湖南省湘潭市2017中考数学试题(word解析版)
- 格式:doc
- 大小:989.00 KB
- 文档页数:16
2017年湖南省长沙市中考数学试卷(含答案解析版)DA(2,4),B(6,0),O(0,0),以原点O为位似中心,把这个三角形缩小为原来的,可以得到△A′B′O,已知点B′的坐标是(3,0),则点A′的坐标是.17.(3分)甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6米,方差分别是S甲2=1.2,S乙2=0.5,则在本次测试中,同学的成绩更稳定(填“甲”或“乙”)18.(3分)如图,点M是函数y=x与y=的图象在第一象限内的交点,OM=4,则k的值为.三、解答题(本大题共8小题,共66分)19.(6分)计算:|﹣3|+(π﹣2017)0﹣2sin30°+()﹣1.20.(6分)解不等式组,并把它的解集在数轴上表示出来.21.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A 60≤x<70 17 0.17B 70≤x<8030 aC 80≤x<90 b0.45D 90≤x<100 80.08请根据所给信息,解答以下问题:(1)表中a= ,b= ;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.22.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?23.(9分)如图,AB与⊙O相切于点C,OA,OB 分别交⊙O于点D,E,=(1)求证:OA=OB;(2)已知AB=4,OA=4,求阴影部分的面积.24.(9分)自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件.已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.25.(10分)若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数y=(k为常数,k≠0)的图象上,且这三点的纵坐标y1,y2,y3构成“和谐三组数”,求实数t的值;(3)若直线y=2bx+2c(bc≠0)与x轴交于点A (x1,0),与抛物线y=ax2+3bx+3c(a≠0)交于B(x2,y2),C(x3,y3)两点.①求证:A,B,C三点的横坐标x1,x2,x3构成“和谐三组数”;②若a>2b>3c,x2=1,求点P(,)与原点O的距离OP 的取值范围.26.(10分)如图,抛物线y=mx 2﹣16mx+48m (m >0)与x 轴交于A ,B 两点(点B 在点A 左侧),与y 轴交于点C ,点D 是抛物线上的一个动点,且位于第四象限,连接OD 、BD 、AC 、AD ,延长AD 交y 轴于点E .(1)若△OAC 为等腰直角三角形,求m 的值;(2)若对任意m >0,C 、E 两点总关于原点对称,求点D 的坐标(用含m 的式子表示);(3)当点D 运动到某一位置时,恰好使得∠ODB=∠OAD ,且点D 为线段AE 的中点,此时对于该抛物线上任意一点P (x 0,y 0)总有n+≥﹣4my 02﹣12y 0﹣50成立,求实数n 的最小值.2017年湖南省长沙市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列实数中,为有理数的是()A.B.πC.D.1【分析】根据有理数是有限小数或无限循环小数,无理数是无限不循环小数,可得答案.【解答】解:,π,是无理数,1是有理数,故选:D.【点评】本题考查了实数,正确区分有理数与无理数是解题关键.2.(3分)下列计算正确的是()A.= B.a+2a=2a2C.x(1+y)=x+xy D.(mn2)3=mn6【分析】分别利用合并同类项法则以及单项式乘以多项式和积的乘方运算法则化简判断即可.【解答】解:A、+无法计算,故此选项错误;B、a+2a=3a,故此选项错误;C、x(1+y)=x+xy,正确;D、(mn2)3=m3n6,故此选项错误;故选:C.【点评】此题主要考查了合并同类项以及单项式乘以多项式和积的乘方运算等知识,正确掌握运算法则是解题关键.3.(3分)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826×106B.8.26×107 C.82.6×106 D.8.26×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将82600000用科学记数法表示为:8.26×107.故选B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a 的值以及n的值.4.(3分)在下列图形中,既是轴对称图形,又是中心对称图形的是()A.直角三角形B.正五边形C.正方形D.平行四边形【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、既是轴对称图形,又是中心对称图形,故本选项正确;D、不是轴对称图形,是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3分)一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形【分析】根据三角形内角和等于180°计算即可.【解答】解:设三角形的三个内角的度数之比为x、2x、3x,则x+2x+3x=180°,解得,x=30°,则3x=90°,∴这个三角形一定是直角三角形,故选:B.【点评】本题考查的是三角形内角和定理的应用,掌握三角形内角和等于180°是解题的关键.6.(3分)下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生C.数据3,5,4,1,﹣2的中位数是4 D.“367人中有2人同月同日出生”为必然事件【分析】根据可能性的大小、全面调查与抽样调查的定义及中位数概念、必然事件、不可能事件、随机事件的概念进行判断即可.【解答】解:A、检测某批次灯泡的使用寿命,调查具有破坏性,应采用抽样调查,此选项错误;B、可能性是1%的事件在一次试验中可能发生,此选项错误;C、数据3,5,4,1,﹣2的中位数是3,此选项错误;D、“367人中有2人同月同日出生”为必然事件,此选项正确;故选:D.【点评】本题主要考查可能性的大小、全面调查与抽样调查的定义及中位数概念、随机事件,熟练掌握基本定义是解题的关键.7.(3分)某几何体的三视图如图所示,因此几何体是()A.长方形B.圆柱C.球D.正三棱柱【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.【解答】解:从正面看,是一个矩形;从左面看,是一个矩形;从上面看,是圆,这样的几何体是圆柱,故选B.【点评】本题考查了几何体的三种视图,注意所有的看到的棱都应表现在三视图中.8.(3分)抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4)B.(﹣3,4)C.(3,﹣4)D.(2,4)【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标.【解答】解:y=2(x﹣3)2+4是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(3,4).故选A.【点评】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.9.(3分)如图,已知直线a∥b,直线c分别与a,b相交,∠1=110°,则∠2的度数为()A.60°B.70°C.80°D.110°【分析】直接根据平行线的性质即可得出结论.【解答】解:∵直线a∥b,∴∠3=∠1=110°,∴∠2=180°﹣110°=70°,故选B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.10.(3分)如图,菱形ABCD的对角线AC,BD 的长分别为6cm,8cm,则这个菱形的周长为()A.5cm B.10cm C.14cm D.20cm【分析】根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC,OB=BD,再利用勾股定理列式求出AB,然后根据菱形的四条边都相等列式计算即可得解.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=×6=3cm,OB=BD=×8=4cm,根据勾股定理得,AB===5cm,所以,这个菱形的周长=4×5=20cm.故选D.【点评】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.11.(3分)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里 B.12里 C.6里D.3里【分析】设第一天走了x里,则第二天走了x 里,第三天走了×x…第六天走了()5x里,根据路程为378里列出方程并解答.【解答】解:设第一天走了x里,依题意得:x+x+x+x+x+x=378,解得x=192.则()5x=()5×192=6(里).故选:C.【点评】本题考查了一元一次方程的应用.根据题意得到()5x里是解题的难点.12.(3分)如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD的周长为m,△CHG的周长为n,则的值为()A.B.C.D.随H点位置的变化而变化【分析】设CH=x,DE=y,则DH=﹣x,EH=﹣y,然后利用正方形的性质和折叠可以证明△DEH∽△CHG,利用相似三角形的对应边成比例可以把CG,HG分别用x,y分别表示,△CHG的周长也用x,y表示,然后在Rt△DEH中根据勾股定理可以得到x﹣x2=y,进而求出△CHG的周长.【解答】解:设CH=x,DE=y,则DH=﹣x,EH=﹣y,∵∠EHG=90°,∴∠DHE+∠CHG=90°.∵∠DHE+∠DEH=90°,∴∠DEH=∠CHG,又∵∠D=∠C=90°,△DEH∽△CHG,∴==,即==,∴CG=,HG=,△CHG的周长为n=CH+CG+HG=,在Rt△DEH中,DH2+DE2=EH2即(﹣x)2+y2=(﹣y)2整理得﹣x2=,∴n=CH+HG+CG===.∴=.故选:B.【点评】本题考查翻折变换及正方形的性质,正方形的有些题目有时用代数的计算证明比用几何方法简单,甚至几何方法不能解决的用代数方法可以解决.本题综合考查了相似三角形的应用和正方形性质的应用.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)分解因式:2a2+4a+2= 2(a+1)2.【分析】原式提取2,再利用完全平方公式分解即可.【解答】解:原式=2(a2+2a+1)=2(a+1)2,故答案为:2(a+1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.(3分)方程组的解是.【分析】根据加减消元法,可得答案.【解答】解:两式相加,得4x=4,解得x=1,把x=1代入x+y=1,解得y=0,方程组的解为,故答案为:.【点评】本题考查了解二元一次方程组,利用加减消元法是解题关键.15.(3分)如图,AB为⊙O的直径,弦CD⊥AB 于点E,已知CD=6,EB=1,则⊙O的半径为 5 .【分析】连接OC,由垂径定理知,点E是CD的中点,AE=CD,在直角△OCE中,利用勾股定理即可得到关于半径的方程,求得圆半径即可.【解答】解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设⊙O的半径为xcm,则OC=xcm,OE=OB﹣BE=x﹣1,在Rt△OCE中,OC2=OE2+CE2,∴x2=32+(x﹣1)2,解得:x=5,∴⊙O的半径为5,故答案为:5.【点评】本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键.16.(3分)如图,△ABO三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O为位似中心,把这个三角形缩小为原来的,可以得到△A′B′O,已知点B′的坐标是(3,0),则点A′的坐标是(1,2).【分析】根据位似变换的性质进行计算即可.【解答】解:∵点A的坐标为(2,4),以原点O为位似中心,把这个三角形缩小为原来的,∴点A′的坐标是(2×,4×),即(1,2),故答案为:(1,2).【点评】本题考查的是位似变换的性质,掌握平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k是解题的关键.17.(3分)甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6米,方差分别是S甲2=1.2,S乙2=0.5,则在本次测试中,乙同学的成绩更稳定(填“甲”或“乙”)【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=1.2,S乙2=0.5,∴S甲>S乙,∴甲、乙两名同学成绩更稳定的是乙;故答案为:乙.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.18.(3分)如图,点M是函数y=x与y=的图象在第一象限内的交点,OM=4,则k的值为4.【分析】作MN⊥x轴于N,得出M(x,x),在Rt△OMN中,由勾股定理得出方程,解方程求出x=2,得出M(2,2),即可求出k的值.