴为y 轴;② (即a 、b 同号)时,对称轴在y 轴左侧;③ (即a 、b 异号)时,对称轴在y 轴右侧.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”3. 常数项c(c 决定了抛物线与y 轴交点的位置)⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 四、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿x 轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)五、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 六、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.七、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x 轴对称2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.八、二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠),适用条件:已知抛物线上三点的坐标,一般选用一般式;2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠),适用条件:已知图像上点两坐标,且其中一点为抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 交点式(两根式):12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标), 适用条件:已知图像上三点坐标,其中两点为抛物线与x 轴的两个交点(1x ,0),(2x ,0),一般选用交点式;九、二次函数的最值如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当abx 2-=时,a b ac y 442-=最值。
函数是初中数学知识的主线,而二次函数是这条主线上的高潮.我们通过探索二次函数与方程的关系,让我们领悟到事物之间相互联系的辨证关系.我们能够利用二次函数解决实际问题,培养数学建模的能力. 【知识结构】【知识梳理】1、定义:形如 c bx ax y ++=2(a 、b 、c 是常数,a≠0)的函数叫做x 的二次函数. 二次函数的一般形式是c bx ax y ++=2(a≠0),还可以用配方法化为k h x a y +-=2)(的形式,它可直接看出其顶点坐标为(k h ,),故把k h x a y +-=2)(叫做二次函数的顶点式.2、图象:二次函数的图象是抛物线,它是轴对称图形,其对称轴平行于y 轴. 注意:二次函数c bx ax y ++=2的图象的形状、大小、开口方向只与a 有关,所以,c bx ax y ++=2的图象可通过2ax y =的 图象平移得到.平移可按照如下口诀进行:上加下减,左加右减,即向上或向左用加,向下或向右用减.例如,将22x y =向左平移1个单位为()212+=x y ,再向下平移3个单位为()3122-+=x y .3、性质注意:二次函数的性质要结合图象,认真理解,灵活应用,不要死记硬背. 4、二次函数与一元二次方程的关系对于二次函数c bx ax y ++=2(a≠0),当y =0时,就变成了一元二次方程02=++c bx ax .二次函数c bx ax y ++=2(a≠0)的图象与x 轴的交点有三种情况: 当ac b 42-﹥0时,有两个交点; 当ac b 42-=0时,有一个交点; 当ac b 42-﹤0时,无交点.当二次函数c bx ax y ++=2(a≠0)的图象与x 轴的有交点时,其交点横坐标就是方程02=++c bx ax 的根. 【易错点剖析】一、忽略二次项系数不等于0例1已知二次函数263y kx x =-+的图象与x 轴有交点,则k 的取值范围 是( )(A )k <3 (B) k <3 且k ≠0 (C) k ≤3 (D) k ≤3 且k ≠0 错解:选C.由题意,得△=()26--4 k ×3≥0,解得k ≤3,故选C.错解分析:当k =0时,二次项系数为0,此时原函数不是二次函数.欲求k 的取值范围,须同时满足:①函数是二次函数;②图象与x 轴有交点,上面的解法只注重了△≥0而忽略了二次项系数不等于0的条件.正解: 选D.由题意,得△=()26--4 k ×3≥0且k ≠0,即k ≤3 且k ≠0,故应选D. 二、忽略隐含条件例2如图,已知二次函数2y x bx c =++的图象与y 轴交于点A, 与x 轴正半轴交于B,C 两点,且BC =2,ABC S ∆ =3,则b 的值为( )(A )-5 (B)4或-4 (C) 4 (D)-4错解: 选 B.依题意BC =2,ABC S ∆ =3,得点A(0,3),即c =3.又BC =2,得方程20x bx c ++=的两根之差为2,2-=,解得b =±4.故选B.错解分析:上面的解法忽略了“抛物线的对称轴x =-2b在y 轴的右侧”这一隐含条件,正确的解法应是同时考虑-2b>0,得b <0,∴b =4应舍去,故应选D. 正解: 选D.例3 若y 关于x 的函数y =(a -2)x 2-(2a -1)x +a 的图象与坐标轴有两个交点,则a 可取的值是多少?错解:因为函数y =(a -2)x 2-(2a -1)x +a 的图象与坐标轴有两个交点,而其中与y 轴有一个交点(0,a ),则与x 轴就只有一个交点,所以关于x 的一元二次方程y =(a -2)x 2-(2a -1)x +a有两个相等的实数根,所以判别式[-(2a-1)]2-4×(a-2)a=0,解得a=-14.错解分析:本题关于函数的描述是“y关于x的函数”,并没有指明是二次函数,所以需要分“y关于x的一次函数”和“y关于x的二次函数”两种情况进行讨论.当函数y是关于x的二次函数时,函数y=(a-2)x2-(2a-1)x+a的图象与y轴有一个交点(0,a),与坐标轴三、忽略数形结合思想方法的应用例4 求二次函数y=2x+4x+5(-3≤x≤0)的最大值和最小值.错解:当x=-3时,y=2; 当x=0时,y=5;所以,-3≤x≤0时,y最小=2,y最大=5.错解分析:上面的解法错在忽略了数形结合思想方法的应用,误以为端点的值就是这段函数的最值.解决此类问题,画出函数图象,借助图象的直观性求解即可.四、求顶点坐标时混淆符号例5 求二次函数y =-x 2+2x -2的顶点坐标. 错解1 用配方法y =-x 2+2x -2=-(x 2-2x )-2=-(x 2-2x +1-1)-2=-(x 2-2x +1) -1=-(x -1) 2-1所以二次函数y =-x 2+2x -2的顶点坐标为(-1,-1).错解2 用公式法 在二次函数y =-x 2+2x -2中,a =-1,b =2,c =-2,则2122(1)b a ==-⨯-,22424(1)(2)142(1)b ac a --⨯-⨯-==⨯- 所以二次函数y =-x 2+2x -2的顶点坐标为(-1,1).错解分析:二次函数y =a (x -h )2+k 的顶点坐标为(h ,k ),即横坐标与配方后完全平方式中的常数项互为相反数,而非相等,也就是说不是(-h ,k ).二次函数y =ax 2+bx +c (a ≠0)的顶点坐标为(-2b a ,244b ac a-),横坐标前面带“-”,纵坐标的分子为4ac -b 2,不要与一元二次方程根的判别式b 2-4ac 混淆.另外,把一般式转化为顶点式,常用配方法,如果二次项系数是1,则常数项为一次项系数一半的平方;如果二次项系数不是1,则先提出二次项系数(注意:不能像解方程一样把二次项系数消去),使括号中的二次项系数变为1,再对括号中进行配方.五、忽视根的判别式的作用例6 已知抛物线y=-12x2)x+m-3与x轴有两个交点A,B,且A,B关于y轴对称,求此抛物线解析式.错解:因为A与B关于y轴对称,所以抛物线对称轴为y轴,即直线x=-02ba==.解得m=6或m=-6.当m=6时,方程抛物线解析式为y=-12x2+3.错解分析:抛物线与x轴有两个交点为A,B,等价于:相应的一元二次方程有两个不相等的实数根,所以b2-4ac>0.如果忽视根的判别式在解题中的作用,就不能排除不符合题意的解,扩大了解的范围,导致错误.。
九年级数学上册专题:二次函数考点提示及例题分析二次函数高频考点及考查题型考点知识提示1.判断一个函数是否是二次函数要关注3点:(1)等号右边是否是整式;(2)自变量的最高次数是否是2;(3)二次函数的系数是否不为0。
例题:下列四个函数中,一定是二次函数的是()A.y=1/x2+xB.y=ax2+bx+cC.y=x2—(x+7)2D.y=(x+1)(2x—1)分析:A.自变量的最高次数不是2,故错误;B.a=0时,不是二次函数,故错误;C.原方程可得y=14x—49,是一次函数,故错误;D.原方程可得y=2x2+x—1,符合二次函数的定义,故正确2.二次函数是解决现实问题的一个工具,要特别注意实际问题中自变量的取值范围。
例题:某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完,该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售数量x(103件)的关系为:5x+90(0<x≤2)y1=—5x+130(2≤x<6)若在国外销售,平均每件产品的利润y2(元)与国外的销售数量t(103件)的关系为:100 (0<t≤2)y2=5t+110(2≤t<6)(1)用的代式表示t为t= 。
当0<x≤4时,y2与x的函数关系为y2= ;当4≤x< 时,y2=100(2)求每年该公司钠售这种健身产品的总利润w(103元)与国内的钠售数量x(103件)的函数关系式,并指出x的取值范围。
解:(1)由题意,得X+t=6,故t=6-X100 (0<t≤2)y2=5t+110(2≤t<6)当0<x≤4时,2≤6-x<6,即2≤t<6此时y2与的函数关系为:y2=5(6-X)+110=5X+80当4≤x<6时,0≤6-x<4,即0<t≤2此时y2=100故答案为:6-X;5X+80;6(2)分三种情况①当0<x≤2时W=(15x+90)x+(5x+80)(6-x)=10x2+40x+480②当2<x≤4时W=(-5x+130)x+(5x+80)(6-x)= -10x2+80x+480③当4<x<6时,W=(-5x+130)x+100(6-x)= -5x2+30x+6003.易错提示:当给出的二次函数的表达式中含有字母时,要注意二次项系数不为0这一条件。
九年级数学上册第二十二章二次函数知识点总结归纳完整版单选题1、已知实数a ,b 满足b −a =1,则代数式a 2+2b −6a +7的最小值等于( )A .5B .4C .3D .2答案:A分析:由已知得b =a +1,代入代数式即得a 2-4a +9变形为(a -2)2+5,再根据二次函数性质求解. 解:∵b -a =1,∴b =a +1,∴a 2+2b -6a +7=a 2+2(a +1)-6a +7=a 2-4a +9=(a -2)2+5,∵(a -2)2≥0,∴当a =2时,代数式a 2+2b -6a +7有最小值,最小值为5,故选:A .小提示:本题考查二次函数的最值,通过变形将代数式化成(a -2)2+5是解题的关键.2、点A (m -1,y 1),B (m ,y 2)都在二次函数y =(x -1)2+n 的图象上.若y 1<y 2,则m 的取值范围为()A .m >2B .m >32C .m <1D .32<m <2答案:B分析:根据y 1<y 2列出关于m 的不等式即可解得答案.解:∵点A (m -1,y 1),B (m ,y 2)都在二次函数y =(x -1)2+n 的图象上,∴y 1=(m -1-1)2+n =(m -2)2+n ,y 2=(m -1)2+n ,∵y 1<y 2,∴(m -2)2+n <(m -1)2+n ,∴(m-2)2-(m-1)2<0,即-2m+3<0,∴m>3,2故选:B.小提示:本题考查了二次函数图象上点的坐标特征,解题的关键是根据已知列出关于m的不等式.3、抛物线y=x2−x−1经过点(m,3),则代数式m2−m−1的值为()A.0B.1C.2D.3答案:D分析:将点(m,3)代入代数式中即可得到结果.解:将点(m,3)代入m2−m−1中得,m2−m−1=3,故代数式m2−m−1的值为3,故选:D.小提示:本题考查代数式的值,根据函数图象经过的点求函数解析式,能够掌握属性结合思想是解决本题的关键.4、小明在研究抛物线y=−(x−ℎ)2−ℎ+1(h为常数)时,得到如下结论,其中正确的是()A.无论x取何实数,y的值都小于0B.该抛物线的顶点始终在直线y=x−1上C.当−1<x<2时,y随x的增大而增大,则ℎ≥2D.该抛物线上有两点A(x1,y1),B(x2,y2),若x1<x2,x1+x2<2ℎ,则y1>y2答案:C分析:根据二次函数的对称轴、二次函数图象上点的坐标特征、二次函数的性质,判断即可.解:A.∵y=−(x−ℎ)2−ℎ+1,∴当x=ℎ时,y max=−ℎ+1,当ℎ<1时,y max=−ℎ+1>0,故错误;B.∵抛物线y=−(x−ℎ)2−ℎ+1的顶点坐标为(ℎ,−ℎ+1),当x=ℎ时,y=−ℎ−1≠−ℎ+1,故错误;C.∵抛物线开口向下,当−1<x<2时,y随x的增大而增大,∴ℎ≥2,故正确;D.∵抛物线上有两点A(x1,y1),B(x2,y2),若x1<x2,x1+x2<2ℎ,∴x1+x2<ℎ,∴点A到对称轴的距离大2于点B到对称轴的距离,∴y1<y2,故错误.故选C.小提示:本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.5、根据表格中二次函数y=ax2+bx+c的自变量x与函数值y的对应值,可以判断方程ax2+bx+c=0的一个解x 的范围是()C.1<x<1.5D.1.5<x<2答案:B分析:利用二次函数和一元二次方程的性质.解:观察表格可知:当x=0.5时,y=-0.5;当x=1时,y=1,∴方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是0.5<x<1.故选:B.小提示:本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y由正变为负时,自变量的取值即可.6、某种产品按质量分为10个档次,生产最低档次产品,每件获利润8元,每提高一个档次,每件产品利润增加2元,用同样工时,最低档次产品每天可生产60件,提高一个档次将减少3件.如果用相同的工时生产,总获利润最大的产品是第k档次(最低档次为第一档次,档次依次随质量增加),那么k等于()A.5B.8C.9D.10答案:C分析:第k档次产品比最低档次产品提高了(k−1)个档次,则数量在60的基础上减少了3(k−1),每件产品利润在8的基础上增加2(k−1),据此可求出总利润关系,求出最值即可.解:设总利润为y元,∵第k档次产品比最低档次产品提高了(k−1)个档次,∴每天利润为y=[60−3(k−1)][8+2(k−1)]=−6(k−9)2+864,∴当k=9时,产品利润最大,每天获利864元,故选C.小提示:本题考查了二次函数的实际应用,借助二次函数解决实际问题是本题的关键.7、已知抛物线y=x2+bx+c与x轴的两个交点之间的距离为6,对称轴为x=3,则抛物线的顶点P关于x轴对称的点P′的坐标是()A.(3,9)B.(3,−9)C.(−3,9)D.(−3,−9)答案:A分析:根据抛物线y=x2+bx+c与x轴两个交点间的距离为6.对称轴为直线x=3,可以得到b、c的值,然后即可得到该抛物线的解析式,再将函数解析式化为顶点式,即可得到点P的坐标,然后根据关于x轴对称的点的特点横坐标不变,纵坐标互为相反数,即可得到点P关于x轴的对称点的坐标.解:设抛物线y=x2+bx+c与x轴两个交点坐标为(x1,0),(x2,0),∵抛物线y=x2+bx+c与x轴两个交点间的距离为6,对称轴为直线x=3,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=36,−b=3,2×1∴(﹣b)2﹣4×c=36,b=﹣6,解得:c=0,∴抛物线的解析式为y=x2﹣6x=(x﹣3)2﹣9,∴顶点P的坐标为(3,﹣9),∴点P关于x轴的对称点的坐标是(3,9),故选:A.小提示:本题考查抛物线与x轴的交点、二次函数的性质、关于x轴对称的点的坐标特点,解答本题的关键是求出点P的坐标,利用二次函数的性质解答.8、已知a是不为0的常数,函数y=ax和函数y=﹣ax2+a在同一平面直角坐标系内的图象可以是()A.B.C.D.答案:C分析:根据题意分a>0,a<0两种情况讨论,结合函数图象即可求解.解:A.正比例函数中a<0,二次函数开口向上,−a>0,与y轴的交点在y轴正半轴,则a>0,矛盾,故A 不正确;B.正比例函数中a>0,二次函数开口向上,−a>0,与y轴的交点在y轴正半轴,则a>0,矛盾,故B不正确;C.正比例函数中a>0,二次函数开口向下,−a<0,与y轴的交点在y轴正半轴,则a>0,故C正确;D. .正比例函数中a<0,二次函数开口向下,−a<0,与y轴的交点在y轴正半轴,则a>0,矛盾,故D不正确;故选C小提示:本题考查了正比例函数与二次函数的图象的性质,掌握正比例函数与二次函数的图象的性质是解题的关键.9、二次函数y=ax2+bx+c(a≠0)的图像如图所示,则关于x的一元二次方程ax2+bx+c=0的根的情况描述正确的是()A.有两个相等的实数根B.有两个异号的实数根C.有两个同号的实数根D.有两个无法确定符号的实数根答案:B分析:根据二次函数的图像判断与x轴有两个交点,且在原点两侧,故关于x的一元二次方程ax2+bx+c= 0有两个异号的实数根.解:∵二次函数的图像与x轴有两个交点,且在原点两侧,∴关于x的一元二次方程ax2+bx+c=0有两个异号的实数根,故选:B.小提示:本题考查二次函数图像与一元二次方程根的关系,掌握二次函数y=ax2+bx+c(a≠0)的图像与x 轴有交点的横坐标即为关一元二次方程ax2+bx+c=0的根是解答本题的关键.10、已知抛物线y=2(x−3)2−5,其对称轴是()A.直线x=−3B.直线x=3C.直线x=−5D.直线x=5答案:B分析:直接根据抛物线的顶点式进行解答即可.解:∵y=2(x−3)2−5,∴抛物线对称轴为直线x=3.故选:B.小提示:本题考查二次函数的性质,解题关键是掌握二次函数图像与系数的关系.填空题11、已知二次函数y=(x−1)2+3,当x=_______时,y取得最小值.答案:1分析:根据抛物线的顶点坐标和开口方向即可得出答案.解:∵y=(x−1)2+3,∴该抛物线的顶点坐标为(1,3),且开口方向向上,∴当x=1时,y取得最小值,所以答案是:1.小提示:本题考查二次函数的最值,求二次函数最大值或最小值有三种方法:第一种可有图象直接得出,第二种是配方法,第三种是公式法.12、如图,过点D(1,3)的抛物线y=-x2+k的顶点为A,与x轴交于B、C两点,若点P是y轴上一点,则PC+PD的最小值为____.答案:3√2分析:由两点之间线段最短可知,当D、P、B在同一直线上时就可使PC+PD的值最小,解答即可.解:连接PB,对于抛物线y=-x2+k,对称轴是y轴,∴PC=PB,∴当D、P、B在同一直线上时,PC+PD的值最小,最小值为BD的长,∵抛物线y=-x2+k过点D(1,3),∴把x=1,y=3代入y=-x2+k,解得:k=4,把y=0代入y=-x2+4,解得:x=2或x=-2,所以点B的坐标为(-2,0),所以BD=√(−2−1)2+32=3√2,所以答案是:3√2.小提示:本题考查了抛物线与x轴的交点,轴对称-最短路线问题,找到P点是本题的关键.13、已知实数a、b满足a-b2=4,则代数式a2-3b2+a-14的最小值是________.答案:6分析:根据a-b2=4得出b2=a−4,代入代数式a2-3b2+a-14中,通过计算即可得到答案.∵a-b2=4∴b2=a−4将b2=a−4代入a2-3b2+a-14中得:a2-3b2+a-14=a2−3(a−4)+a−14=a2−2a−2a2−2a−2=a2−2a+1−3=(a−1)2−3∵b2=a−4≥0∴a≥4当a=4时,(a−1)2−3取得最小值为6∴a2−2a−2的最小值为6∵a2-3b2+a-14=a2−2a−2∴a2-3b2+a-14的最小值6所以答案是:6.小提示:本题考查了代数式的知识,解题的关键是熟练掌握代数式的性质,从而完成求解.14、已知二次函数y =−x 2−2x +3,当a ⩽x ⩽12时,函数值y 的最小值为1,则a 的值为_______. 答案:−1−√3##−√3−1分析:先把函数解析式化为顶点式可得当x <−1时,y 随x 的增大而增大,当x >−1时,y 随x 的增大而减小,然后分两种情况讨论:若a ≥−1;若a <−1,即可求解.解:y =−x 2−2x +3=−(x +1)2+4,∴当x <−1时,y 随x 的增大而增大,当x >−1时,y 随x 的增大而减小,若a ≥−1,当a ⩽x ⩽12时,y 随x 的增大而减小, 此时当x =12时,函数值y 最小,最小值为74,不合题意,若a <−1,当x =a 时,函数值y 最小,最小值为1,∴−a 2−2a +3=1,解得:a =−1−√3或−1+√3(舍去);综上所述,a 的值为−1−√3.所以答案是:−1−√3小提示:本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.15、已知二次函数y =ax 2+bx +c(a ≠0)的图像的顶点为(2,−2),与x 轴交于点(1,0)、(3,0),根据图像回答下列问题:当x _______时,y 随x 的增大而减小:方程ax 2+bx +c =0的两个根是___________.答案: x <2 x 1=1,x 2=3分析:利用开口向上和对称轴以及二次函数与一元二次方程的联系即可得到答案.解(1)∵二次函数图像与x轴的两个交点坐标为(1,0)、(3,0),∴二次函数的对称轴为直线x=2,∵抛物线的开口向上,∴当x<2时,y随x的增大而减小;(2)∵二次函数图像与x轴的两个交点坐标为(1,0)、(3,0),∴方程ax2+bx+c=0的两个根是x1=1,x2=3.小提示:本题考查了二次函数的图像与性质以及二次函数与一元二次方程的联系,属于常考题型.解答题16、在一条笔直的滑道上有黑、白两个小球同向运动,黑球在A处开始减速,此时白球在黑球前面70cm处.小聪测量黑球减速后的运动速度v(单位:cm/s)、运动距离y(单位:cm)随运动时间t(单位:s)变化的数据,整理得下表.y与运动时间t之间成二次函数关系.(1)直接写出v关于t的函数解析式和y关于t的函数解析式(不要求写出自变量的取值范围)(2)当黑球减速后运动距离为64cm时,求它此时的运动速度;(3)若白球一直..以2cm/s的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由.答案:(1)v=−12t+10,y=−14t2+10t(2)6cm/s(3)黑、白两球的最小距离为6cm,大于0,黑球不会碰到白球分析:(1)根据黑球的运动速度v与运动时间t之间成一次函数关系,设表达式为v=kt+b,代入两组数值求解即可;根据运动距离y与运动时间t之间成二次函数关系,设表达式为y=at2+bt+c,代入三组数值求解即可;(2)当黑球减速后运动距离为64cm时,代入(1)式中y关于t的函数解析式求出时间t,再将t代入v关于t的函数解析式,求得速度v即可;(3)设黑白两球的距离为w cm,得到w=70+2t−y=14t2−8t+70,化简即可求出最小值,于是得到结论.