【解答】解:作MN⊥x轴于N,如图所示:设M(x,y),∵点M是函数y=x与y=的图象在第一象限内的交点,∴M(x,x),在Rt△OMN中,由勾股定理得:x2+(x)2=42,解得:x=2,∴M(2,2),代入y=得:k=2×2=4;故答案为:4.【点评】本题考查了反比例函数与一次函数的图象得交点、勾股定理、反比例函数解析式的求法;求出点M的坐标是解决问题的关键.三、解答题(本大题共8小题,共66分)19.(6分)计算:|﹣3|+(π﹣2017)0﹣2sin30°+()﹣1.【分析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=3+1﹣1+3=6.【点评】此题考查了实数的运算,绝对值,以及零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.20.(6分)解不等式组,并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x≥﹣9﹣x,得:x≥﹣3,解不等式5x﹣1>3(x+1),得:x>2,则不等式组的解集为x>2,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A 60≤x<70 17 0.17B 70≤x<8030 aC 80≤x b<90 0.45D 90≤x<100 80.08请根据所给信息,解答以下问题:(1)表中a=0.3 ,b= 45 ;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.【分析】(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360°即可求得答案;(2)列树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【解答】解:(1)本次调查的总人数为17÷0.17=100(人),则a==0.3,b=100×0.45=45(人),故答案为:0.3,45;(2)360°×0.3=108°,答:扇形统计图中B组对应扇形的圆心角为108°;(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,列树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为=.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?【分析】(1)在△ABP中,求出∠PAB、∠PBA的度数即可解决问题;(2)作PH⊥AB于H.求出PH的值即可判定;【解答】解:(1)∵∠PAB=30°,∠ABP=120°,∴∠APB=180°﹣∠PAB﹣∠ABP=30°.(2)作PH⊥AB于H.∵∠BAP=∠BPA=30°,∴BA=BP=50,在Rt△PBH中,PH=PB•sin60°=50×=25,∵25>25,∴海监船继续向正东方向航行是安全的.【点评】本题考查的是解直角三角形的应用﹣方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.23.(9分)如图,AB与⊙O相切于点C,OA,OB 分别交⊙O于点D,E,=(1)求证:OA=OB;(2)已知AB=4,OA=4,求阴影部分的面积.(1)连接OC,由切线的性质可知∠ACO=90【分析】°,由于=,所以∠AOC=∠BOC,从而可证明∠A=∠B,从而可知OA=OB;(2)由(1)可知:△AOB是等腰三角形,所以AC=2,从可求出扇形OCE的面积以及△OCB的面积【解答】解:(1)连接OC,∵AB与⊙O相切于点C∴∠ACO=90°,由于=,∴∠AOC=∠BOC,∴∠A=∠B∴OA=OB,(2)由(1)可知:△OAB是等腰三角形,∴BC=AB=2,∴sin∠COB==,∴∠COB=60°,∴∠B=30°,∴OC=OB=2,∴扇形OCE的面积为:=,△OCB的面积为:×2×2=2=2﹣π∴S阴影【点评】本题考查切线的性质,解题的关键是求证OA=OB,然后利用等腰三角形的三线合一定理求出BC与OC的长度,从而可知扇形OCE与△OCB 的面积,本题属于中等题型.24.(9分)自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件.已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.【分析】(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+10)元.根据16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,列出方程即可解决问题;(2)根据总利润=两种商品的利润之和,列出式子即可解决问题;(3)设利润为w元.则w=(80﹣a)m+70(250﹣m)=(10﹣a)m+17500,分三种情形讨论即可解决问题.【解答】解:(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+10)元.由题意:=×2,解得x=150,经检验x=150是分式方程的解,答:一件B型商品的进价为150元,则一件A型商品的进价为160元.(2)因为客商购进A型商品m件,所以客商购进B型商品(250﹣m)件.由题意:v=80m+70(250﹣m)=10m+17500,∵80≤m≤250﹣m,∴80≤m≤125,(3)设利润为w元.则w=(80﹣a)m+70(250﹣m)=(10﹣a)m+17500,①当10﹣a>0时,w随m的增大而增大,所以m=125时,最大利润为(18750﹣125a)元.②当10﹣a=0时,最大利润为17500元.③当10﹣a<0时,w随m的增大而减小,所以m=80时,最大利润为(18300﹣80a)元.【点评】本题考查分式方程的应用、一次函数的应用等知识,解题的关键是理解题意,学会构建方程或一次函数解决问题,属于中考常考题型.25.(10分)若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数y=(k为常数,k≠0)的图象上,且这三点的纵坐标y1,y2,y3构成“和谐三组数”,求实数t的值;(3)若直线y=2bx+2c(bc≠0)与x轴交于点A (x1,0),与抛物线y=ax2+3bx+3c(a≠0)交于B(x2,y2),C(x3,y3)两点.①求证:A,B,C三点的横坐标x1,x2,x3构成“和谐三组数”;②若a>2b>3c,x2=1,求点P(,)与原点O 的距离OP的取值范围.【分析】(1)由和谐三组数的定义进行验证即可;(2)把M、N、R三点的坐标分别代入反比例函数解析式,可用t和k分别表示出y1、y2、y3,再由和谐三组数的定义可得到关于t的方程,可求得t的值;(3)①由直线解析式可求得x1=﹣,联立直线和抛物线解析式消去y,利用一元二次方程根与系数的关系可求得x2+x3=﹣,x2x3=,再利用和谐三数组的定义证明即可;②由条件可得到a+b+c=0,可得c=﹣(a+b),由a>2b>3c可求得的取值范围,令m=,利用两点间距离公式可得到OP2关于m的二次函数,利用二次函数的性质可求得OP2的取值范围,从而可求得OP的取值范围.【解答】解:(1)不能,理由如下:∵1、2、3的倒数分别为1、、,∴+≠1,1+≠,1+≠∴实数1,2,3不可以构成“和谐三组数”;(2)∵M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数(k为常数,k≠0)的图象上,∴y1、y2、y3均不为0,且y1=,y2=,y3=,∴=,=,=,∵y1,y2,y3构成“和谐三组数”,∴有以下三种情况:当=+时,则=+,即t=t+1+t+3,解得t=﹣4;当=+时,则=+,即t+1=t+t+3,解得t=﹣2;当=+时,则=+,即t+3=t+t+1,解得t=2;∴t 的值为﹣4、﹣2或2; (3)①∵a 、b 、c 均不为0, ∴x 1,x 2,x 3都不为0,∵直线y=2bx+2c (bc ≠0)与x 轴交于点A (x 1,0),∴0=2bx 1+2c ,解得x 1=﹣,联立直线与抛物线解析式,消去y 可得2bx+2c=ax 2+3bx+3c ,即ax 2+bx+c=0, ∵直线与抛物线交与B (x 2,y 2),C (x 3,y 3)两点,∴x 2、x 3是方程ax 2+bx+c=0的两根, ∴x 2+x 3=﹣,x 2x 3=, ∴+===﹣=,∴x 1,x 2,x 3构成“和谐三组数”; ②∵x 2=1, ∴a+b+c=0, ∴c=﹣a ﹣b , ∵a >2b >3c ,∴a >2b >3(﹣a ﹣b ),且a >0,整理可得,解得﹣<<,∵P(,)∴OP2=()2+()2=()2+()2=2()2+2+1=2(+)2+,令m=,则﹣<m<且m≠0,且OP2=2(m+)2+,∵2>0,∴当﹣<m<﹣时,OP2随m的增大而减小,当m=﹣时,OP2有最大值,当m=﹣时,OP2有最小值,当﹣<m<时,OP2随m的增大而增大,当m=﹣时,OP2有最小值,当m=时,OP2有最大值,∴≤OP2<且OP2≠1,∵P到原点的距离为非负数,∴≤OP<且OP≠1.【点评】本题为二次函数的综合应用,涉及新定义、函数图象的交点、一元二次方程根与系数的关系、勾股定理、二次函数的性质、分类讨论思想及转化思想等知识.在(1)中注意利用和谐三数组的定义,在(2)中由和谐三数组得到关于t的方程是解题的关键,在(3)①中用a、b、c分别表示出x1,x2,x3是解题的关键,在(3)②中把OP2表示成二次函数的形式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,难度很大.26.(10分)如图,抛物线y=mx 2﹣16mx+48m (m >0)与x 轴交于A ,B 两点(点B 在点A 左侧),与y 轴交于点C ,点D 是抛物线上的一个动点,且位于第四象限,连接OD 、BD 、AC 、AD ,延长AD 交y 轴于点E .(1)若△OAC 为等腰直角三角形,求m 的值; (2)若对任意m >0,C 、E 两点总关于原点对称,求点D 的坐标(用含m 的式子表示); (3)当点D 运动到某一位置时,恰好使得∠ODB=∠OAD ,且点D 为线段AE 的中点,此时对于该抛物线上任意一点P (x 0,y 0)总有n+≥﹣4my 02﹣12y 0﹣50成立,求实数n 的最小值.【分析】(1)根据y=mx 2﹣16mx+48m ,可得A (12,0),C (0,48m ),再根据OA=OC ,即可得到12=48m ,进而得出m的值;(2)根据C、E两点总关于原点对称,得到E(0,﹣48m),根据E(0,﹣48m),A(12,0)可得直线AE的解析式,最后解方程组即可得到直线AE与抛物线的交点D的坐标;(3)根据△ODB∽△OAD,可得OD=4,进而得到D(6,﹣2),代入抛物线y=mx2﹣16mx+48m,可得抛物线解析式,再根据点P(x0,y)为抛物线上任意一点,即可得出y≥﹣,令t=﹣2(y0+3)2+4,可得t最大值=﹣2(﹣+3)2+4=,再根据n+≥,可得实数n的最小值为.【解答】解:(1)令y=mx2﹣16mx+48m=m(x﹣4)(x﹣12)=0,则x1=12,x2=4,∴A(12,0),即OA=12,又∵C(0,48m),∴当△OAC为等腰直角三角形时,OA=OC,即12=48m,∴m=;(2)由(1)可知点C(0,48m),∵对任意m>0,C、E两点总关于原点对称,∴必有E(0,﹣48m),设直线AE的解析式为y=kx+b,将E(0,﹣48m),A(12,0)代入,可得,解得,∴直线AE的解析式为y=4mx﹣48m,∵点D为直线AE与抛物线的交点,∴解方程组,可得或(点A 舍去),即点D的坐标为(8,﹣16m);(3)当∠ODB=∠OAD,∠DOB=∠AOD时,△ODB ∽△OAD,∴OD2=OA×OB=4×12=48,∴OD=4,又∵点D为线段AE的中点,∴AE=2OD=8,又∵OA=12,∴OE==4,∴D(6,﹣2),把D(6,﹣2)代入抛物线y=mx2﹣16mx+48m,可得﹣2=36m﹣96m+48m,解得m=,∴抛物线的解析式为y=(x﹣4)(x﹣12),即y=(x﹣8)2﹣,∵点P(x0,y)为抛物线上任意一点,∴y≥﹣,令t=﹣4my02﹣12y﹣50=﹣2y2﹣12y﹣50=﹣2(y+3)2+4,则当y0≥﹣时,t最大值=﹣2(﹣+3)2+4=,若要使n+≥﹣4my02﹣12y﹣50成立,则n+≥,∴n≥3,∴实数n的最小值为.【点评】本题属于二次函数综合题,主要考查了二次函数的最值,等腰直角三角形的性质,相似三角形的判定与性质以及待定系数法求直线解析式的综合应用,解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.。