(1)根据黑球的运动速度v与运动时间t之间成一次函数关系,设表达式为v=kt+b,代入(0,10),(1,9.5)得,{10=b 9.5=k+b ,解得{k=−12b=10,∴v=−12t+10,根据运动距离y与运动时间t之间成二次函数关系,设表达式为y=at2+bt+c,代入(0,0),(1,9.75),(2,19)得{0=c9.75=a+b19=4a+2b,解得{a=−14b=10c=0,∴y=−14t2+10t;(2)依题意,得−14t2+10t=64,∴t2−40t+256=0,解得,t1=8,t2=32;当t1=8时,v=6;当t2=32时,v=−6(舍);答:黑球减速后运动64cm时的速度为6cm/s.(3)设黑白两球的距离为w cm,w=70+2t−y=14t2−8t+70=14(t−16)2+6,∵14>0,∴当t=16时,w的值最小为6,∴黑、白两球的最小距离为6cm,大于0,黑球不会碰到白球.小提示:本题考查一次函数和二次函数的实际应用,待定系数法求解析式,解决本题的关键是明确题意求出函数表达式.17、已知抛物线y=ax2−4ax+3(a≠0)的图象经过点A(−2,0),过点A作直线l交抛物线于点B(4,m).(1)求抛物线的函数表达式和顶点坐标.(2)将抛物线向下平移n(n>0)个单位,使顶点落在直线l上,求m,n的值.答案:(1)y=−14x2+x+3;(2,4)(2)3;2分析:(1)把点A(−2,0)代入y=ax2−4ax+3(a≠0),求出a的值即可;再运用顶点坐标公式求出顶点坐标即可;(2)把C(4,m)代入y=−14x2+x+3可求出m的值;再运用待定系数法求出直线AB的解析式,从而可求出平移后押物线的顶点坐标,进一步可得结论.(1)将A(−2,0)代入y=ax2−4ax+3得:0=4a+8a+3,解得a=−14,∴抛物线的函数表达式为y=−14x2+x+3,∵−b2a =−12×(−14)=2,4ac−b24a=4×(−14)×3−124×(−14)=4,∴顶点坐标为(2,4);(2)把C(4,m)代入y=−14x2+x+3得,m =−4+4+3=3,设直线AB 的解析式为y =kx +b ,将A (−2,0),B (4,3)代入y =kx +b 得{0=−2k +b 3=4k +b, 解得{k =12b =1, ∴直线AB 的解析式为y =12x +1, ∵顶点的横坐标为2,∴把x =2代入y =12x +1得:y =2,∴n =4−2=2.小提示:本题主要考查了运用待定系数法求函数关系式以及二次函数图象的平移,正确理解题意是解答本题的关键.18、戴口罩是阻断呼吸道病毒传播的重要措施之一,某商家对一款成本价为每盒50元的医用口罩进行销售,如果按每盒70元销售,每天可卖出20盒.通过市场调查发现,每盒口罩售价每降低1元,则日销售量增加2盒(1)若每盒售价降低x 元,则日销量可表示为_______盒,每盒口罩的利润为______元.(2)若日利润保持不变,商家想尽快销售完该款口罩,每盒售价应定为多少元?(3)当每盒售价定为多少元时,商家可以获得最大日利润?并求出最大日利润.答案:(1)(20+2x )盒,(20-x ) 元(2)每盒售价应定为60元(3)每盒售价应定为65元时,最大日利润是450元分析:(1)根据题意列出代数式即可;(2)设每盒售价x 元,则每件的销售利润为(x −50)元,日销售量为[20+2(70−x )]件,即可得出关于x 的一元二次方程,解之即可得出x 的值,再结合商家想尽快销售完该款商品,即可求解;(3)设日利润为y ,由(2)列出函数关系式,根据二次函数的性质即可求解.(1)设每盒售价降低x 元,则日销量可表示为(20+2x )盒,每盒口罩的利润为70−50−x =20−x (元)所以答案是:(20+2x);(20−x)(2)设每盒售价x元,则每件的销售利润为(x−50)元,日销售量为[20+2(70−x)]件,根据题意得,(x−50)[20+2(70−x)]=(70−50)×20解得x1=70,x2=60又∵商家想尽快销售完该款商品,∴x=60.答:每件售价应定为60元;(3)设日利润为y,则y=(x−50)[20+2(70−x)]=−2x2+260x−8000=−2(x−65)2+450∴x=65时,y的最大值为450,即每盒售价应定为65元时,最大日利润是450元.小提示:本题考查了一元二次方程的应用,二次函数的应用,根据题意列出方程和函数关系式是解题的关键.。
九年级数学上册:第22章 二次函数知识点归纳及相关典型题第一部分 基础知识1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2ax y =的性质(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系.①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a . 3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线. 4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.5. 二次函数由特殊到一般,可分为以下几种形式: ①2axy =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.6.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 越大,抛物线的开口越小;a 越小,抛物线的开口越大。
②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=, ∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=.(2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称点的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>ab(即a 、b 同号)时,对称轴在y 轴左侧;③0<a b(即a 、b 异号)时,对称轴在y 轴右侧,“左同右异”.(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴.10.几种特殊的二次函数的图像特征如下:11.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ).(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故ac x x a b x x =⋅-=+2121,()()a a acb ac a b x x x x x x x x AB ∆=-=-⎪⎭⎫⎝⎛-=--=-=-=444222122122121中考回顾1.(2017天津中考)已知抛物线y=x 2-4x+3与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M.平移该抛物线,使点M 平移后的对应点M'落在x 轴上,点B 平移后的对应点B'落在y 轴上,则平移后的抛物线解析式为( A )A.y=x 2+2x+1B.y=x 2+2x-1C.y=x 2-2x+1D.y=x 2-2x-12.(2017四川成都中考)在平面直角坐标系xOy 中,二次函数y=ax 2+bx+c 的图象如图所示,下列说法正确的是( B )A. abc<0, b 2-4ac>0B. abc>0, b 2-4ac>0C. abc<0, b 2-4ac<0D. abc>0, b 2-4ac<03.(2017内蒙古赤峰中考)如果关于x 的方程x 2-4x+2m=0有两个不相等的实数根,那么m 的取值范围是 m<2 .4.(2017内蒙古赤峰中考)如图,二次函数y=ax 2+bx+c (a ≠0)的图象交x 轴于A ,B 两点,交y 轴于点D ,点B 的坐标为(3,0),顶点C 的坐标为(1,4).备用图(1)求二次函数的解析式和直线BD 的解析式;(2)点P 是直线BD 上的一个动点,过点P 作x 轴的垂线,交抛物线于点M ,当点P 在第一象限时,求线段PM 长度的最大值;(3)在抛物线上是否存在异于B ,D 的点Q ,使△BDQ 中BD 边上的高为2,若存在求出点Q 的坐标;若不存在请说明理由.解:(1)设二次函数的解析式为y=a (x-1)2+4.∵点B (3,0)在该二次函数的图象上, ∴0=a (3-1)2+4,解得:a=-1.∴二次函数的解析式为y=-x 2+2x+3.∵点D 在y 轴上,所以可令x=0,解得:y=3. ∴点D 的坐标为(0,3).设直线BD 的解析式为y=kx+3,把(3,0)代入得3k+3=0,解得:k=-1. ∴直线BD 的解析式为y=-x+3.(2)设点P 的横坐标为m (m>0), 则P (m ,-m+3), M (m ,-m 2+2m+3),PM=-m2+2m+3-(-m+3)=-m2+3m=-, PM最大值为(3)如图,过点Q作QG∥y轴交BD于点G,作QH⊥BD于点H,则QH=2设Q(x,-x2+2x+3),则G(x,-x+3),QG=|-x2+2x+3-(-x+3)|=|-x2+3x|.∵△DOB是等腰直角三角形,∴∠3=45°,∴∠2=∠1=45°.∴sin∠1=,∴QG=4.得|-x2+3x|=4,当-x2+3x=4时,Δ=9-16<0,方程无实数根.当-x2+3x=-4时,解得:x1=-1,x2=4,Q1(4,-5),Q2(-1,0).模拟预测1.已知二次函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是(D)A.k<3B.k<3,且k≠0C.k≤3D.k≤3,且k≠02.若点M(-2,y1),N(-1,y2),P(8,y3)在抛物线y=-x2+2x上,则下列结论正确的是(C)A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2解:x=-2时,y1=-x2+2x=-(-2)2+2×(-2)=-2-4=-6,x=-1时,y2=-x2+2x=-(-1)2+2×(-1)=--2=-2,x=8时,y3=-x2+2x=-82+2×8=-32+16=-16.∵-16<-6<-2,∴y3<y1<y2.故选C.3.已知一元二次方程ax2+bx+c=0(a>0)的两个实数根x1,x2满足x1+x2=4和x1·x2=3,则二次函数y=ax2+bx+c(a>0)的图象有可能是()解析:∵x1+x2=4,∴-=4.∴二次函数的对称轴为x=-=2.∵x1·x2=3,=3.当a>0时,c>0,∴二次函数图象交于y轴的正半轴.4.小明在用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:x…-2 -1 0 1 2 …y…-6-4 -2-2 -2…根据表格中的信息回答问题:该二次函数y=ax2+bx+c在x=3时,y=-4.5.若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为k=0或k=-1.6.抛物线y=-x2+bx+c的图象如图,若将其向左平移2个单位长度,再向下平移3个单位长度,则平移后的解析式为.解析:由题中图象可知,对称轴x=1, 所以- =1,即b=2.把点(3,0)代入y=-x2+2x+c,得c=3.故原图象的解析式为y=-x2+2x+3,即y=-(x-1)2+4,然后向左平移2个单位,再向下平移3个单位,得y=-(x-1+2)2+4-3,即y=-x2-2x. 答案:y=-x2-2x7.如图①,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上(点A与点B不重合),我们把这样的两抛物线L1,L2互称为“友好”抛物线,可见一条抛物线的“友好”抛物线可以有很多条.(1)如图②,已知抛物线L3:y=2x2-8x+4与y轴交于点C,试求出点C关于该抛物线对称轴对称的对称点D的坐标;(2)请求出以点D为顶点的L3的“友好”抛物线L4的解析式,并指出L3与L4中y同时随x增大而增大的自变量的取值范围;(3)若抛物线y=a1(x-m)2+n的任意一条“友好”抛物线的解析式为y=a2(x-h)2+k,请写出a1与a2的关系式,并说明理由.解:(1)∵抛物线L3:y=2x2-8x+4,∴y=2(x-2)2-4.∴顶点为(2,-4),对称轴为x=2,设x=0,则y=4,∴C(0,4).∴点C关于该抛物线对称轴对称的对称点D的坐标为(4,4).(2)∵以点D(4,4)为顶点的L3的友好抛物线L4还过点(2,-4),∴L4的解析式为y=-2(x-4)2+4.∴L3与L4中y同时随x增大而增大的自变量的取值范围是2≤x≤4.(3)a1=-a2,理由如下:∵抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上,∴可以列出两个方程由①+②,得(a1+a2)(m-h)2=0,∴a1=-a2.。