2017年中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.﹣2017的绝对值是()A.2017 B.﹣2017 C.12017D.﹣12017【答案】A.2.一组数据1,3,4,2,2的众数是()A.1 B.2 C.3 D.4【答案】B.3.单项式32xy的次数是()A.1 B.2 C.3 D.4【答案】D.4.如图,已知直线a∥b,c∥b,∠1=60°,则∠2的度数是()A.30°B.60°C.120°D.61°【答案】B.5.世界文化遗产长城总长约670000米,将数670000用科学记数法可表示为()A.6.7×104B.6.7×105C.6.7×106D.67×104【答案】B.6.如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S2【答案】C.7.一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8 B.9 C.10 D.11【答案】C.8.把不等式组231345xx x+>⎧⎨+≥⎩的解集表示在数轴上如下图,正确的是()A.B.C.D.【答案】B.9.如图,已知点A在反比例函数kyx=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.4yx=B.2yx=C.8yx=D.8yx=-【答案】C.10.观察下列关于自然数的式子:4×12﹣12①4×22﹣32②4×32﹣52③…根据上述规律,则第2017个式子的值是()A.8064 B.8065 C.8066 D.8067 【答案】D.二、填空题(本大题共8小题,每小题4分,共32分)11.5的相反数是 . 【答案】﹣5. 12.一组数据2,3,2,5,4的中位数是 .【答案】3.13.方程1201x x-=-的解为x = . 【答案】2.14.已知一元二次方程230x x k -+=有两个相等的实数根,则k = .【答案】94. 15.已知菱形的两条对角线的长分别是5cm ,6cm ,则菱形的面积是 cm 2.【答案】15.16.如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B 处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB =2米,BC =18米,则旗杆CD 的高度是 米.【答案】3.42.17.从﹣1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为 .【答案】16. 18.如图,在Rt △ABC 中,∠C =90°,点D 是AB 的中点,ED ⊥AB 交AC 于点E .设∠A =α,且tanα=13,则tan2α= .【答案】34.三、解答题19.(1)计算:101()4sin 60(3 1.732)122----+; (2)先化简,再求值:2261213x x x x x +-⋅-++,其中x =2. 【答案】(1)1;(2)21x -,2. 20.如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .【答案】证明见解析.21.某校为了了解九年级九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩的样本,按A ,B ,C (A 等:成绩大于或等于80分;B 等:成绩大于或等于60分且小于80分;C 等:成绩小于60分)三个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(1)请把条形统计图补充完整;(2)扇形统计图中A 等所在的扇形的圆心角等于 度;(3)若九年级有1000名学生,请你用此样本估计体育测试众60分以上(包括60分)的学生人数.【答案】(1)作图见解析;(2)108;(3)800.22.如图,已知点E ,F 分别是平行四边形ABCD 对角线BD 所在直线上的两点,连接AE ,CF ,请你添加一个条件,使得△ABE ≌△CDF ,并证明.【答案】证明见解析.四、解答题23.某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间为一次函数关系,如图所示.(1)求y与x的函数表达式;(2)要使销售利润达到800元,销售单价应定为每千克多少元?【答案】(1)60(020)80(2080)xyx x<<⎧=⎨-+≤≤⎩;(2)40元或60元.五、解答题24.如图,已知在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC交于点D,点E是BC的中点,连接BD,DE.(1)若ADAB=13,求sin C;(2)求证:DE是⊙O的切线.【答案】(1)13;(2)证明见解析. 六、解答题 25.如图,抛物线2y x bx c =++经过点A (﹣1,0),B (0,﹣2),并与x 轴交于点C ,点M 是抛物线对称轴l 上任意一点(点M ,B ,C 三点不在同一直线上).(1)求该抛物线所表示的二次函数的表达式;(2)在抛物线上找出两点P 1,P 2,使得△MP 1P 2与△MCB 全等,并求出点P 1,P 2的坐标;(3)在对称轴上是否存在点Q ,使得∠BQC 为直角,若存在,作出点Q (用尺规作图,保留作图痕迹),并求出点Q 的坐标.【答案】(1)22y x x =--;(2)P 1(﹣1,0),P 2(1,﹣2)或P 1(2,0),P 2(52,74);(3)点Q 的坐标是:(1227-+1227--.。
XX★ 启用前2017 年中考题数学试卷一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上)1、计算2( 1) 的结果是()1B、2C、1D、 22、若∠α的余角是30°,则 cosα的值是()A 、213C、2D、3A 、B 、23223、下列运算正确的是()A 、2a a 1 B、a a2a2C、a a a2 D 、( a)2a24、下列图形是轴对称图形,又是中心对称图形的有()A、4 个B、3 个5、如图,在平行四边形∠1=()C、2 个D、1 个ABCD 中,∠ B=80 °, AE平分∠BAD交 BC于点E, CF∥ AE交 AE于点F,则A、 40°B、 50°C、 60°D、80°6、已知二次函数y ax2的图象开口向上,则直线y ax 1 经过的象限是()A 、第一、二、三象限 B、第二、三、四象限7、如图,你能看出这个倒立的水杯的俯视图是(C、第一、二、四象限)D、第一、三、四象限A B C D8、如图,是我市 5 月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A 、 28℃, 29℃B 、 28℃, 29.5℃C、 28℃, 30℃D 、 29℃, 29℃9、已知拋物线 y1 x2 2,当 1 x 5 时, y 的最大值是()2 35 7 A 、 2C 、B 、3D 、3 310、小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为 1)的一块碎片到玻璃店,配制成形状、 大小与原来一致的镜面, 则这个镜面的半径是 ( )A 、 2B 、 5C 、22D 、311、如图,是反比例函数yk 1x和 yk 2 x( k 1k 2 )在第一象限的图象,直线AB ∥ x轴,并分别交两条曲线于A 、B 两点,若S AOB2 ,则k 2k 1 的值是()A 、 1B 、 2C 、 4D 、 812、一个容器装有1 升水,按照如下要求把水倒出:第1 次倒出1升水,第2 次倒出的水量是1升的1 ,223第 3 次倒出的水量是1 升的314,第4 次倒出的水量是14升的1 ,⋯按照这种倒水的方法,倒了5 10 次后容器内剩余的水量是()A 、10 升11B 、1 升9C 、110升D 、111升二、填空题(本大题共6 小题,每小题3 分,共 18 分 .把答案填在答题卡中的横线上)13、 2011的相反数是 __________14、近似数 0.618 有__________个有效数字.15、分解因式:a 3= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为 __________C 'D 17、如图,等边△ ABC 绕点 B 逆时针旋转30°时,点 C 转到 C ′的位置, 且 BC ′与 AC 交于点 D ,则CD的值为 __________16 题图17 题图18 题图18、如图, AB 是半圆 O 的直径,以 0A 为直径的半圆O ′与弦 AC 交于点 D ,O ′ E ∥ AC ,并交 OC 于点E .则下列四个结论:①点 D 为 AC 的中点;② S O 'OE1S AOC ;③ AC 2AD;④四边形 O'DEO 是菱形.其中正确的结2论是 __________.(把所有正确的结论的序号都填上)三、解答题(本大题共 8 小题,满分共 66 分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤) .19、计算: (1) 1(5) 034 .220、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为 60°,已知风筝线 BC 的长为 10 米,小强的身高 AB 为 1.55 米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到 1 米,参考数据2 ≈ 1.41 , 3≈ 1.73 )21、如图, △ OAB 的底边经过⊙ O 上的点 C ,且 OA=OB ,CA=CB ,⊙O 与 OA 、OB 分别交于 D 、E 两点.( 1)求证: AB 是⊙ O 的切线;( 2)若 D 为 OA 的中点,阴影部分的面积为33,求⊙ O 的半径 r .22、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子 3 个(分别用白 A 、白 B 、白 C 表示),若从中任意摸出一个棋子,是白色棋子的概率为3 .4( 1)求纸盒中黑色棋子的个数;( 2)第一次任意摸出一个棋子(不放回) ,第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.23、上个月某超市购进了两批相同品种的水果,第一批用了 2000 元,第二批用了 5500 元,第二批购进水果的重量是第一批的 2.5 倍,且进价比第一批每千克多 1 元.( 1)求两批水果共购进了多少千克?( 2)在这两批水果总重量正常损耗 10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于 26%,那么售价至少定为每千克多少元?利润(利润率 =100%)进价AG为边作一个正方形AEFG ,24、如图,点G 是正方形ABCD 对角线 CA 的延长线上任意一点,以线段线段 EB 和 GD 相交于点 H.( 1)求证: EB=GD ;( 2)判断 EB 与 GD 的位置关系,并说明理由;( 3)若AB=2 , AG=2,求EB的长.25、已知抛物线y ax22ax 3a ( a 0) 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点 D 为抛物线的顶点.(1)求 A 、 B 的坐标;(2)过点 D 作 DH 丄 y 轴于点 H,若 DH=HC ,求 a 的值和直线 CD 的解析式;(3)在第( 2)小题的条件下,直线 CD 与 x 轴交于点 E,过线段 OB 的中点 N 作 NF 丄 x 轴,并交直线CD 于点 F,则直线 NF 上是否存在点 M ,使得点 M 到直线 CD 的距离等于点 M 到原点 O 的距离?若存在,求出点M 的坐标;若不存在,请说明理由.中考数学试题答案一、选择题题号123456789101112答案B A C C B D B A C B C D二、填空题13. 201114. 315.a(3 a)(3 a)°17.2318.①③④16. 144三、解答题19. 解:原式 =2-1-3+2 ,=0 .故答案为: 0 .20.解:∵一元二次方程 x2-4x+1=0 的两个实数根是 x1、 x2,∴ x1 +x 2=4 , x1?x2=1 ,∴( x1+x 2)2÷()=4 2÷2=4 ÷421.解:在 Rt △ CEB 中,sin60 °=,∴CE=BC?sin60°=10×≈8.65m,∴CD=CE+ED=8.65+1.55=10.≈210m,答:风筝离地面的高度为 10m .22.( 1)证明:连 OC ,如图,∵ OA=OB , CA=CB ,∴OC ⊥AB,∴AB 是⊙ O 的切线;(2)解:∵ D 为 OA 的中点, OD=OC=r ,∴ OA=2OC=2r ,∴∠ A=30°,∠ AOC=60°, AC=r,∴∠ AOB=120°, AB=2r,∴ S 阴影部分 =S △OAB -S 扇形ODE = ?OC?AB-=-,∴?r?2r- r2=-,∴ r=1 ,即⊙ O 的半径 r 为 1 .23. 解:( 1) 3÷-3=1 .答:黑色棋子有 1 个;( 2)共12 种情况,有 6 种情况两次摸到相同颜色棋子,所以概率为.24. 解:( 1)设第一批购进水果x 千克,则第二批购进水果 2.5 千克,依据题意得:,解得 x=200 ,经检验 x=200 是原方程的解,∴x+2.5x=700 ,答:这两批水果功够进 700 千克;( 2)设售价为每千克 a 元,则:,630a≥ 7500× 1.26,∴,∴a≥15,答:售价至少为每千克 15 元.25.( 1 )证明:在△ GAD 和△ EAB 中,∠ GAD=90° +∠ EAD ,∠ EAB=90° +∠ EAD ,∴∠ GAD= ∠ EAB ,又∵ AG=AE , AB=AD ,∴△ GAD ≌△ EAB ,∴EB=GD ;( 2) EB ⊥ GD ,理由如下:连接BD ,由( 1 )得:∠ ADG= ∠ ABE ,则在△ BDH 中,∠DHB=180° - (∠ HDB+ ∠ HBD )=180°-90 °=90°,∴EB⊥GD ;( 3)设BD与AC交于点O,∵ AB=AD=2在 Rt △ABD中, DB=,∴ EB=GD=.26. 解:( 1)由y=0得, ax 2-2ax-3a=0,∵ a≠0,∴ x2 -2x-3=0,解得1=-1,x2=3,∴点 A 的坐标( -1, 0),点 B 的坐标( 3,0);(2)由 y=ax 2 -2ax-3a ,令 x=0 ,得 y=-3a ,∴ C ( 0, -3a ),又∵ y=ax 2 -2ax-3a=a ( x-1 )2-4a ,得 D (1 , -4a ),∴ DH=1 , CH=-4a- ( -3a ) =-a ,∴ -a=1 ,∴ a=-1 ,∴C(0, 3),D(1,4),设直线 CD 的解析式为y=kx+b ,把 C、 D 两点的坐标代入得,,解得,∴直线 CD 的解析式为y=x+3 ;( 3)存在.由( 2)得, E(-3,0),N(-,0)∴F(,),EN= ,作 MQ⊥CD 于 Q,设存在满足条件的点M(,m),则FM=-m ,EF==,MQ=OM=由题意得: Rt △ FQM ∽ Rt △ FNE ,∴=,整理得 4m 2+36m-63=0 ,∴m2+9m=,m 2+9m+=+(m+ )2=m+ =±∴ m1=,m2=-,∴点 M 的坐标为M1(,),M2(,-).”可见,一个人的心胸和眼光,决定了他志向的短浅或高远;一个清代“红顶商人”胡雪岩说:“做生意顶要紧的是眼光,看得到一省,就能做一省的生意;看得到天下,就能做天下的生意;看得到外国,就能做外国的生意。
湖南省湘潭市2017年中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(2017•湘潭)下列运算正确的是()A.|﹣3|=3 B.C.(a2)3=a5D.2a•3a=6a考点:单项式乘单项式;相反数;绝对值;幂的乘方与积的乘方。
分析:A、根据绝对值的性质可知负数的绝对值是它的相反数;B、根据相反数的定义可知负数的相反数是正数;C、根据幂的乘方法则计算即可;D、根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解答:解:A、|﹣3|=3,正确;B、应为﹣(﹣)=,故本选项错误;C、应为(a2)3=a2×3=a6,故本选项错误;D、应为2a•3a=6a2,故本选项错误.故选D.点评:综合考查了绝对值的性质,相反数的定义,幂的乘方和单项式乘单项式,是基础题型,比较简单.2.(2017•湘潭)已知一组数据3,a,4,5的众数为4,则这组数据的平均数为()A.3B.4C.5D.6考点:算术平均数;众数。
分析:要求平均数只要求出数据之和再除以总个数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.依此先求出a,再求这组数据的平均数.解答:解:数据3,a,4,5的众数为4,即的4次数最多;即a=4.则其平均数为(3+4+4+5)÷4=4.故选B.点评:本题考查平均数与众数的意义.平均数等于所有数据之和除以数据的总个数;众数是一组数据中出现次数最多的数据.3.(2009•广州)下列函数中,自变量x的取值范围是x≥3的是()A.y=B.y=C.y=x﹣3 D.y=考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件。
分析:分式有意义,分母不等于0;二次根式有意义:被开方数是非负数就可以求出x的范围.解答:解:A、分式有意义,x﹣3≠0,解得:x≠3;B、二次根式有意义,x﹣3>0,解得x>3;C、函数式为整式,x是任意实数;D、二次根式有意义,x﹣3≥0,解得x≥3.故选D.点评:本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.(2017•湘潭)如图,从左面看圆柱,则图中圆柱的投影是()A.圆B.矩形C.梯形D.圆柱考点:平行投影。
2017年湖南省湘潭市中考数学试题及参考答案一、选择题(本大题共8个小题,每小题3分,共24分) 1.2017的倒数是( )A .12017 B .12017- C .2017 D .2017- 2.如图所示的几何体的主视图是( )A. B. C. D.3.不等式组21x x <⎧⎨>-⎩的解集在数轴上表示为( )A. B.C. D.4.下列计算正确的是( )A .32a a a -= B= C.()3322a a = D .632a a a ÷=5.“莲城读书月”活动结束后,对八年级(三)班45人所阅读书籍数量情况的统计结果如下表所示:根据统计结果,阅读2本书籍的人数最多,这个数据2是( )A .平均数B .中位数 C.众数 D .方差 6.函数y =x 的取值范围是( )A .2x ≥-B .2x <- C. 0x ≥ D .2x ≠- 7.如图,在半径为4的O 中,CD 是直径,AB 是弦,且CD AB ⊥,垂足为点E ,90AOB ∠=°,则阴影部分的面积是( )A.44π- B .2π-4 C.π4 D.2π8.一次函数y ax b =+的图象如图所示,则不等式0ax b +≥的解集是( )A .2x ≥ B.2x ≤ C.4x ≥ D .4x ≤ 二、填空题(本大题共8个小题,每小题3分,共24分) 9.因式分解:22m n -= .10.截止2016年底,到韶山观看大型实景剧《中国出了个毛泽东》的观众约为925000人次,将925000用科学计数法表示为 . 11.计算:1322a a a -+=++ . 12.某同学家长应邀安参加孩子就读中学的开放日活动,他打算上午随机听一节孩子所在1班的课,下表是他拿到的当天上午1班的课表,如果每一节课被听的机会均等,那么他听数学课的概率是 .13.如图,在O 中,已知120AOB ∠=°,则ACB ∠= .14.如图,在ABC ∆中,D E 、分别是边AB AC 、的中点,则ADE ∆与ABC ∆的面积比:ADE ABC S S ∆∆= .15.如图,在Rt ABC ∆中,90C ∠=°,BD 平分ABC ∠交AC 于点D ,DE 垂直平分AB ,垂足为E 点,请任意写出一组相等的线段 .16.阅读材料:设11(,)a x y = ,22(,)b x y =,如果//a b ,则2121x y x y ⋅=⋅.根据该材料填空:已知(2,3)a = ,(4,)b m =,且//a b ,则m = .三、解答题 (本大题共10小题,共72分)17.(本题满分6分)计算:()02545π-+--°18.(本题满分6分)“鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句话的意思是:有若干只鸡兔关在一个笼子里,从上面数,有35个头;从下面数,有94条腿.问笼中各有几只鸡和兔?19.(本题满分6分)从这2-,1,3三个数中任取两个不同的数,作为点的坐标. (1)写出该点所有可能的坐标; (2)求该点在第一象限的概率.20.(本题满分6分)如图,在ABCD 中,DE CE =连接AE 并延长交BC 的延长线于点F .(1)求证:ADE FCE ∆≅∆;(2)若2AB BC =,36F ∠=°,求B ∠的度数.21.(本题满分6分)为响应习总书记足球进校园的号召,某学校积极开展与足球有关的宣传与实践活动.学生会体育部为了解本学校对足球运动的态度,随机抽取了部分学生进行调查,并绘制了如下的统计图表(部分信息未给出).(1)在上面的统计表中m = ,n = .(2)请你将条形统计图补充完整;(3)该校共有学生1200人,根据统计信息,估计爱好足球运动(包括喜欢和非常喜欢)的学生有多少人?22.(本题满分6分)由多项式乘法:2()()()x a x b x a b x ab ++=+++,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:2()()()x a b x ab x a x b +++=++示例:分解因式:256x x ++=2(23)23x x +++⨯=(2)(3)x x ++ (1)尝试:分解因式:268x x ++=(x +___)(x +___);(2)应用:请用上述方法....解方程:2340x x --=. 23.(本题满分8分)某游乐场部分平面图如图所示,C E A 、、在同一直线上,D E B 、、在同一直线上,测得A 处与E 处的距离为80米,C 处与D 处的距离为34米,90C ∠=°,90ABE ∠=°,30BAE ∠=°. 1.7)≈≈(1)求旋转木马E 处到出口B 处的距离;(2)求海洋球D 处到出口B 处的距离(结果保留整数). 24.(本题满分8分)已知反比例函数ky x=的图象过点(3,1)A . (1)求反比例函数的解析式;(2)若一次函数6y ax =+(0)a ≠的图象与反比例函数的图象只有一个交点,求一次函数的解析式.25.(本题满分10分)已知抛物线的解析式为21520y x bx =-++.(1)当自变量2x ≥时,函数值y 随x 的增大而减少,求b 的取值范围;(2)如图,若抛物线的图象经过点(2,5)A ,与x 轴交于点C ,抛物线的对称轴与x 轴交于B . ①求抛物线的解析式;②在抛物线上是否存在点P ,使得PAB ABC ∠=∠?若存在,求出点P 的坐标;若不存在,请说明理由. 26.(本题满分10分)如图,动点M 在以O 为圆心,AB 为直径的半圆弧上运动(点M 不与点A B 、及 AB 的中点F 重合),连接OM .过点M 作ME AB ⊥于点E ,以BE 为边在半圆同侧作正方形BCDE ,过M 点作O 的切线交射线DC 于点N ,连接BM 、BN .(1)探究:如左图,当M 动点在 AF 上运动时; ①判断OEM MDN ∆∆ 是否成立?请说明理由;设ME NCk MN+=,k 是否为定值?若是,求出该定值,若不是,请说明理由;③设MBN α∠=,α是否为定值?若是,求出该定值,若不是,请说明理由;(2)拓展:如右图,当动点M 在 FB上运动时; 分别判断(1)中的三个结论是否保持不变?如有变化,请直接写出正确的结论.(均不必说明理由)参考答案一、选择题1—5:ADBAC ; 6—8:ADB. 二、填空题9. (m+n )(m-n ); 10. 9.25×105; 11.1; 12.14; 13. 60°; 14. 1:4; 15. BE=EA ; 16.6. 三、解答题17. 解:原式21312=+=-=. 18. 解:设鸡有x 只,兔有y 只,根据题意得352494x y x y +=⎧⎨+=⎩, 解得 2312x y =⎧⎨=⎩,答:有鸡23只,兔12只. 19. 解:(1)画树状图得:∴所有可能的坐标为(1,3)、(1,-2)、(3,1)、(3,-2)、(-2,1)、(-2,3);(2)∵共有6种等可能的结果,其中(1,3),(3,1)点落在第一项象限, ∴点刚好落在第一象限的概率2163==. 20. (1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD=BC , ∴∠D=∠ECF ,在△ADE 和△FCE 中,D ECF DE CE AED FEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE ≌△FCE (ASA ); (2)解:∵△ADE ≌△FCE , ∴AD=FC ,∵AD=BC ,AB=2BC , ∴AB=FB ,∴∠BAF=∠F=36°,∴∠B=180°-2×36°=108°.21. 解:(1)由题意抽取的总人数为m人.由题意5m=0.05,解得m=100,n=50100=0.5,故答案为:100,0.5(2)喜欢的人数为100×0.35=35,条形图如图所示,(3)1200×(0.05+0.35)=480人答:计爱好足球运动(包括喜欢和非常喜欢)的学生约为480人.22. 解:(1)x2+6x+8=x2+(2+4)x+2×4=(x+2)(x+4),故答案为:2,4;(2)∵x2-3x-4=0,x2+(-4+1)x+(-4)×1=0,∴(x-4)(x+1)=0,则x+1=0或x-4=0,解得:x=-1或x=4.23. 解:(1)∵在Rt△ABE中,∠BAE=30°,∴BE=12AE=12×80=40(米);(2)∵在Rt△ABE中,∠BAE=30°,∴∠AEB=90°-30°=60°,∴∠CED=∠AEB=60°,∴在Rt△CDE中,DE=341.7sin2CDCED≈∠=40(米),则BD=DE+BE=40+40=80(米).24. 解:(1)∵反比例函数y=kx的图象过点A(3,1),∴k=3,∴反比例函数的解析式为:y=3x;(2)解3 6y xy a x ⎧=⎪⎨⎪=+⎩得ax 2+6x-3=0, ∵一次函数y=ax+6(a≠0)的图象与反比例函数的图象只有一个交点,∴△=36+12a=0, ∴a=-3,∴一次函数的解析式为y=-3x+6.25. 解:(1)抛物线的对称轴为:x=10b ,由题意可知:x≥2时,函数值y 随 x 的增大而减少, ∴10b≤2, ∴b≤15; (2)①将A (2,5)代入抛物线的解析式中,∴5=-120×4+2b+5, ∴b=110,∴抛物线的解析式为:21152010y x x =-++, ②由于∠PAB=∠ABC ,当P 在对称轴的左侧时, 此时∠PAB=∠ABC , ∴PA ∥BC ,∴P 的纵坐标与A 的纵坐标相同, ∴P (0,5),当P 在对称轴的右侧时, 连接AP 并延长交x 轴于E , 此时∠PAB=∠ABC ∴AE=BE ,过点A 作AG ⊥x 轴于点G ,过点P 作PH ⊥x 轴于点H ,过点E 作EF ⊥AB 于点F ,∵B (1,0),A (2,5), ∴AG=5,BG=1,∴由勾股定理可知:AB= ∵AE=BE ,EF ⊥AB ,∴BF=12AB=,∵cos ∠ABC=BG AB =, ∴cos ∠ABC=BF BE = ∴BE=13,∴GE=BE-BG=12,∴tan ∠PEG=512AG GE =, 设P (x ,21152010x x -++),∵E (14,0),∴HE=14-x ,PH=21152010x x -++, ∴tan ∠PEG=512PH HE =,即2115520101412x x x -++=-, 解得:x=2(舍去)或x=253,∴P (253,8536)综上所述,P (0,5)或P (253,8536).26. 解:(1)①△OEM ∽△MDN 成立,理由如下:∵四边形BCDE 是正方形,∴BE=BC ,∠EBC=∠CDE=∠BCD=∠BED=90°, ∴∠EOM+∠EMO=90°, ∵MN 是⊙O 的切线,∴MN ⊥OM ,∠OMN=90°, ∴∠DMN+∠EMO=90°, ∴∠EOM=∠DMN , ∴△OEM ∽△MDN ;②k 值为定值1;理由如下:作BG ⊥MN 于G ,如图一所示:则BG ∥OM ,∠BGN=∠BGM=90°, ∴∠OMB=∠GBM , ∵OB=OM ,∴∠OBM=∠OMB , ∴∠OBM=∠GBM ,在△BME 和△BMG 中, 90? OBM GBM BED BGM BM BM ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△BME ≌△BMG (AAS ), ∴EM=GM ,BE=BG , ∴BG=BC ,在Rt △BGN 和Rt △BCN 中,B N B N B G BC =⎧⎨=⎩,∴Rt △BGN ≌Rt △BCN (HL ),∴GN=CN ,∴EM+NC=GM+NC=MN , ∴k=ME NC MNMN MN+==1; ③设∠MBN=α,α为定值45°;理由如下:∵△BME ≌△BMG ,Rt △BGN ≌Rt △BCN , ∴∠EBM=∠GBM ,∠GBN=∠CBN , ∴∠MBN=12∠EBC=45°, 即α=45°;(2)(1)中的①③结论保持不变;②结论:EM-CN=MN . 理由类似(1),作BG ⊥MN 于G ,如图二所示.。