九年级数学上册第二十二章二次函数高频考点知识梳理单选题1、已知a是不为0的常数,函数y=ax和函数y=﹣ax2+a在同一平面直角坐标系内的图象可以是()A.B.C.D.答案:C分析:根据题意分a>0,a<0两种情况讨论,结合函数图象即可求解.解:A.正比例函数中a<0,二次函数开口向上,−a>0,与y轴的交点在y轴正半轴,则a>0,矛盾,故A 不正确;B.正比例函数中a>0,二次函数开口向上,−a>0,与y轴的交点在y轴正半轴,则a>0,矛盾,故B不正确;C.正比例函数中a>0,二次函数开口向下,−a<0,与y轴的交点在y轴正半轴,则a>0,故C正确;D. .正比例函数中a<0,二次函数开口向下,−a<0,与y轴的交点在y轴正半轴,则a>0,矛盾,故D不正确;故选C小提示:本题考查了正比例函数与二次函数的图象的性质,掌握正比例函数与二次函数的图象的性质是解题的关键.2、函数y=ax与y=ax2+a(a≠0)在同一直角坐标系中的大致图象可能是()A.B.C.D.答案:D分析:先根据一次函数的性质确定a>0与a<0两种情况分类讨论抛物线的顶点位置即可得出结论.解:函数y=ax与y=ax2+a(a≠0)A. 函数y=ax图形可得a<0,则y=ax2+a(a≠0)开口方向向下正确,当顶点坐标为(0,a),应交于y轴负半轴,而不是交y轴正半轴,故选项A不正确;B. 函数y=ax图形可得a<0,则y=ax2+a(a≠0)开口方向向下正确,当顶点坐标为(0,a),应交于y轴负半轴,而不是在坐标原点上,故选项B不正确;C. 函数y=ax图形可得a>0,则y=ax2+a(a≠0)开口方向向上正确,当顶点坐标为(0,a),应交于y轴正半轴,故选项C不正确;D. 函数y=ax图形可得a<0,则y=ax2+a(a≠0)开口方向向上正确,当顶点坐标为(0,a),应交于y轴正半轴正确,故选项D正确;故选D.小提示:本题考查的知识点是一次函数的图象与二次函数的图象,理解掌握函数图象的性质是解此题的关键.3、在平面直角坐标系中,若抛物线y=2(x+5)(x−3)经一次变换后得到抛物线y=2(x+3)(x−5),则这个变换可以是()A.向左平移2个单位B.向右平移2个单位C.向上平移8个单位D.向下平移8个单位答案:B分析:先将两解析式化成顶点式,然后根据平移前后的两抛物线的顶点坐标即可解答.解:y=2(x+5)(x-3)=2x2+4x-30=2(x+1)2-32,顶点坐标是(-1,-32).y=2(x+3)(x-5)=2x2-4x-30=2(x-1)2-32,顶点坐标是(1,-32).所以将抛物线y=2(x+5)(x-3)向右平移2个单位长度得到抛物线y=2(x+3)(x-5).故选:B.小提示:本题主要考查了二次函数图像与平移变换,掌握平移的规律“左加右减,上加下减”是解答本题的关键.4、若y=(a﹣2)x2﹣3x+2是二次函数,则a的取值范围是()A.a≠2B.a>0C.a>2D.a≠0答案:A分析:根据二次函数的二次项系数不为0可得关于a的不等式,解不等式即得答案.解:由题意得:a−2≠0,则a≠2.故选:A.小提示:本题考查了二次函数的定义,属于基础题型,掌握二次函数的概念是关键.5、某商场降价销售一批名牌衬衫,已知所获利润y(元)与降价x(元)之间的关系是y=-2x2+60x+800,则利润获得最多为()A.15元B.400元C.800元D.1250元答案:D分析:将函数关系式转化为顶点式,然后利用开口方向和顶点坐标即可求出最多的利润.解:y=-2x2+60x+800=-2(x-15)2+1250∵-2<0故当x=15时,y有最大值,最大值为1250即利润获得最多为1250元故选:D.小提示:此题考查的是利用二次函数求最值,掌握将二次函数的一般式转化为顶点式求最值是解决此题的关键.6、从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.则下列结论不正确的是()A.小球在空中经过的路程是40mB.小球运动的时间为6sC.小球抛出3s时,速度为0D.当t=1.5s时,小球的高度ℎ=30m答案:A分析:选项A、B、C可直接由函数图象中的信息分析得出答案;选项D可由待定系数法求得函数解析式,再将t=1.5s代入计算,即可作出判断.解:A、由图象可知,小球在空中达到的最大高度为40m,则小球在空中经过的路程一定大于40m,故选项A 错误;B、由图象可知,小球6s时落地,故小球运动的时间为6s,故选项B正确;C、小球抛出3秒时达到最高点,即速度为0,故选项C正确;D、设函数解析式为ℎ=a(t−3)2+40,将(0,0)代入得:0=a(0−3)2+40,解得a=−40,9∴函数解析式为ℎ=−40(t−3)2+40,9∴当t=1.5s时,ℎ=−40(1.5−3)2+40=30,9∴选项D正确.故选:A.小提示:本题考查了二次函数在物体运动中的应用,会用待定系数法求函数解析式并数形结合进行分析是解题的关键.7、某超市销售一种商品,每件成本为50元,销售人员经调查发现,该商品每月的销售量y(件)与销售单价x (元)之间满足函数关系式y=−5x+550,若要求销售单价不得低于成本,为每月所获利润最大,该商品销售单价应定为多少元?每月最大利润是多少?()A.90元,4500元B.80元,4500元C.90元,4000元D.80元,4000元答案:B分析:设每月所获利润为w,按照等量关系列出二次函数,并根据二次函数的性质求得最值即可.解:设每月总利润为w,依题意得:w=y(x−50)=(−5x+550)(x−50)=−5x2+800x−27500=−5(x−80)2+4500∵−5<0,此图象开口向下,又x≥50,∴当x=80时,w有最大值,最大值为4500元.故选:B.小提示:本题考查了二次函数在实际生活中的应用,根据题意找到等量关系并掌握二次函数求最值的方法是解题的关键.8、下表中列出的是一个二次函数的自变量x与函数y的几组对应值:B.这个函数的图象与x轴无交点C.这个函数的最小值小于-6D.当x>1时,y的值随x值的增大而增大答案:C分析:利用表中的数据,求得二次函数的解析式,再配成顶点式,根据二次函数的性质逐一分析即可判断.解:设二次函数的解析式为y=ax2+bx+c,依题意得:{4a −2b +c =6c =−4a +b +c =−6 ,解得:{a =1b =−3c =−4, ∴二次函数的解析式为y =x 2−3x −4=(x −32)2−254,∵a =1>0,∴这个函数的图象开口向上,故A 选项不符合题意;∵△=b 2−4ac =(−3)2−4×1×(−4)=25>0,∴这个函数的图象与x 轴有两个不同的交点,故B 选项不符合题意;∵a =1>0,∴当x =32时,这个函数有最小值−254<−6,故C 选项符合题意;∵这个函数的图象的顶点坐标为(32,−254),∴当x >32时,y 的值随x 值的增大而增大,故D 选项不符合题意;故选:C .小提示:本题主要考查了待定系数法求二次函数的解析式以及二次函数的性质,利用二次函数的性质解答是解题关键.9、抛物线y =x 2+x +c 与x 轴只有一个公共点,则c 的值为( )A .−14B .14C .−4D .4答案:B分析:根据抛物线与x 轴只有一个公共点,得到根的判别式等于0,即可求出c 的值.解:∵y =x 2+x +c 与x 轴只有一个公共点,∴x 2+x +c =0有两个相等的实数根, ∴△=1-4c =0,解得:c =14.故选:B .小提示:此题考查了抛物线与x 轴的交点,弄清根的判别式的意义是解本题的关键.10、小嘉说:将二次函数y =x 2的图象平移或翻折后经过点(2,0)有4种方法:①向右平移2个单位长度 ②向右平移1个单位长度,再向下平移1个单位长度③向下平移4个单位长度④沿x轴翻折,再向上平移4个单位长度你认为小嘉说的方法中正确的个数有( )A.1个B.2个C.3个D.4个答案:D分析:根据二次函数图象的平移可依此进行求解问题.解:①将二次函数y=x2向右平移2个单位长度得到:y=(x−2)2,把点(2,0)代入得:y=(2−2)2=0,所以该平移方式符合题意;②将二次函数y=x2向右平移1个单位长度,再向下平移1个单位长度得到:y=(x−1)2−1,把点(2,0)代入得:y=(2−1)2−1=0,所以该平移方式符合题意;③将二次函数y=x2向下平移4个单位长度得到:y=x2−4,把点(2,0)代入得:y=22−4=0,所以该平移方式符合题意;④将二次函数y=x2沿x轴翻折,再向上平移4个单位长度得到:y=−x2+4,把点(2,0)代入得:y=−22+4=0,所以该平移方式符合题意;综上所述:正确的个数为4个;故选D.小提示:本题主要考查二次函数图象的平移,熟练掌握二次函数图象的平移是解题的关键.填空题11、某游乐场的圆形喷水池中心O有一雕塑OA,从点A向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线(第一象限部分)的函数表达式为y=−1(x﹣5)2+66(1)雕塑高OA的值是____m;(2)落水点C,D之间的距离是____m.答案: 116##156 22 分析:(1)利用二次函数图象上点的坐标特征可求出点A 的坐标,进而可得出雕塑高OA 的值;(2)利用二次函数图象上点的坐标特征可求出点D 的坐标,进而可得出OD 的长度,由喷出的水柱为抛物线且形状相同,可得出OC 的长,结合CD =OC +OD 即可求出落水点C ,D 之间的距离;解:(1)当x =0时,y =−16×(0﹣5)2+6=116,∴点A 的坐标为(0,116),∴雕塑高116m . 所以答案是:116. (2)当y =0时,−16(x ﹣5)2+6=0,解得:x 1=﹣1(舍去),x 2=11,∴点D 的坐标为(11,0),∴OD =11m .∵从A 点向四周喷水,喷出的水柱为抛物线,且形状相同,∴OC =OD =11m ,∴CD =OC +OD =22m .所以答案是:22.小提示:本题考查了二次函数的应用,解题的关键是:(1)利用二次函数图象上点的坐标特征,求出点A 的坐标;(2)利用二次函数图象上点的坐标特征,求出点D 的坐标;.12、已知抛物线y =(x −1)(x −5)与x 轴的公共点坐标是A(x 1,0),B(x 2,0),则x 1+x 2=_______.答案:6分析:令y=0,可得(x−1)(x−5)=0,解出即可求解.解:∵抛物线y=(x−1)(x−5)与x轴的公共点坐标是A(x1,0),B(x2,0),令y=0,则(x−1)(x−5)=0,解得:x1=1,x2=5,∴x1+x2=1+5=6.所以答案是:6.小提示:本题主要考查了二次函数的图象与x轴的交点问题,熟练掌握二次函数的图象和性质是解题的关键.13、如图,某单位的围墙由一段段形状相同的抛物线形栅栏组成,为了牢固,每段栅栏间隔0.2米设置一根立柱(即AB间间隔0.2米的7根立柱)进行加固,若立柱EF的长为0.28米,则拱高OC为_____米答案:0.64分析:根据抛物线,建立直角坐标系,求出抛物线解析式,即可求得OC的长.解:如图,以点C为坐标系原点,OC所在直线为y轴,建立直角坐标系.设抛物线的解析式为y=ax2(a≠0),由题意可知:点A的横坐标为-0.8,点F的横坐标为-0.6,代入y=ax2(a≠0),有y F=(−0.6)2a=0.36a,y A=(−0.8)2a=0.64a,点A 的纵坐标即为OC 的长,∴0.36a +0.28=0.64a ,解得a =1,∴抛物线解析式为y =x 2,y A =(−0.8)2=0.64,故OC 的长为:0.64m .小提示:本题考查根据抛物线构建直角坐标系,解决实际问题,熟练掌握二次函数相关知识点是解题的关键.14、已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如下表:答案:y =2x 2+2x −74 分析:将点(−1,−74),(0,−74),(1,94)代入y =ax 2+bx +c 中,进行计算即可得.解:将点(−1,−74),(0,−74),(1,94)代入y =ax 2+bx +c 中,得{ a −b +c =−74c =−74a +b +c =94解得,{a =2b =2c =−74,则二次函数的解析式为:y =2x 2+2x −74, 所以答案是:y =2x 2+2x −74. 小提示:本题考查了二次函数的性质,解题的关键是掌握待定系数法.15、如图,已知抛物线y =−2x 2+4x +6与x 轴相交于于点A ,B ,与y 轴的交于点C .点P(m ,n)在平面直角坐标系第一象限内的抛物线上运动,设ΔPBC 的面积为S .下列结论:①AB =4;②OC =6;③S 最大值=274,其中,正确结论的序号是________.(所有正确的序号都填上)答案:①②③分析:y=−2x2+4x+6中令y=0得:−2x2+4x+6=0,得A(-1,0),B(3,0),从而判断①;y=−2x2+4x+6中令x=0得:y=6,得C(0,6),从而判断②;过点P作PF//y轴,交BC于点F,求出BC的函数关系式,得出点P的坐标为(m,−2m2+4m+6),点F的坐标为(m,−2m+6),再列出S关于m的函数关系式,最后求出其最大值,从而判断③.∵抛物线y=−2x2+4x+6与x轴相交于于点A,B,∴令y=0得:−2x2+4x+6=0,解得:x1=−1,x2=3,∴A(-1,0),B(3,0),∴AB=4故①正确;∵抛物线y=−2x2+4x+6与y轴相交于于点C,∴令x=0得:y=6,∴C(0,6),∴OC=6,故②正确;过点P作PF//y轴,交BC于点F,如图1所示.设直线BC 的解析式为y =kx +c ,将B(3,0)、C(0,6)代入y =kx +c ,得{3k +c =0c =6 ,解得{k =−2c =6, ∴直线BC 的解析式为y =−2x +6.∵点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,∴点P 的坐标为(m,−2m 2+4m +6),则点F 的坐标为(m,−2m +6),∴PF =−2m 2+4m +6−(−2m +6)=−2m 2+6m ,∴S =12PF ⋅OB =−3m 2+9m =−3(m −32)2+274, ∴当m =32时,ΔPBC 面积取最大值,最大值为274.故③正确,所以答案是:①②③.小提示:本题是二次函数综合题,考查了待定系数法求函数解析式,三角形的面积,二次函数的性质,坐标与图形的性质等知识,熟练运用方程思想及分类讨论思想是解题的关键.解答题16、跳绳是一项很好的健身活动,如图是小明跳绳运动时的示意图,建立平面直角坐标系如图所示,甩绳近似抛物线形状,脚底B 、C 相距20cm ,头顶A 离地175cm ,相距60cm 的双手D 、E 离地均为80cm .点A 、B 、C 、D 、E 在同一平面内,脚离地面的高度忽略不计.小明调节绳子,使跳动时绳子刚好经过脚底B 、C 两点,且甩绳形状始终保持不变.(1)求经过脚底B、C时绳子所在抛物线的解析式.(2)判断小明此次跳绳能否成功,并说明理由.答案:(1)y=110x2−90.(2)不成功,理由见解析分析:(1)建立如图所示的坐标系:结合题意可得:D(−30,0),E(30,0),由双手D、E离地均为80cm,可得C 点坐标为:(10,−80),再利用待定系数法求解解析式即可;(2)由175−80=95>80,可得跳绳不过头顶A,从而可得答案.(1)解:建立如图所示的坐标系:结合题意可得:D(−30,0),E(30,0),∵双手D、E离地均为80cm.∴C点坐标为:(10,−80),设抛物线为:y=ax2−80,{0=900a+b−80=100a+b,解得:{a=110b=−90,所以抛物线为y=110x2−90.(2)解:∵y=0.1x²-90,∴顶点为(0,-90).即跳绳顶点到手的距离是90cm,∵175−90=85>80,∴跳绳不过头顶A,∴小明此次跳绳能不成功.小提示:本题考查的是二次函数的实际应用,理解题意,建立合适的坐标系是解本题的关键.17、如图,抛物线的顶点为A(h,-1),与y轴交于点B(0,−12),点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,-3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.答案:(1)y=18(x−2)2−1;(2)见解析;(3)2√2+6,(4,−12)分析:(1)由题意抛物线的顶点A(2,-1),可以假设抛物线的解析式为y=a(x-2)2-1,把点B坐标代入求出a即可.(2)由题意P(m,18m2−12m−12),求出d2,PF2(用m表示)即可解决问题.(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.因为△DFQ的周长=DF+DQ+FQ,DF是定值=√22+22=2√2,推出DQ+QF的值最小时,△DFQ的周长最小,再根据垂线段最短解决问题即可.解:(1)设抛物线的函数解析式为y=a(x−ℎ)2+k,由题意,抛物线的顶点为A(2,−1),∴y=a(x−2)2−1.又∵抛物线与y轴交于点B(0,−12)∴−12=a(0−2)2−1∴a=18∴抛物线的函数解析式为y=18(x−2)2−1(2)证明:∵P(m,n),∴n=18(m−2)2−1=18m2−12m−12,∴P(m,18m2−12m−12),∴d=18m2−12m−12−(−3)=18m2−12m+52,∵F(2,1),∴PF=√(m−2)2+(18m2−12m−12−1)2=√164m4−18m3+78m2−52m+254,∵d2=164m4−18m3+78m2−52m+254,PF2=164m4−18m3+78m2−52m+254,∴d2=PF2,∴PF=d.(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.∵△DFQ的周长=DF+DQ+FQ,DF是定值=√22+22=2√2,∴DQ+QF的值最小时,△DFQ的周长最小,∵QF=QH,∴DQ+DF=DQ+QH,根据垂线段最短可知,当D,Q,H共线时,DQ+QH的值最小,此时点H与N重合,点Q在线段DN上,∴DQ+QH的最小值为6,∴△DFQ的周长的最小值为2√2+6,此时Q(4,-1).2小提示:本题属于二次函数综合题,考查了待定系数法,两点间距离公式,垂线段最短等知识,解题的关键是学会利用参数解决问题,学会用转化的思想思考问题.18、某宾馆有240间标准房,当标准房价格150元时,每天都客满,市场调查表明,当房价在150~225元之间(含150元,225元)浮动时,每提高25元,日均入住客房数减少20间.如果不考虑其它因素,宾馆将标准房价格提高到多少元时,客房的日营业收入最大?答案:每间租金225元时,客房租金总收入最高,日租金40500元分析:首先设宾馆客房租金每间日租金提高x个25元,以及客房租金总收入为y,建立y与x的关系式,并通过二次函数求解最大值.解:设宾馆客房租金每间日租金提高x个25元,将有20x间客房空出,客房租金总收入为y.由题意可得:y=(150+25x)(240−20x)=−500x2+3000x+36000=−500(x−3)2+40500当x=3时,y最大值=40500.因此每间租金150+25×3=225元时,客房租金总收入最高,日租金40500元.小提示:本题考查根据实际问题选择函数类型,通过实际问题,抽象出函数模型,并通二次函数计算最大值,考查对知识的综合运用能力,属于中档题.。
2024九年级数学上册“第二十二章二次函数”必背知识点一、二次函数的定义与表达式定义:一般地,自变量x和因变量y之间存在如下关系:y = ax² + bx + c(a, b, c为常数,a ≠ 0)。
这样的函数称为二次函数,其中a决定函数的开口方向,b和a共同决定对称轴的位置,c决定抛物线与y轴的交点。
三种表达式:1. 一般式:y = ax² + bx + c (a, b, c为常数,a ≠ 0)。
2. 顶点式:y = a(x - h)² + k,其中(h, k)为抛物线的顶点坐标。
3. 交点式:y = a(x - x₁)(x - x₂),仅限于与x轴有交点A(x₁, 0)和B(x₂, 0)的抛物线。
二、二次函数的图像与性质图像:二次函数的图像是一条抛物线。
开口方向与大小:由二次项系数a决定。
当a > 0时,开口向上;当a < 0时,开口向下。
|a|越大,开口越小;|a|越小,开口越大。
对称轴:1. 一般式:对称轴为直线x = -b/2a。
2. 顶点式:对称轴为直线x = h。
3. 交点式:对称轴为直线x = (x₁ + x₂)/2。
顶点坐标:1. 顶点式直接给出为(h, k)。
2. 一般式可通过公式计算得到(-b/2a, (4ac - b²)/4a)。
最值:1. 当a > 0时,函数有最小值,最小值为(4ac - b²)/4a,此时x = -b/2a。
2. 当a < 0时,函数有最大值,最大值为(4ac - b²)/4a,此时x = -b/2a。
三、二次函数与一元二次方程当二次函数y = ax² + bx + c中y = 0时,即转化为一元二次方程ax² + bx + c = 0。
函数图像与x轴的交点即为该方程的根。
根据判别式Δ = b² - 4ac的值,可以判断抛物线与x轴的交点个数:1. Δ > 0时,抛物线与x轴有两个交点。