专题1:实数一、选择题1.(2017北京第4题)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a4B.bd0 C. a b D.b c0【答案】C.考点:实数与数轴2.(2017天津第1题)计算(3)5的结果等于()A.2 B.2C.8 D.8【答案】A.【解析】试题分析:根据有理数的加法法则即可得原式-2,故选A.3.(2017天津第4题)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263108B.1.263107C.12.63106D.126.3105【答案】B.【解析】试题分析:学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,n的值为这个数的整数位数减1,所以12630000=1.263107.故选B.4.(2017福建第1题)3的相反数是()A.-3 B.1C.133D.3【解析】只有符号不同的两个数互为相反数,因此3的相反数是-3;故选A.5.(2017福建第3题)用科学计数法表示136 000,其结果是()A.0.136106B.1.36105C.136103D.136106【答案】B【解析】13600=1.36×105,故选B.6.(2017河南第1题)下列各数中比1大的数是()A.2 B.0 C.-1 D.-3【答案】A,【解析】试题分析:根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.考点:有理数的大小比较.7.(2017河南第2题)2016年,我国国内生产总值达到74.4万亿元.数据“74.4万亿”用科学计数法表示为()A.74.41012B.7.441013C.74.41013D.7.441014【答案】B.考点:科学记数法.8.(2017湖南长沙第1题)下列实数中,为有理数的是()A.3B.C.32D.1【答案】D【解析】试题分析:根据实数的意义,有理数为有限小数和有限循环小数,无理数为无限不循环小数,可知1是有理数.故选:D9.(2017广东广州第1题)如图1,数轴上两点A,B表示的数互为相反数,则点B表示的()A.-6 B.6 C.0 D.无法确定【答案】B【解析】试题分析:-6的相反数是6,A点表示-6,所以,B点表示6.故选答案B.考点:相反数的定义10.(2017湖南长沙第3题)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826106B.8.26107C.82.6106D.8.26108【答案】B考点:科学记数法的表示较大的数111.(2017山东临沂第1题)的相反数是()2007 11A.B.C.2017 D.201720072007【答案】A【解析】试题分析:根据只有符号不同的两数互为相反数,可知的相反数为.1120072007故选:A112.(2017山东青岛第1题)的相反数是().8A.8 B.8 C.18D.18【答案】C 【解析】试题分析:根据只有符号不同的两个数是互为相反数,知:1的相反数是818.故选:C考点:相反数定义13. (2017四川泸州第1题)7的绝对值为()A.7B.7C.17D.17【答案】A.【解析】试题分析:根据绝对值的性质可得-7的绝对值为7,故选A.14. (2017四川泸州第2题) “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567103B.56.7104C.5.67105D.0.567106【答案】C.15.(2017山东滨州第1题)计算-(-1)+|-1|,结果为()A.-2 B.2 C.0 D.-1【答案】B.【解析】原式=1+1=2,故选B.16. (2017江苏宿迁第1题)5的相反数是11A.5B.C.D.555【答案】D.【解析】试题分析:根据只有符号不同的两个数互为相反数可得5的相反数是-5,故选D.17. .(2017山东日照第1题)﹣3的绝对值是()A.﹣3 B.3 C.±3 D.【答案】B.试题分析:当a是负有理数时,a的绝对值是它的相反数﹣a,所以﹣3的绝对值是3.故选B.考点:绝对值.18. (2017辽宁沈阳第1题)7的相反数是()A.-7B.C.D.74177【答案】A.【解析】试题分析:根据“只有符号不同的两个数互为相反数”可得7的相反数是-7,故选A.考点:相反数.19.(2017山东日照第3题)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【答案】C.考点:科学记数法—表示较大的数.20. (2017辽宁沈阳第3题) “弘扬雷锋精神,共建幸福沈阳”幸福沈阳需要830万沈阳人共同缔造。
2017年湖南省长沙市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列实数中,为有理数的是()A.B.πC.D.12.(3分)下列计算正确的是()A.=B.a+2a=2a2C.x(1+y)=x+xy D.(mn2)3=mn63.(3分)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826×106B.8.26×107C.82.6×106D.8.26×1084.(3分)在下列图形中,既是轴对称图形,又是中心对称图形的是()A.直角三角形 B.正五边形C.正方形D.平行四边形5.(3分)一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形6.(3分)下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生C.数据3,5,4,1,﹣2的中位数是4D.“367人中有2人同月同日出生”为必然事件7.(3分)某几何体的三视图如图所示,因此几何体是()A.长方形B.圆柱C.球D.正三棱柱8.(3分)抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4) B.(﹣3,4)C.(3,﹣4)D.(2,4)9.(3分)如图,已知直线a∥b,直线c分别与a,b相交,∠1=110°,则∠2的度数为()A.60°B.70°C.80°D.110°10.(3分)如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为()A.5cm B.10cm C.14cm D.20cm11.(3分)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里 D.3里12.(3分)如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H 不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC 交于点G.设正方形ABCD的周长为m,△CHG的周长为n,则的值为()A.B.C.D.随H点位置的变化而变化二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)分解因式:2a2+4a+2=.14.(3分)方程组的解是.15.(3分)如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.16.(3分)如图,△ABO三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O为位似中心,把这个三角形缩小为原来的,可以得到△A′B′O,已知点B′的坐标是(3,0),则点A′的坐标是.17.(3分)甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.62=1.2,S乙2=0.5,则在本次测试中,同学的成绩更稳米,方差分别是S甲定(填“甲”或“乙”)18.(3分)如图,点M是函数y=x与y=的图象在第一象限内的交点,OM=4,则k的值为.三、解答题(本大题共8小题,共66分)19.(6分)计算:|﹣3|+(π﹣2017)0﹣2sin30°+()﹣1.20.(6分)解不等式组,并把它的解集在数轴上表示出来.21.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A60≤x<70170.17B70≤x<8030aC80≤x<90b0.45D90≤x<10080.08请根据所给信息,解答以下问题:(1)表中a=,b=;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.22.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?23.(9分)如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,=(1)求证:OA=OB;(2)已知AB=4,OA=4,求阴影部分的面积.24.(9分)自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件.已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.25.(10分)若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数(k为常数,k ≠0)的图象上,且这三点的纵坐标y1,y2,y3构成“和谐三组数”,求实数t的值;(3)若直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),与抛物线y=ax2+3bx+3c (a≠0)交于B(x2,y2),C(x3,y3)两点.①求证:A,B,C三点的横坐标x1,x2,x3构成“和谐三组数”;②若a>2b>3c,x2=1,求点P(,)与原点O的距离OP的取值范围.26.(10分)如图,抛物线y=mx2﹣16mx+48m(m>0)与x轴交于A,B两点(点B在点A左侧),与y轴交于点C,点D是抛物线上的一个动点,且位于第四象限,连接OD、BD、AC、AD,延长AD交y轴于点E.(1)若△OAC为等腰直角三角形,求m的值;(2)若对任意m>0,C、E两点总关于原点对称,求点D的坐标(用含m的式子表示);(3)当点D运动到某一位置时,恰好使得∠ODB=∠OAD,且点D为线段AE的中点,此时对于该抛物线上任意一点P(x0,y0)总有n+≥﹣4my02﹣12y0﹣50成立,求实数n的最小值.2017年湖南省长沙市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2017•长沙)下列实数中,为有理数的是()A.B.πC.D.1【分析】根据有理数是有限小数或无限循环小数,无理数是无限不循环小数,可得答案.【解答】解:,π,是无理数,1是有理数,故选:D.【点评】本题考查了实数,正确区分有理数与无理数是解题关键.2.(3分)(2017•长沙)下列计算正确的是()A.=B.a+2a=2a2C.x(1+y)=x+xy D.(mn2)3=mn6【分析】分别利用合并同类项法则以及单项式乘以多项式和积的乘方运算法则化简判断即可.【解答】解:A、+无法计算,故此选项错误;B、a+2a=3a,故此选项错误;C、x(1+y)=x+xy,正确;D、(mn2)3=m3n6,故此选项错误;故选:C.【点评】此题主要考查了合并同类项以及单项式乘以多项式和积的乘方运算等知识,正确掌握运算法则是解题关键.3.(3分)(2017•长沙)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826×106B.8.26×107C.82.6×106D.8.26×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将82600000用科学记数法表示为:8.26×107.故选B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•长沙)在下列图形中,既是轴对称图形,又是中心对称图形的是()A.