第二十二章二次函数易错必考63题(13个考点)专练易错必考题一、根据二次函数的定义求参数1.(2023·全国·九年级专题练习)若函数2221m m y m m x =(+)是二次函数,那么m 的值是()A .2B .1 或3C .3D .12【答案】C【分析】根据二次函数的定义: 20y ax bx c a ,进行计算即可.【详解】解:由题意得:221=2m m ,解得:1m 或=3m ;又∵2+0m m ,解得:1m 且0m ,∴=3m .故选C .【点睛】本题考查二次函数的定义.熟练掌握二次函数的定义是解题的关键.注意二次项系数不为零.2.(2023春·江苏南京·九年级校联考阶段练习)点 ,1m 是二次函数221y x x 图像上一点,则236m m 的值为【答案】6【分析】把点 ,1m 代入221y x x 即可求得22m m 值,将236m m 变形 232m m ,代入即可.【详解】解:∵点 ,1m 是二次函数221y x x 图像上,∴2121m m 则222m m .∴ 223632326m m m m 故答案为:6.【点睛】本题考查了二次函数图象上点的坐标特征,根据点坐标求待定系数是解题的关键.3(2023春·广东河源·九年级校考开学考试)已知函数21(1)3m y m x x 为二次函数,求m 的值.【答案】m=﹣1【分析】根据二次函数的定义,列出一个式子即可解决问题.【详解】解:由题意:21012m m ,解得1m ,1m 时,函数21(1)3m y m x x 为二次函数.【点睛】本题考查二次函数的定义,记住二次函数的定义是解题的关键,形如2(y ax bx c a 、b 、c 是常数,0)a 的函数,叫做二次函数.易错必考题二、二次函数与一次函数、反比例函数图象的综合判断4.(2023春·浙江杭州·八年级校考阶段练习)二次函数2y ax bx c 的图象如图所示,则一次函数24y ax b ac 与反比例函数a b cy x在同一坐标系内的图象大致为()A .B .C .D .【答案】C【分析】由抛物线的图象可知,横坐标为1的点,即 1a b c ,在第四象限可得0a b c ,从而得到反比例函数a b cy x的图象分布在二、四象限,由抛物线的开口方向和与x 的交点个数得到2040a b ac ,,从而得到一次函数24y ax b ac 的图象经过一、二、三象限,即可得到答案.【详解】解:由抛物线的图象可知,横坐标为1的点,即 1a b c ,在第四象限,0a b c ,反比例函数a b cy x的图象分布在二、四象限,∵抛物线的开口向上,0a ,∵抛物线与x 轴有两个交点,240b ac ,一次函数24y ax b ac 的图象经过一、二、三象限,故选:C .【点睛】本题主要考查了一次函数、反比例函数、二次函数的图象与系数的关系,熟练掌握一次函数、反比例函数、二次函数的图象与系数的关系,采用数形结合的思想解题,是解此题的关键.5.(2023秋·四川南充·九年级校考期末)在同一坐标系中,一次函数y ax c 与二次函数2y ax c 的图象可能是()A .B .C .D .【答案】B【分析】可先确定每一选项中的一次函数图象,得到a 、c 的符号,再验证二次函数图象是否一致即可.【详解】解:A 、由一次函数y ax c 的图象得0a ,0c ,则二次函数2y ax c 图象开口向上,故该选项不符合题意;B 、由一次函数y ax c 的图象得a<0,0c ,则二次函数2y ax c 图象开口向下,与y 轴正半轴相交,故该选项符合题意;C 、由一次函数y ax c 的图象得a<0,0c ,则二次函数2y ax c 图象开口向下,故该选项不符合题意;D 、由一次函数y ax c 的图象得a<0,0c ,则二次函数2y ax c 图象开口向下,故该选项不符合题意,故答案为:B .【点睛】本题考查一次函数、二次函数图象综合判断,熟知一次函数、二次函数的图象与系数的关系是解答的关键.6.(2023春·山东日照·九年级校考期中)在同一直角坐标系中,反比例函数ky x与二次函数2y x kx k 的大致图像可能是()A .B .C .D .【答案】B【分析】根据k 的取值范围分当0k 时和当0k 时两种情况进行讨论,根据反比例函数的图像与性质以及二次函数的图像与性质进行判断即可.【详解】解:当0k 时,反比例函数ky x的图像经过一、三象限,二次函数2y x kx k 的图像开口向上,其对称轴2kx在y 轴右侧,且与y 轴交于负半轴,故选项C 、D 不符合题意;当0k 时,反比例函数ky x的图像经过二、四象限,二次函数2y x kx k 的图像开口向上,其对称轴2kx在y 轴左侧,且与y 轴交于正半轴,故选项A 不符合题意,选项B 符合题意.故选:B .【点睛】本题主要考查了反比例函数的图像与性质以及二次函数的图像与性质,解题关键是根据k 的取值范围分当0k 时和当0k 时两种情况进行讨论.7.(2023春·安徽安庆·九年级校考阶段练习)二次函数2y ax bx 和反比例函数by x在同一平面直角坐标系中的大致图象可能是()A .B .C .D .【答案】B【分析】根据b 的取值范围分当0b 时和当0b 时两种情况进行讨论,根据反比例函数图象与性质,二次函数图象和性质进行判断即可.【详解】当0b 时,反比例函数by x的图象经过第一、三象限,当0a 时,二次函数2y ax bx 图象,开口向上,对称轴2bx a在y 轴左侧,则A 选项不符合题意,当a<0时,二次函数2y ax bx 图象,开口向下,对称轴2bx a在y 轴右侧,则C 选项不符合题意,B 选项符合题意;当0b 时,反比例函数by x的图象经过第二、四象限,当0a 时,二次函数2y ax bx 图象,开口向上,对称轴2bx a在y 轴右侧,则D 选项不符合题意;故选:B .【点睛】本题考查反比例函数的性质及二次函数的性质,解题的关键是根据题意对b 的取值进行分类讨论(当0b 时和当0b 时),注意运用数形结合的思想方法,充分观寻找图象中的关键点,结合函数解析式进行求解.易错必考题三、二次函数的图象与性质8.(2023春·陕西咸阳·九年级统考期中)已知二次函数2220y mx mx m ()在22x 时有最小值2 ,则m ()A .4 或12B .4或12C .4 或12D .4或12【答案】B【分析】先求出二次函数对称轴为直线1x ,再分0m 和0m 两种情况,利用二次函数的性质进行求解即可.【详解】解:∵二次函数 222212y mx mx m x m ,∴对称轴为直线1x ,①当0m ,抛物线开口向上,1x 时,有最小值22y m ,解得:4m ;②当0m <,抛物线开口向下,∵对称轴为直线1x ,在22x 时有最小值2 ,∴2x 时,有最小值922y m m ,解得:12m .故选:B .【点睛】本题主要考查了二次函数图像的性质,掌握分类讨论的思想是解题的关键.9.(2023春·江苏泰州·九年级校考阶段练习)已知点 12,P y , 24,Q y , 3,M m y 均在抛物线2y ax bx c 上,其中20am b .若321y y y ,则m 的取值范围是()A .2mB .1mC .21m D .14m 【答案】B【分析】由20am b 得到2bm a,此时3y y ,判断 3M m y ,为抛物线的顶点,且抛物线开口向下,然后分4m 和4m 两种情况分类讨论解题即可.【详解】解:∵20am b ,2b m a,∵直线2bx a是抛物线²y ax bx c 的对称轴,且此时3y y ,且321y y y ,∴ 3M m y ,为抛物线的顶点,且抛物线开口向下,①当4m 时,点P Q 、都在M 左侧(或Q 与M 重合),此时一定有321y y y 符合题意,②当4m 时,∵321y y y ,∴M 在点P 右侧,即2m ,且点P 到对称轴的距离大于点Q 到对称轴的距离,即 24m m ,解得:�>1,∴14m ,综上所述,m 的取值范围是1m 故选:B .【点睛】本题考查二次函数的图像和性质,掌握分类讨论的数学思想是解题的关键.10.(2023秋·全国·九年级专题练习)设0ab ,且函数 1²24f x x ax b 与 2²42f x x ax b 有相同的最小值u ;函数 3²24f x x bx a 与 4²42f x x bx a 有相同的最大值v ;则u v 的值()A .必为正数B .必为负数C .必为0D .符号不能确定【答案】C【分析】本题给出四个函数的解析式及两条重要信息 1f x 与有相同的最小值u ; 3f x 与 4f x 有相同的最大值v ,将函数化为顶点式,再根据条件列出等式即可求解此题.【详解】∵ 2221²2444f x x ax b x a b a b a , 2222²4222424f x x ax b x a b a b a ,则22424b a u b a ,得223b a ①∵0ab ,∴0b ,又∵ 2222234²4422424f x x b a b a b f x x b a b a b ,;则22424a b v a b ,得223a b ,②∵0ab ,∴ 0a ,∴3320a b ,∴②① 得, 2223a b b a ,解得0a b 或23b a (舍去),当0a b 时,2226565650u v b a a b a b b a ,∴ 0u v ,故选:C .【点睛】本题考查了二次函数的最值,难度较大,解题的关键是将函数的标准形式化为顶点形式.11.(2023秋·全国·九年级专题练习)已知抛物线243y x x 上两点 1122,,,A x y B x y ,且212x x ,则下列说法一定正确的是()A .若11x 时,则120y yB .若11x 时,则120y yC .若111x 时,则120y yD .若111x 时,则210y y 【答案】D【分析】求得抛物线的开口方向,对称轴以及抛物线与x 轴的交点,然后利用二次函数的性质判断即可;【详解】解:∵抛物线 22433121y x x x x x ,∴抛物线开口向上,对称轴为直线2x ,抛物线与x 轴的交点为 (3,0),1,0 ,若11x 时,212x x ∵,∴21x ,∴无法确定1y 、2y 的大小,故A 、B 不正确,不合题意;若111x 时,∵抛物线243y x x 上两点 1122,,,A x y B x y ,且212x x ,∴213x ,∴210y y ,故C 不正确,D 正确.故选:D .【点睛】本题考查了二次函数图象上点的坐标特征,抛物线与x 轴的交点,熟知二次函数的性质是解题的关键12.(2023秋·福建福州·九年级福建省福州第八中学校考开学考试)已知抛物线 220y ax ax b a 经过 13,A n y , 221, B n y 两点,若A ,B 分别位于抛物线对称轴的两侧,且12y y ,则n 的取值范围是.【答案】01n /10n 【分析】根据二次函数的增减性,进行求解即可.【详解】解:∵ 220y ax ax b a ,对称轴为直线212ax a,∴抛物线开口向下,抛物线上的点离对称轴越远,函数值越小;∵A ,B 分别位于抛物线对称轴的两侧,且12y y ,①当3121n n 时,此不等式无解,不符合题意;②2113n n ,即:21n 时,31121n n ,解得:0n ,综上:01n .故答案为:01n .【点睛】本题考查二次函数的图象和性质.解题的关键是掌握二次函数的增减性.13.(2023秋·湖北孝感·九年级校考开学考试)关于抛物线2y x ,给出下列说法:①抛物线开口向下,顶点是 0,4.②当1x 时,y 随x 的增大而减小.③当23x 时,50y .④若,m p ,n p 是该抛物线上两个不同的点,则0m n .其中正确的说法有.(填序号)【答案】②④/④②【分析】直接根据二次函数的图象和性质逐项判断即可.【详解】解:∵2y x ,∴①抛物线开口向下,顶点是原点,故该项错误;②对称轴为0x ,当1x 时,y 随x 的增大而减小,故该项正确;③当23x 时,0x 时取最大值0,3x 时取最小值9 ,因此90y ,故该项错误;④若 ,m p 、 ,n p 是该抛物线上两点,则两点关于直线0x 对称,因此0m n ,故该项正确.故答案为:②④.【点睛】本题主要考查二次函数的图象和性质,掌握该知识点并熟练运用数形结合思想是解题的关键.14.(2023秋·福建福州·九年级校考开学考试)若函数2y ax bx c (0a )图象过点(1,0) ,(0,2) 且抛物线的顶点位于第四象限,设35P a b c ,则P 的取值范围为.【答案】88P 【分析】根据(1,0) 和(0,2) 得到a ,b ,c 的关系,通过0a ,对称轴大于0,得到0b ,进而求出a 的准确范围,最终求出P 的取值范围.【详解】解:由题意可知,0a b c ,2c ,20a b ,2b a ,0a ∵,且对称轴bx 02a,0b ,20a ,02a ,353510288P a b c a a a ∵,8888a ,88P .故答案为:88P .【点睛】本题考查二次函数的性质,解题关键是掌握二次函数与方程的关系,掌握二次函数图象与系数的关系.15、(2023春·吉林长春·九年级校考期中)如图,在平面直角坐标系中,线段PQ 的端点坐标分别为(12)P ,,(13)Q ,,抛物线2223y x mx m (m 为常数,0m )和线段PQ 有公共点时,m 的取值范围是,【答案】1713m【分析】抛物线和线段PQ 有公共点可知23y ,当点(12)P ,在抛物线上时,可算出此时的m 的值,当点(13)Q ,在抛物线上时,算出此时的m 的值,由此即可求解.