直角三角形 B.正五边形C.正方形D.平行四边形【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、既是轴对称图形,又是中心对称图形,故本选项正确;D、不是轴对称图形,是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3分)(2017•长沙)一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形【分析】根据三角形内角和等于180°计算即可.【解答】解:设三角形的三个内角的度数之比为x、2x、3x,则x+2x+3x=180°,解得,x=30°,则3x=90°,∴这个三角形一定是直角三角形,故选:B.【点评】本题考查的是三角形内角和定理的应用,掌握三角形内角和等于180°是解题的关键.6.(3分)(2017•长沙)下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生C.数据3,5,4,1,﹣2的中位数是4D.“367人中有2人同月同日出生”为必然事件【分析】根据可能性的大小、全面调查与抽样调查的定义及中位数概念、必然事件、不可能事件、随机事件的概念进行判断即可.【解答】解:A、检测某批次灯泡的使用寿命,调查具有破坏性,应采用抽样调查,此选项错误;B、可能性是1%的事件在一次试验中可能发生,此选项错误;C、数据3,5,4,1,﹣2的中位数是3,此选项错误;D、“367人中有2人同月同日出生”为必然事件,此选项正确;故选:D.【点评】本题主要考查可能性的大小、全面调查与抽样调查的定义及中位数概念、随机事件,熟练掌握基本定义是解题的关键.7.(3分)(2017•长沙)某几何体的三视图如图所示,因此几何体是()A.长方形B.圆柱C.球D.正三棱柱【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.【解答】解:从正面看,是一个矩形;从左面看,是一个矩形;从上面看,是圆,这样的几何体是圆柱,故选B.【点评】本题考查了几何体的三种视图,注意所有的看到的棱都应表现在三视图中.8.(3分)(2017•长沙)抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4) B.(﹣3,4)C.(3,﹣4)D.(2,4)【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标.【解答】解:y=2(x﹣3)2+4是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(3,4).故选A.【点评】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.9.(3分)(2017•长沙)如图,已知直线a∥b,直线c分别与a,b相交,∠1=110°,则∠2的度数为()A.60°B.70°C.80°D.110°【分析】直接根据平行线的性质即可得出结论.【解答】解:∵直线a∥b,∴∠3=∠1=110°,∴∠2=180°﹣110°=70°,故选B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.10.(3分)(2017•长沙)如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为()A.5cm B.10cm C.14cm D.20cm【分析】根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC,OB=BD,再利用勾股定理列式求出AB,然后根据菱形的四条边都相等列式计算即可得解.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=×6=3cm,OB=BD=×8=4cm,根据勾股定理得,AB===5cm,所以,这个菱形的周长=4×5=20cm.故选D.【点评】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.11.(3分)(2017•长沙)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里 D.3里【分析】设第一天走了x里,则第二天走了x里,第三天走了×x…第六天走了()5x里,根据路程为378里列出方程并解答.【解答】解:设第一天走了x里,依题意得:x+x+x+x+x+x=378,解得x=192.则()5x=()5×192=6(里).故选:C.【点评】本题考查了一元一次方程的应用.根据题意得到()5x里是解题的难点.12.(3分)(2017•长沙)如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD的周长为m,△CHG的周长为n,则的值为()A.B.C.D.随H点位置的变化而变化【分析】设CH=x,DE=y,则DH=﹣x,EH=﹣y,然后利用正方形的性质和折叠可以证明△DEH∽△CHG,利用相似三角形的对应边成比例可以把CG,HG分别用x,y分别表示,△CHG的周长也用x,y表示,然后在Rt△DEH中根据勾股定理可以得到x﹣x2=y,进而求出△CHG的周长.【解答】解:设CH=x,DE=y,则DH=﹣x,EH=﹣y,∵∠EHG=90°,∴∠DHE+∠CHG=90°.∵∠DHE+∠DEH=90°,∴∠DEH=∠CHG,又∵∠D=∠C=90°,△DEH∽△CHG,∴==,即==,∴CG=,HG=,△CHG的周长为n=CH+CG+HG=,在Rt△DEH中,DH2+DE2=EH2即(﹣x)2+y2=(﹣y)2整理得﹣x2=,∴n=CH+HG+CG===.∴=.故选:B.【点评】本题考查翻折变换及正方形的性质,正方形的有些题目有时用代数的计算证明比用几何方法简单,甚至几何方法不能解决的用代数方法可以解决.本题综合考查了相似三角形的应用和正方形性质的应用.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2017•长沙)分解因式:2a2+4a+2=2(a+1)2.【分析】原式提取2,再利用完全平方公式分解即可.【解答】解:原式=2(a2+2a+1)=2(a+1)2,故答案为:2(a+1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.(3分)(2017•长沙)方程组的解是.【分析】根据加减消元法,可得答案.【解答】解:两式相加,得4x=4,解得x=1,把x=1代入x+y=1,解得y=0,方程组的解为,故答案为:.【点评】本题考查了解二元一次方程组,利用加减消元法是解题关键.15.(3分)(2017•长沙)如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为5.【分析】连接OC,由垂径定理知,点E是CD的中点,AE=CD,在直角△OCE 中,利用勾股定理即可得到关于半径的方程,求得圆半径即可.【解答】解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设⊙O的半径为xcm,则OC=xcm,OE=OB﹣BE=x﹣1,在Rt△OCE中,OC2=OE2+CE2,∴x2=32+(x﹣1)2,解得:x=5,∴⊙O的半径为5,故答案为:5.【点评】本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键.16.(3分)(2017•长沙)如图,△ABO三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O为位似中心,把这个三角形缩小为原来的,可以得到△A′B′O,已知点B′的坐标是(3,0),则点A′的坐标是(1,2).【分析】根据位似变换的性质进行计算即可.【解答】解:∵点A的坐标为(2,4),以原点O为位似中心,把这个三角形缩小为原来的,∴点A′的坐标是(2×,4×),即(1,2),故答案为:(1,2).【点评】本题考查的是位似变换的性质,掌握平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k是解题的关键.17.(3分)(2017•长沙)甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6米,方差分别是S甲2=1.2,S乙2=0.5,则在本次测试中,乙同学的成绩更稳定(填“甲”或“乙”)【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=1.2,S乙2=0.5,∴S甲>S乙,∴甲、乙两名同学成绩更稳定的是乙;故答案为:乙.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.18.(3分)(2017•长沙)如图,点M是函数y=x与y=的图象在第一象限内的交点,OM=4,则k的值为4.【分析】作MN⊥x轴于N,得出M(x,x),在Rt△OMN中,由勾股定理得出方程,解方程求出x=2,得出M(2,2),即可求出k的值.【解答】解:作MN⊥x轴于N,如图所示:设M(x,y),∵点M是函数y=x与y=的图象在第一象限内的交点,∴M(x,x),在Rt△OMN中,由勾股定理得:x2+(x)2=42,解得:x=2,∴M(2,2),代入y=得:k=2×2=4;故答案为:4.【点评】本题考查了反比例函数与一次函数的图象得交点、勾股定理、反比例函数解析式的求法;求出点M的坐标是解决问题的关键.三、解答题(本大题共8小题,共66分)19.(6分)(2017•长沙)计算:|﹣3|+(π﹣2017)0﹣2sin30°+()﹣1.【分析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=3+1﹣1+3=6.【点评】此题考查了实数的运算,绝对值,以及零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.20.(6分)(2017•长沙)解不等式组,并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x≥﹣9﹣x,得:x≥﹣3,解不等式5x﹣1>3(x+1),得:x>2,则不等式组的解集为x>2,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)(2017•长沙)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A60≤x<70170.17B70≤x<8030aC80≤x<90b0.45D90≤x<10080.08请根据所给信息,解答以下问题:(1)表中a=0.3,b=45;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.【分析】(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360°即可求得答案;(2)列树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【解答】解:(1)本次调查的总人数为17÷0.17=100(人),则a==0.3,b=100×0.45=45(人),故答案为:0.3,45;(2)360°×0.3=108°,答:扇形统计图中B组对应扇形的圆心角为108°;(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,列树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为=.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)(2017•长沙)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?【分析】(1)在△ABP中,求出∠PAB、∠PBA的度数即可解决问题;(2)作PH⊥AB于H.求出PH的值即可判定;【解答】解:(1)∵∠PAB=30°,∠ABP=120°,∴∠APB=180°﹣∠PAB﹣∠ABP=30°.(2)作PH⊥AB于H.∵∠BAP=∠BPA=30°,∴BA=BP=50,在Rt△PBH中,PH=PB•sin60°=50×=25,∵25>25,∴海监船继续向正东方向航行是安全的.【点评】本题考查的是解直角三角形的应用﹣方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.23.(9分)(2017•长沙)如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,=(1)求证:OA=OB;(2)已知AB=4,OA=4,求阴影部分的面积.【分析】(1)连接OC,由切线的性质可知∠ACO=90°,由于=,所以∠AOC=∠BOC,从而可证明∠A=∠B,从而可知OA=OB;(2)由(1)可知:△AOB是等腰三角形,所以AC=2,从可求出扇形OCE的面积以及△OCB的面积【解答】解:(1)连接OC,∵AB与⊙O相切于点C∴∠ACO=90°,由于=,∴∠AOC=∠BOC,∴∠A=∠B∴OA=OB,(2)由(1)可知:△OAB是等腰三角形,∴BC=AB=2,∴sin∠COB==,∴∠COB=60°,∴∠B=30°,∴OC=OB=2,∴扇形OCE的面积为:=,△OCB的面积为:×2×2=2∴S=2﹣π阴影【点评】本题考查切线的性质,解题的关键是求证OA=OB,然后利用等腰三角形的三线合一定理求出BC与OC的长度,从而可知扇形OCE与△OCB的面积,本题属于中等题型.24.(9分)(2017•长沙)自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A 型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件.已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.【分析】(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+10)元.根据16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,列出方程即可解决问题;(2)根据总利润=两种商品的利润之和,列出式子即可解决问题;(3)设利润为w元.则w=(80﹣a)m+70(250﹣m)=(10﹣a)m+17500,分三种情形讨论即可解决问题.【解答】解:(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+10)元.由题意:=×2,解得x=150,经检验x=150是分式方程的解,答:一件B型商品的进价为150元,则一件A型商品的进价为160元.(2)因为客商购进A型商品m件,所以客商购进B型商品(250﹣m)件.由题意:v=80m+70(250﹣m)=10m+17500,∵80≤m≤250﹣m,∴80≤m≤125,(3)设利润为w元.则w=(80﹣a)m+70(250﹣m)=(10﹣a)m+17500,①当10﹣a>0时,w随m的增大而增大,所以m=125时,最大利润为(18750﹣125a)元.②当10﹣a=0时,最大利润为17500元.③当10﹣a<0时,w随m的增大而减小,所以m=80时,最大利润为(18300﹣80a)元.【点评】本题考查分式方程的应用、一次函数的应用等知识,解题的关键是理解题意,学会构建方程或一次函数解决问题,属于中考常考题型.25.(10分)(2017•长沙)若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数(k为常数,k ≠0)的图象上,且这三点的纵坐标y1,y2,y3构成“和谐三组数”,求实数t的值;(3)若直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),与抛物线y=ax2+3bx+3c (a≠0)交于B(x2,y2),C(x3,y3)两点.①求证:A,B,C三点的横坐标x1,x2,x3构成“和谐三组数”;②若a>2b>3c,x2=1,求点P(,)与原点O的距离OP的取值范围.【分析】(1)由和谐三组数的定义进行验证即可;(2)把M、N、R三点的坐标分别代入反比例函数解析式,可用t和k分别表示出y1、y2、y3,再由和谐三组数的定义可得到关于t的方程,可求得t的值;(3)①由直线解析式可求得x1=﹣,联立直线和抛物线解析式消去y,利用一元二次方程根与系数的关系可求得x2+x3=﹣,x2x3=,再利用和谐三数组的定义证明即可;②由条件可得到a+b+c=0,可得c=﹣(a+b),由a>2b>3c可求得的取值范围,令m=,利用两点间距离公式可得到OP2关于m的二次函数,利用二次函数的性质可求得OP2的取值范围,从而可求得OP的取值范围.【解答】解:(1)不能,理由如下:∵1、2、3的倒数分别为1、、,∴+≠1,1+≠,1+≠∴实数1,2,3不可以构成“和谐三组数”;(2)∵M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数(k为常数,k ≠0)的图象上,∴y1、y2、y3均不为0,且y1=,y2=,y3=,∴=,=,=,∵y1,y2,y3构成“和谐三组数”,∴有以下三种情况:当=+时,则=+,即t=t+1+t+3,解得t=﹣4;当=+时,则=+,即t+1=t+t+3,解得t=﹣2;当=+时,则=+,即t+3=t+t+1,解得t=2;∴t的值为﹣4、﹣2或2;(3)①∵a、b、c均不为0,∴x1,x2,x3都不为0,∵直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),∴0=2bx1+2c,解得x1=﹣,联立直线与抛物线解析式,消去y可得2bx+2c=ax2+3bx+3c,即ax2+bx+c=0,∵直线与抛物线交与B(x2,y2),C(x3,y3)两点,∴x2、x3是方程ax2+bx+c=0的两根,∴x2+x3=﹣,x2x3=,∴+===﹣=,∴x1,x2,x3构成“和谐三组数”;②∵x2=1,∴a+b+c=0,∴c=﹣a﹣b,∵a>2b>3c,∴a>2b>3(﹣a﹣b),且a>0,整理可得,解得﹣<<,∵P(,)∴OP2=()2+()2=()2+()2=2()2+2+1=2(+)2+,令m=,则﹣<m<且m≠0,且OP2=2(m+)2+,∵2>0,∴当﹣<m<﹣时,OP2随m的增大而减小,当m=﹣时,OP2有最大值,当m=﹣时,OP2有最小值,当﹣<m<时,OP2随m的增大而增大,当m=﹣时,OP2有最小值,当m=时,OP2有最大值,∴≤OP2<且OP2≠1,∵P到原点的距离为非负数,∴≤OP<且OP≠1.【点评】本题为二次函数的综合应用,涉及新定义、函数图象的交点、一元二次方程根与系数的关系、勾股定理、二次函数的性质、分类讨论思想及转化思想等知识.在(1)中注意利用和谐三数组的定义,在(2)中由和谐三数组得到关于t的方程是解题的关键,在(3)①中用a、b、c分别表示出x1,x2,x3是解题的关键,在(3)②中把OP2表示成二次函数的形式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,难度很大.26.(10分)(2017•长沙)如图,抛物线y=mx2﹣16mx+48m(m>0)与x轴交于A,B两点(点B在点A左侧),与y轴交于点C,点D是抛物线上的一个动点,且位于第四象限,连接OD、BD、AC、AD,延长AD交y轴于点E.(1)若△OAC为等腰直角三角形,求m的值;(2)若对任意m>0,C、E两点总关于原点对称,求点D的坐标(用含m的式子表示);(3)当点D运动到某一位置时,恰好使得∠ODB=∠OAD,且点D为线段AE的中点,此时对于该抛物线上任意一点P(x0,y0)总有n+≥﹣4my02﹣12y0﹣50成立,求实数n的最小值.。
湘潭市2017年初中毕业学业考试数 学 试 题 卷(考试时量:120分钟 满分:120分)考生注意:本试卷分试题卷和答题卡两部分,全卷共三道大题,26道小题.请考生将解答过程全部填(涂)写在答题卡上,写在试题卷上无效,考试结束后,将试题卷和答题卡一并上交.一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分) 1.下列等式成立是A. 22=-B. 1)1(-=--C.1÷31)3(=- D.632=⨯- 2.数据:1,3,5的平均数与极差分别是A.3,3B.3,4C.2,3D.2,43.不等式组⎩⎨⎧≤>21x x 的解集在数轴上表示为4.一个几何体的三视图如下图所示,这个几何体是A.球B. 圆柱C.长方体D.圆锥5.下列四边形中,对角线相等且互相垂直平分的是 A.平行四边形B.正方形C.等腰梯形D.矩形6.在平面直角坐标系中,点A (2,3)与点B 关于x 轴对称,则点B 的坐标为 A.(3,2) B.(-2,-3) C.(-2,3) D.(2,-3) 7.一元二次方程0)5)(3(=--x x 的两根分别为A. 3, -5B. -3,-5C. -3,5D.3,58. 在同一坐标系中,一次函数1+=ax y 与二次函数a x y +=2的图像可能是二、填空题(本大题共8个小题,请将答案写在答题卡的相应位置上,每小题3分,满分24分)9.因式分解:12-x =_____________.10.为改善湘潭河东地区路网结构,优化环境,增强城市功能,湘潭市河东风光带于2010年7月18日正式开工,总投资为880000000元,用科学计数法表示这一数字为_____________元.11.如右图,a ∥b ,若∠2=130°,则∠1=_______度. 12.函数11-=x y 中,自变量x 的取值范围是_________. 13.湘潭历史悠久,因盛产湘莲,被誉为“莲城”.李红买了8个莲蓬,付50元,找回38元,设每个莲蓬的价格为x 元,根据题意,列出方程为______________.14. 端午节吃粽子是中华民族的习惯.今年农历五月初五早餐时,小明妈妈端上一盘粽子,其中有3个肉馅粽子和7个豆沙馅粽子,小明从中任意拿出一个,恰好拿到肉馅粽子的概率是_____.15.如图,已知:△ABC 中,DE ∥BC ,AD =3,DB =6,AE =2,则EC =_______.16.规定一种新的运算:ba b a 11+=⊗,则=⊗21____.三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应的位置上,满分72分) 17.(本题满分6分)计算:o 45cos 2)2011(201+---π.A E CBD2l1 ab18.(本题满分6分) 先化简,再求值:)111(+-x x x ,其中15-=x .19.(本题满分6分)莲城中学九年级数学兴趣小组为测量校内旗杆高度,如图,在C 点测得旗杆顶端A 的仰角为30°,向前走了6米到达D 点,在D 点测得旗杆顶端A 的仰角为60°(测角器的高度不计).⑴ AD =_______米;⑵ 求旗杆AB 的高度(73.13≈).20.(本题满分6分)2017年我市体卫站对某校九年级学生体育测试情况进行调研,从该校360名九年级学生中抽取了部分学生的成绩(成绩分为A 、B 、C 三个层次)进行分析,绘制了频数分布表与频数分布直方图(如图),请根据图表信息解答下列问题:⑴ 补全频数分布表与频数分布直方图;⑵ 如果成绩为A 等级的同学属于优秀,请你估计该校九年级约有多少人达到优秀水平?21.(本题满分6分)某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边长为x 米,求x 的整数解.22.(本题满分6分)九年级某班组织班团活动,班委会准备买一些奖品.班长王倩拿15元钱去商店全部用来购买钢笔和笔记本两种奖品,已知钢笔2元/支,笔记本1元/本,且每样东西至少买一件.⑴ 有多少种购买方案?请列举所有可能的结果;⑵ 从上述方案中任选一种方案购买,求买到的钢笔与笔记本数量相等的概率.23.(本题满分8分)如图,已知一次函数()0≠+=k b kx y 的图像与x 轴,y 轴分别交于A (1,0)、B (0,-1)两点,且又与反比例函数()0≠=m xmy 的图像在第一象限交于C 点,C 点的横坐标为2.⑴ 求一次函数的解析式;⑵ 求C 点坐标及反比例函数的解析式.8米24.(本题满分8分)两个全等的直角三角形重叠放在直线l 上,如图⑴,AB=6cm ,BC=8cm ,∠ABC=90°,将Rt △ABC 在直线l 上左右平移,如图⑵所示. ⑴ 求证:四边形ACFD 是平行四边形;⑵ 怎样移动Rt △ABC ,使得四边形ACFD 为菱形; ⑶ 将Rt △ABC 向左平移cm 4,求四边形DHCF 的面积.25.(本题满分10分)如图,直线33+=x y 交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线交x 轴于另一点C (3,0). ⑴ 求抛物线的解析式;⑵ 在抛物线的对称轴上是否存在点Q ,使△ABQ在,求出符合条件的Q 点坐标;若不存在,请说明理由.D l图(2)FEC B AH26.(本题满分10分)已知,AB 是⊙O 的直径,AB=8,点C 在⊙O 的半径OA 上运动,PC ⊥AB ,垂足为C ,PC=5,PT 为⊙O 的切线,切点为T.⑴ 如图⑴,当C 点运动到O 点时,求PT 的长;⑵ 如图⑵,当C 点运动到A 点时,连结PO 、BT ,求证:PO ∥BT;⑶ 如图⑶,设y PT =2,x AC =,求y 与x 的函数关系式及y 的最小值.湘潭市2017年初中毕业学业考试数学试卷参考答案及评分标准二.填空题(每小题3分,满分24分)9.(x +1)(x -1) 10. 8.8×10811.50 12. x ≠1的一切实数图(1)13. 8x +38=50 14.错误!未找到引用源。