【详解】解:抛物线2223y x mx m (m 为常数,0m )和线段PQ 有公共点,(12)P ,,(13)Q ,,∴23y ,∴当点(12)P ,在抛物线上时,21232m m ,解得,11m ,213m ;当点(13)Q ,在抛物线上时,21233m m ,解得,3173m ,4173m ;∵当23y 时,有公共点,且0m ,∴m 的取值范围是1713m ,故答案为:1713m.【点睛】本题主要考查二次函数图像与线段的交点问题,掌握二次函数图像的性质,线段与图像的位置关系,数形结合分析是解题的关键.16.(2023春·浙江杭州·九年级校考阶段练习)已知二次函数 2220y x mx m m m .(1)若2m ,求该函数图象的顶点坐标.(2)若当1x 时,y 随x 的增大而减小;当2x 时,y 随x 的增大而增大,求m 的取值范围.(3)若函数1y y m ,点(2,),(,)M m s N n t 都在函数1y 的图象上,且s t ,求n 的取值范围.(用含m 的代数式表示)【答案】(1)2,2 (2)12m (3)2n m 或3n m 【分析】(1)把2m 代入 2220y x mx m m m 求出解析式,然后配方即可;(2)先求出 2220y x mx m m m 的对称轴,可得当x m 时,y 随x 的增大而减小;当x >m 时,y随x 的增大而增大,再结合条件即可求出;(3)根据代入法求出s t 、,结合s t 即可求出答案.【详解】(1)解:当2m 时,242y x x ,将242y x x 配方得:2(2)2y x ,∴该函数图象的顶点坐标是 2,2 ;(2)解:在 2220y x mx m m m 中,222b m x m a 轴,当x m 时,y 随x 的增大而减小;当x >m 时,y 随x 的增大而增大,∵当1x 时,y 随x 的增大而减小;当2x 时,y 随x 的增大而增大,∴12m ;(3)解:∵1y y m , 2220y x mx m m m ,∴221(12)y x m x m m ,∵点(2,),(,)M m s N n t 都在函数1y 的图象上,当2x m 时,6s ,当x n 时,22211(12)()24m t n m n m m n ,∵s t ,∴21216()24m n,∴212125()6244m n ,∴12522m n 或12522m n ,∴2n m 或3n m ;【点睛】本题是二次函数的一个综合题,主要考查了求顶点坐标,二次函数的性质,熟练掌握相关知识是关键.17.(2023秋·全国·九年级专题练习)已知抛物线2(0)y ax bx c a 经过(1)A t ,,(3)B t ,两点.(1)当1a 时,求b 的值;(2)当0 t ,且10x ≤≤时,y 的最大值为3.①求抛物线的解析式;②抛物线与y 轴交于点C ,直线(1)y kx k 与抛物线交于点D ,与直线BC 交于点F ,连接CD ,当:3:2COF CDF S S 时,求k 的值.【答案】(1)2b (2)①223y x x ;②32k =或4【分析】(1)根据(1)A t ,,(3)B t ,对称,写出对称轴方程1x ,根据对称轴是2b x a,且1a ,求出2b ;(2)①10x ≤≤在对称轴1x 的左侧,0x 时时,y 有最大值为3,得到0x 时,3y c ,根据0 t ,得到方程组,解方程组即可求解;②利用三角形的面积关系,得到点F 与点D 的横坐标的比为3:5,设点F 的横坐标为3t ,则点D 的横坐标为5t ,利用待定系数法用含t 的代数式求得直线OF 的解析式,进而得到点D 的坐标,将点D 坐标代入抛物线的解析式求得t 值即可求得结论.【详解】(1)解:抛物线2(0)y ax bx c a 经过(1)A t ,,(3)B t ,两点,1312x ,∵2b x a,1a ,2b ;(2)解:①∵(1)A t ,,(3)B t ,,0 t ,(10)A ,,(30)B ,,∵对称轴是直线1x ,0a ,当1x 时,y 随x 的增大而增大,∵10x ≤≤时,y 的最大值为3,当0x 时,3y c ,抛物线解析式为23y ax bx ,把(10)A ,,(30)B ,,代入得:309330a b a b, 12a b, 抛物线解析式为223y x x ;②由①得:(10)A ,,(30)B ,,(03)C ,,设直线BC 的解析式为 10y kx b k ,11330b k b,解得:13k b , 直线BC 的解析式为3y x ,∵:3:2COF CDF S S ,:3:5COF COD S S ,点F 与点D 的横坐标的比为3:5,设点F 的横坐标为3t ,则点D 的横坐标为5t ,∵点F 在直线BC 上,3,33F t t .∵点F 在直线(1)y kx k 上,333t k t ,解得:1t k t, 直线OF 的解析式为1t y x t,∵点D 在直线OF 上, 5,55D t t ,∵点D 在抛物线上,2525355t t t ,解得:15t 或25,当15t 时,115415k ,当25t 时,2135225x ,综上所述,32k =或4.【点拨】本题考查了二次函数性质,待定系数法求函数解析式,三角形面积,熟练掌握根据二次函数值随自变量变化情况确定二次函数的最值,待定系数法求二次函数的解析式,同高的两个三角形面积与底边成比例,是解决本题的关键.易错必考题四、二次函数图象的平移问题18.(2023秋·全国·九年级专题练习)将抛物线22y ax bx (a 、b 是常数,0a )向下平移2个单位长度后,得到的新抛物线恰好和抛物线2142y x x关于y 轴对称,则a 、b 的值为()A .1a ,2b B .12a ,1b =-C .12a ,1b =-D .1a ,2b 【答案】C【分析】先求出抛物线2142y x x 关于y 轴对称的抛物线为 219122y x ,再根据抛物线平移的性质得出抛物线22y ax bx 向下平移2个单位长度后为24y ax bx ,即可得出a 和b 的值.【详解】解:∵ 2211941222y x x x,∴抛物线2142y x x 关于y 轴对称的抛物线为 219122y x ,∵抛物线22y ax bx 向下平移2个单位长度后为24y ax bx ,∵24y ax bx 与2142y x x关于y 轴对称,∴ 22419122y ax bx x ,整理得:224412y x x a bx x,∴12a ,1b =-,故选:C .【点睛】本题主要考查了二次函数的平移规律,解题的关键是掌握将二次函数化为顶点式的方法和步骤,以及二次函数的平移规律:上加下减,左加右减.19.(2023春·浙江金华·九年级校考期中)如图,一条抛物线与x 轴相交于M ,N 点(点M 在点N 的左侧),其顶点P 在线段AB 上移动,点A ,B 的坐标分别为 2,3 , 1,3,点N 的横坐标的最大值为4,则点M 的横坐标的最小值为()A .1B .3C .5D .7【答案】C 【分析】其顶点P 在线段AB 上移动,点A ,B 的坐标分别为 2,3 , 1,3,分别求出对称轴过点A 和B 时的情况,即可判断出M 点横坐标的最小值.【详解】解:根据题意知,∵点N 的横坐标的最大值为4,此时点P 和点B 重合,即抛物线的对称轴为:1x ,N 点坐标为 4,0,则M 点坐标为 2,0 ,点P 和点A 重合,点M 的横坐标最小,此时抛物线的对称轴为:2x ,N 点坐标为 1,0,则M 点的坐标为 5,0 ,点M 的横坐标的最小值为5 ,故选:C .【点睛】本题考查了抛物线与x 轴的交点,二次函数的图象与性质,解答本题的关键是理解二次函数在平行于x 轴的直线上移动时,两交点之间的距离不变.20.(2023春·湖北恩施·九年级统考期中)在平面直角坐标系xOy 中,将抛物线223y x x 先绕原点O 旋转180 ,再向上平移3个单位,则平移后的抛物线解析式为.【答案】22y x x【分析】先把抛物线配方为顶点式,求出顶点坐标,求出旋转后的抛物线,再根据“上加下减,左加右减”的法则进行解答即可.【详解】解:∵ 2223=12y x x x ,∴抛物线的顶点为 12,,将抛物线223y x x 先绕原点旋转180 抛物线顶点为 12 ,-,旋转后的抛物线为 212y x ,再向上平移3个单位, 2212+32y x x x .故答案为:22y x x .【点睛】本题考查的是抛物线的图象与几何变换,解题的关键是熟知函数图象旋转与平移的法则.21.(2023秋·河北张家口·九年级统考期末)如图,坐标平面上有一透明片,透明片上有一抛物线L : 227y x .(1)写出L 的对称轴和y 的最小值;(2)点P 为透明片上一点,P 的坐标为 9,6.平移透明片,平移后,P 的对应点为P ,抛物线L 的对应抛物线为L ,其表达式恰为267y x x ,求PP 移动的最短路程.【答案】(1)对称轴为直线:7x ,y 的最小值为2(2)42PP 【分析】(1)直接根据解析式进行作答即可;(2)求出平移后的抛物线的顶点坐标,PP 移动的最短路程为两个顶点间的距离,进行求解即可.【详解】(1)解:∵ 222277y x x ,顶点坐标为 7,2,∴对称轴为直线7x ,y 的最小值为2;(2)∵ 226732y x x x ,顶点坐标为 3,2 ,∵抛物线L 的顶点坐标为 7,2,∴PP 移动的最短路程为 22732242 .【点睛】本题考查二次函数的图象与性质,二次函数图象的平移.熟练掌握二次函数的图象和性质,是解题的关键.22.(2023秋·陕西安康·九年级统考期末)已知二次函数 2420y ax x a 图像的对称轴为直线2x .(1)求a 的值;(2)将该二次函数的图像沿x 轴向右平移2个单位后得到一个新的二次函数,求新二次函数的解析式.【答案】(1)1a (2)2814y x x 【分析】(1)根据对称轴列式求解即可解答;(2)将a 的值代入,结合抛物线解析式求平移后图像所对应的二次函数的表达式即可.【详解】(1)解:∵二次函数 2420y ax x a 图像的对称轴为直线2x ∴422a,解得1a .(2)解:∵1a ,∴242y x x ,∴平移后为: 222422814y x x x x .∴新二次函数的解析式为2814y x x .【点睛】本题主要考查了二次根式的性质、二次根式的平移等知识点,掌握二次根式的性质是解答本题的关键.23.(2023·山东·九年级专题练习)如图,抛物线过点 0,0O , 10,0E ,矩形ABCD 的边AB 在线段OE 上(点B 在点A 的左侧),点C ,D 在抛物线上,设 ,0B t ,当2t 时,4BC .(1)求抛物线的函数表达式;(2)当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少?(3)保持2t 时的矩形ABCD 不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点G ,H ,且直线GH 平分矩形ABCD 的面积时,求抛物线平移的距离.【答案】(1)21542y x x (2)当1t 时,矩形ABCD 的周长有最大值,最大值为412(3)4【分析】(1)设抛物线的函数表达式为 100y ax x a ,求出点C 的坐标,将点C 的坐标代入即可求出该抛物线的函数表达式;(2)由抛物线的对称性得AE OB t ,则102AB t ,再得出21542BC t t ,根据矩形的周长公式,列出矩形周长的表达式,并将其化为顶点式,即可求解;(3)连接A C ,BD 相交于点P ,连接OC ,取OC 的中点Q ,连接PQ ,根据矩形的性质和平移的性质推出四边形OCHG 是平行四边形,则PQ CH ,12PQ OA .求出2t 时,点A 的坐标为 8,0,则142CH OA ,即可得出结论.【详解】(1)解:设抛物线的函数表达式为 100y ax x a .∵当2t 时,4BC ,∴点C 的坐标为 2,4 .将点C 坐标代入表达式,得 22104a ,解得14a .∴抛物线的函数表达式为21542y x x.(2)解:由抛物线的对称性得:AE OB t ,∴102AB t .当x t 时,21542BC t t .∴矩形ABCD 的周长为2152210242AB BC t t t21202t t 2141122t .∵102,∴当1t 时,矩形ABCD 的周长有最大值,最大值为412.(3)解:连接AC ,BD 相交于点P ,连接OC ,取OC 的中点Q ,连接PQ .∵直线GH 平分矩形ABCD 的面积,∴直线GH 过点P ..由平移的性质可知,四边形OCHG 是平行四边形,∴PQ CH .∵四边形ABCD 是矩形,∴P 是AC 的中点.∴12PQ OA .当2t 时,点A 的坐标为 8,0,∴142CH OA .∴抛物线平移的距离是4.【点睛】本题主要考查了求二次函数的解析式,二次函数的图象和性质,矩形的性质,平移的性质,解题的关键是掌握用待定系数法求解二次函数表达式的方法和步骤,二次函数图象上点的坐标特征,矩形的性质,以及平移的性质.易错必考题五、根据二次函数的图象判断式子符号24.(2023秋·全国·九年级专题练习)如图,抛物线 21y a x k 与x 轴交于 1,0A ,B 两点,下列判断正确的是()A .0a B .当0x 时,y 随x 的增大而减小C .点B 的坐标为3,0D .0a k 【答案】C 【分析】根据二次函数的图象和性质,逐一进行判断即可.【详解】解:A 、抛物线开口向下,a<0,选项错误,不符合题意;B 、 21y a x k ,对称轴为1x ,当1x 时,y 随x 的增大而减小,选项错误,不符合题意;C 、∵抛物线 21y a x k 与x 轴交于 1,0A ,对称轴为1x ,∴点B 的坐标为 3,0,选项正确,符合题意;D 、∵抛物线 21y a x k 与x 轴交于 1,0A ,∴ 2011a k ,∴4k a ,∴430a k a a a ,故选项D 错误,不符合题意;故选C .【点睛】本题考查二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解题的关键.25.(2023秋·全国·九年级专题练习)如图,根据二次函数2y ax bx c 的图象得到如下结论:①0abc ②20a b ③0a b c ④30a c ⑤当2x 时,y 随x 的增大而增大⑥一定存在实数0x ,使得200ax bx a b 成立.上述结论,正确的是()A .①②⑤B .②③④C .②③⑥D .③④⑤【答案】C 【分析】根据抛物线开口向上得出0a ,根据抛物线和y 轴的交点在y 轴的负半轴上得出0c ,根据图象关于=1x 对称,得到12b a,即2a b ,故0b ,根据图象与x 轴的一个交点为3x ,即可得到图象与x 轴的另一个交点为1x ,根据方程20ax bx c 的根,把1x 代入2y ax bx c 求出0a b c ,再将2a b 代入0a b c 得到30a c ,根据抛物线的对称轴和图象得出当1x 时,y 随x 的增大而增大,根据函数最小值为a b c ,当01x 时,则200ax bx c a b c ,即0ax bx a b ,故一定存在实数0x ,使得200ax bx a b 成立.【详解】解:∵抛物线开口向上、顶点在y 轴左侧、抛物线与y 轴交于负半轴,0a ,0c ,∵抛物线关于=1x 对称,12b a,即20a b , 0b ,<0abc ,故①错误,故②正确;∵抛物线过点 3,0 ,对称轴为直线=1x ,∴抛物线过点 1,0,把1x 代入2y ax bx c ,得到0a b c 0a b c ,故③正确;2b a ,0a b c ,30a c ,故④错误;∵抛物线开口向上,对称轴是直线=1x ,∴当1x 时,y 随x 的增大而增大;故⑤错误;∵函数最小值为a b c ,∴当01x 时,则200ax bx c a b c ,即0ax bx a b ,∴一定存在实数0x ,使得200ax bx a b 成立,故⑥正确;故选:C .【点睛】本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.26.(2023·黑龙江齐齐哈尔·统考模拟预测)如图,已知二次函数 20y ax bx c a 的图象如图所示,对于下列结论,其中正确结论的个数是()①0abc ;② 220a c b ;③30a c ;④若m 为任意实数;则26am bm b a ;⑤当22x k 时,y 随x 增大而先增大后减小.A .1B .2C .3D .4【答案】B【分析】根据二次函数的性质进行判断求解.【详解】解:由于图像开口向上,0a ,∵抛物线对称轴为12b x a,20b a ,∵抛物线与y 轴的交点在x 轴下方,0c ,<0abc ,①错误;有图像知,将1x 代入得0a b c ,将=1x 代入得<0a b c ,22()()0a c b a b c a c b ,②错误;有图像知,将1x 代入得0a b c ,2b a ∵,30a c ,③正确;当=1x 时,函数有最小值y a b c ,若m 为任意实数;则2am bm c a b c ,2am bm a b ,22am bm b a b ,2b a ∵,243am bm b a a a ,0a ∵,36a a ,26am bm b a ,④正确;20k ∵,222k ,根据图像可知,22x k 时,y 随x 增大而先减小后增大.⑤错误;故选:B .【点睛】本题主要考查二次函数的图像和性质,熟练掌握二次函数的性质是解题的关键.27.(2023·山东·九年级专题练习)如图,二次函数2(0)y ax bx c a 的图象与x 轴的正半轴交于点A ,对称轴为直线1x .下面结论:①<0abc ;②20a b ;③30a c ;④方程20(0)ax bx c a 必有一个根大于1 且小于0.其中正确的是.(只填序号)【答案】①②④【分析】根据题意和函数图象,可以判断各个小题中的结论是否成立,本题得以解决.【详解】解:由图象可得,000,,,a b c 则<0abc ,故①正确;∵12b a,∴2b a ,∴20a b ,故②正确;∵函数图象与x 轴的正半轴交点在点(2,0)和(3,0)之间,对称轴是直线1x ,∴函数图象与x 轴的另一个交点在点(0,0)和点 1,0 之间,故④正确;∴当=1x 时,0y a b c ,∴20y a a c ,∴30a c ,故③错误;故答案为:①②④.【点睛】本题考查二次函数图象与系数的关系、二次函数图象上点的坐标特征、抛物线与x 轴的交点,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.28.(2023秋·全国·九年级专题练习)已知二次函数 20y ax bx c a 的图像如图所示,有下列5个结论:①0abc ;②b a c ;③420a b c ;④23c b ;⑤ a b m am b (1m 的实数).其中正确的结论有(填序号)【答案】③④⑤【分析】由抛物线的开口方向可以得出a<0,由抛物线与y 轴的交点可以判断0c ,由抛物线的对称轴可以判断0b ,再根据抛物线与x 轴的交点情况以及抛物线的顶点进行推理即可得到答案.【详解】解:①∵二次函数 20y ax bx c a 的图象开口方向向下,与y 轴交于正半轴,对称轴为直线1x ,0002b a c a,,,>0b ,<0abc ,故①错误,不符合题意;②∵二次函数 20y ax bx c a 的图象与x 轴的交点在 10 ,的右边,图象开口方向向下, 当=1x 时,0y ,0a b c ,b ac ,故②错误,不符合题意;③∵二次函数 20y ax bx c a 的图象与x 轴的另一个交点在 20,的右边,图象开口方向向下, 当2x 时,0y ,420a b c ,故③正确,符合题意;④由①得:12b a,12a b ,由②得:<0a b c ,102b bc ,23c b ,故④正确,符合题意;⑤∵二次函数 20y ax bx c a 的图象的对称轴为直线1x ,当1x 时,y 取最大值,最大值为a b c ,当 1x m m 时,2am bm c a b c ,1a b m am b m ,故⑤正确,符合题意;综上所述:正确的结论有:③④⑤,故答案为:③④⑤.【点睛】本题主要考查了二次函数的图象与各项系数符号的关系,根据二次函数的图象判断式子的符号,熟练掌握二次函数的性质,采用数形结合的方法解题,是解此题的关键.29.(2023秋·全国·九年级专题练习)如图,二次函数2y ax bx c 的图象过点 3,0A ,对称轴为直线1x .给出以下结论:①0abc <;② 21a ax x b ;③若 211,M n y , 222,N n y 为函数图象上的两点,则12y y ;④若关于x 的一元二次方程 20ax bx c p p 有整数根,则对于a 的每一个值,对应的p 值有3个.其中正确的有.(写出所有正确结论的序号)【答案】①②③【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】∵抛物线开口向下,0a ;∵抛物线的对称轴为直线x 2b a10 ,0b ;∵抛物线与y 轴的交点在x 轴上方,0c ,0abc ,故①正确;∵当1x 时,函数有最大值,2a b c ax bx c ,即 21a ax x b故②正确;∵抛物线的对称轴是1x ,则2212(1,2,())M n y N n y ,在对称轴右侧,2212n n ,12y y ,。
第22章二次函数易错点汇总
易错点
一、配方时,不能直接除去(或丢掉)二次项系数,
同时在提出二次项系数后,不能在括号内加,同时
在括号外减去所加的常数.
【例1】求二次函数y=-2x2+8x-2图象的顶点坐标.
二、对于抛物线的平移问题,要么对“括号内左加右减,括号外上加下减”掌握不透,导致图象的平移方向出错,要么未将一般式化为顶点式,而将平移规律直接错误地运用到一般式中.
【例2】将抛物线y=-x2+2x向左平移2个单位后,得到的抛物线的解析式是什么?
三、对于含有字母系数的函数,要仔细审题,分类讨论,合理取舍,寻求准确答案.
【例3】当a为何值时,函数y=ax2-3x+1的图象与x轴只有一个交点?
四、利用二次函数模型解决实际问题时,忽略所得二次函数中自变量的取值范围,将实际问题的图象看成了一条完整的抛物线,导致所求的解不符合实际问题的意义.
【例4】为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯. 已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=-10x+500.
(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?
(2)设李明获得的利润为W(元),当销售单价定为多少元时,每月可获得最大利润?(物价部门规定,这种节能灯的销售单价不得高于25元)学以致用
1. 用配方法求y=2x2-8x-10的对称轴和顶点坐标.
2. (2017贵港)将如图M22-1所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是
()
A. y=(x-1)2+1
B. y=(x+1)2+1
C. y=2(x-1)2+1
D. y=2(x+1)2+1
3. 已知函数y=(k-3)x2+2x+1的图象与x轴有交点,则k的取值范围是()
A. k<4
B. k≤4
C. k<4且k≠3
D. k≤4且k≠3
4. (2017营口)夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务. 为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元. (1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围;(2)若每台空调的成本价(日生产量不超过50台时)为2 000元,订购价格为每台2 920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.。