专题02 代数式和因式分解一、选择题1.(2017某某省某某市)下列计算正确的是( )A .842a a a ÷=B .236(2)6a a = C .3232a a a -= D .23(1)33a a a a -=-【答案】D . 【解析】试题分析:A .原式=4a ,不符合题意; B .原式=68a ,不符合题意; C .原式不能合并,不符合题意; D .原式=233a a -,符合题意. 故选D .考点:整式的混合运算.2.(2017某某省某某市)下列运算正确的是( ) A .1212-=- B .623x x x =⋅ C .422x x x =+ D .4226)3(x x =【答案】A . 【解析】 试题分析:A .1212-=-,正确,符合题意;B .325x x x ⋅=,故此选项错误; C .2222x x x +=,故此选项错误; D .224(3)9x x =,故此选项错误; 故选A .考点:1.幂的乘方与积的乘方;2.实数的性质;3.合并同类项;4.同底数幂的乘法.3.(2017某某省某某市)要使二次根式42-x 在实数X 围内有意义,则x 的取值X 围是( ) A .x >2 B .x ≥2 C .x <2 D .x =2【答案】B . 【解析】试题分析:∵二次根式42-x 在实数X 围内有意义,∴2x ﹣4≥0,解得:x ≥2,则实数x 的取值X 围是:x ≥2.故选B .考点:二次根式有意义的条件.4.(2017某某省眉山市)下列运算结果正确的是( )A .8182-=-B .2(0.1)0.01--=C .222()2a b a b a b÷=D .326()m m m -=- 【答案】A .考点:1.二次根式的加减法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.分式的乘除法;5.负整数指数幂.5.(2017某某省眉山市)已知2211244m n n m +=--,则11m n-的值等于( ) A .1 B .0 C .﹣1 D .14-【答案】C . 【解析】 试题分析:由2211244m n n m +=--,得:22(2)(2)0m n ++-= ,则m =﹣2,n =2,∴11m n -=1122--=﹣1.故选C .考点:1.分式的化简求值;2.条件求值.6.(2017某某省某某市)使代数式x x 3431-++有意义的整数x 有( )A .5个B .4个C .3个D .2个 【答案】B .考点:二次根式有意义的条件.7.(2017某某省某某市)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则193211111a a a a ++++ 的值为( )A .2120 B .8461 C .840589 D .760421 【答案】C . 【解析】试题分析:a 1=3=1×3,a 2=8=2×4,a 3=15=3×5,a 4=24=4×6,…,a n =n (n +2); ∴193211111a a a a ++++ =11111 (132435461921)+++++⨯⨯⨯⨯⨯ =1111111111(1...)232435461921-+-+-+-++-=1111(1)222021+--=840589,故选C . 考点:1.规律型:图形的变化类;2.综合题. 8.(2017某某省达州市)下列计算正确的是( )A .235a b ab +=B 366=±C .22122a b ab a ÷= D .()323526ab a b =【答案】C .【解析】试题分析:A .2a 与3b 不是同类项,故A 不正确; B .原式=6,故B 不正确;C .22122a b ab a ÷=,正确;D .原式=368a b ,故D 不正确; 故选C .考点:1.整式的除法;2.算术平方根;3.合并同类项;4.幂的乘方与积的乘方. 9.(2017某某省枣庄市)下列计算,正确的是( ) A .826-=B .13|2|22-=- C .3822= D .11()22-=【答案】D . 【解析】试题分析:82-=222-=2,A 错误;13|2|22-=,B 错误; 38=2,C 错误;11()22-=,D 正确,故选D . 考点:1.立方根;2.有理数的减法;3.算术平方根;4.负整数指数幂.10.(2017某某省枣庄市)实数a ,b 在数轴上对应点的位置如图所示,化简2||()a a b +-的结果是( )A .﹣2a +bB .2a ﹣bC .﹣bD .b 【答案】A .考点:1.二次根式的性质与化简;2.实数与数轴.11.(2017某某省某某市)单项式39m x y 与单项式24nx y 是同类项,则m +n 的值是( )A .2B .3C .4D .5 【答案】D . 【解析】试题分析:由题意,得m =2,n =3.m +n =2+3=5,故选D . 考点:同类项.12.(2017某某省某某市)若21121x x -+-+在实数X 围内有意义,则x 满足的条件是( ) A .x ≥12 B .x ≤12 C .x =12 D .x ≠12【答案】C . 【解析】试题分析:由题意可知:210120x x -≥⎧⎨-≥⎩,解得:x =12.故选C .考点:二次根式有意义的条件. 13.(2017某某省某某市)计算()322323a a a a a -+-÷,结果是( )A .52a a - B .512a a- C .5a D .6a 【答案】D .考点:1.幂的乘方与积的乘方;2.同底数幂的乘法;3.负整数指数幂.14.(2017某某省)如图,将矩形纸片ABCD 沿BD 折叠,得到△BC ′D ,C ′D 与AB 交于点E .若∠1=35°,则∠2的度数为( )A .20B .30C .35D .55【答案】A . 【解析】试题分析:由翻折的性质得,∠DBC =∠DBC ′,∵∠C =90°,∴∠DBC =∠DBC ′=90°-35°=55°,∵矩形的对边AB ∥DC ,∴∠1=∠DBA =35°,∴∠2=∠DBC ′-∠DBA =55°-35°=20°.故选A . 考点:1.平行线的性质;2.翻折变换(折叠问题). 15.(2017某某省)下列运算正确的是( )A .223a a a +=B .325a a a ⋅=C .426()a a = D .424a a a +=【答案】B . 【解析】试题分析:A .a +2a =3a ,此选项错误; B .325a a a ⋅=,此选项正确; C .428()a a =,此选项错误;D .4a 与2a 不是同类项,不能合并,此选项错误; 故选B .考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法. 16.(2017某某四市)下列运算正确的是( )A .123)4(3+-=--x xB .422124)3(x x x -=⋅- C .32523x x x =+ D .326x x x =÷ 【答案】A .考点:整式的混合运算.17.(2017某某省某某市)下列运算中,正确的是()A.2ab ab 77a a a B.236a a a D.22a a a C.32【答案】C.【解析】试题分析:A.错误、7a+a=8a.B.错误.235a a a.C.正确.32a a a.D.错误.222ab a b故选C.考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法.18.(2017某某省某某市)计算2a a的结果是()A.a B.2a C.22a D.3a【答案】D.考点:同底数幂的乘法.19.(2017某某省某某市)如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O 上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是()A .4B .23C .2D .0 【答案】A . 【解析】试题分析:如图,∵⊙O 的半径=2,由题意得,OA 1=4,OA 2=23,OA 3=2,OA 4=23,OA 5=2,OA 6=0,OA 7=4,… ∵2017÷6=336…1,∴按此规律运动到点A 2017处,A 2017与A 1重合,∴OA 2017=2R =4.故选A .考点:1.规律型:图形的变化类;2.综合题.20.(2017某某省)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是( )A .4446+=B .004446++=C .34446+=D .14446-= 【答案】D .考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.图表型. 21.(2017某某省)若321x x --=+11x -,则中的数是( ) A .﹣1 B .﹣2 C .﹣3 D .任意实数 【答案】B . 【解析】 试题分析:∵321x x -- =+11x -,∴321x x --﹣11x -=3211x x ---=2(1)1x x --=﹣2,故____中的数是﹣2.故选B . 考点:分式的加减法.22.(2017某某省某某市)计算23a a ⋅,正确结果是( ) A .5a B .4a C .8a D .9a 【答案】A . 【解析】试题分析:23a a ⋅=23a+=5a ,故选A .考点:同底数幂的乘法.23.(2017某某省某某市)化简2111x x x+--的结果是( ) A .x +1 B .x ﹣1 C .21x - D .211x x +-【答案】A .考点:分式的加减法.24.(2017某某省某某市)下列计算正确的是( ) A .()()2222a a a +-=- B .()()2122a a a a +-=+- C .()222a b a b +=+ D .()2222a b a ab b -=-+ 【答案】D . 【解析】试题分析:A .原式=24a -,不符合题意; B .原式=22a a --,不符合题意; C .原式=222a ab b ++,不符合题意; D .原式=222a ab b -+,符合题意. 故选D .考点:整式的混合运算.25.(2017某某省襄阳市)下列运算正确的是( )A .32a a -=B . ()325a a =C . 235a a a =D .632a a a ÷=【答案】C .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方. 26.(2017某某市B 卷)计算53a a ÷结果正确的是( ) A .a B .2a C .3a D .4a 【答案】B . 【解析】试题分析:53a a ÷=2a .故选B . 考点:同底数幂的除法.27.(2017某某市B 卷)若x =﹣3,y =1,则代数式2x ﹣3y +1的值为( ) A .﹣10 B .﹣8 C .4 D .10 【答案】B . 【解析】试题分析:∵x =﹣3,y =1,∴2x ﹣3y +1=2×(﹣3)﹣3×1+1=﹣8,故选B . 考点:代数式求值.28.(2017某某市B 卷)若分式13x -有意义,则x 的取值X 围是( ) A .x >3 B .x <3 C .x ≠3 D .x =3 【答案】C . 【解析】 试题分析:∵分式13x -有意义,∴x ﹣3≠0,∴x ≠3;故选C . 考点:分式有意义的条件.29.(2017某某市B 卷)下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为( )A .116B .144C .145D .150 【答案】B .考点:规律型:图形的变化类. 二、填空题30.(2017某某省某某市)计算:0|15(3)π+-=.5 【解析】试题分析:原式555 考点:1.实数的运算;2.零指数幂.31.(2017某某省某某市)分解因式:24mx m -=. 【答案】m (x +2)(x ﹣2). 【解析】试题分析:24mx m -=2(4)m x -=m (x +2)(x ﹣2).故答案为:m (x +2)(x ﹣2).考点:提公因式法与公式法的综合运用.32.(2017某某省眉山市)分解因式:228ax a -=.【答案】2a (x +2)(x ﹣2).考点:提公因式法与公式法的综合运用. 33.(2017某某省某某市)分解因式:282a -=. 【答案】2(2a +1)(2a ﹣1). 【解析】试题分析:282a -=22(41)a - =2(2a +1)(2a ﹣1).故答案为:2(2a +1)(2a ﹣1).考点:提公因式法与公式法的综合运用.34.(2017某某省达州市)因式分解:3228a ab -=. 【答案】2a (a +2b )(a ﹣2b ). 【解析】试题分析:2a 3﹣8ab 2=2a (a 2﹣4b 2) =2a (a +2b )(a ﹣2b ).故答案为:2a (a +2b )(a ﹣2b ). 考点:提公因式法与公式法的综合运用.35.(2017某某省枣庄市)化简:2223321(1)x x xx x x ++÷-+-=. 【答案】1x. 【解析】试题分析:2223321(1)x x x x x x ++÷-+-=223(1)(1)(3)x x x x x +-⋅-+=1x ,故答案为:1x.考点:分式的乘除法.36.(2017某某省某某市)分解因式:222ma mab mb ++=. 【答案】2()m a b + .试题分析:原式=22(2)m a ab b ++=2()m a b +,故答案为:2()m a b +. 考点:提公因式法与公式法的综合运用. 37.(2017某某省)计算:41892-=. 【答案】32.考点:二次根式的加减法.38.(2017某某省)分解因式:a a +2=. 【答案】a (a +1). 【解析】试题分析:a a +2=a (a +1).故答案为:a (a +1). 考点:因式分解﹣提公因式法.39.(2017某某省)已知4a +3b =1,则整式8a +6b ﹣3的值为. 【答案】﹣1. 【解析】试题分析:∵4a +3b =1,∴8a +6b =2,8a +6b ﹣3=2﹣3=﹣1;故答案为:﹣1. 考点:1.代数式求值;2.整体思想.40.(2017某某省某某市)分解因式2a b a 的结果为. 【答案】a (ab ﹣1). 【解析】试题分析:2a b a =a (ab ﹣1),故答案为:a (ab ﹣1). 考点:提公因式法与公式法的综合运用.41.(20173x X 围内有意义,则x 的取值X 围是. 【答案】x ≥3.试题分析:根据题意得x ﹣3≥0,解得x ≥3.故答案为:x ≥3. 考点:二次根式有意义的条件. 42.(2017某某省某某市)分式11x 有意义的x 的取值X 围为.【答案】x ≠1.考点:分式有意义的条件.43.(2017某某省某某市)计算(a ﹣2)(a +2)=. 【答案】24a -. 【解析】试题分析:(a ﹣2)(a +2)=24a -,故答案为:24a -. 考点:平方差公式.44.(2017某某省某某市)分解因式:22m m +=. 【答案】m (m +2). 【解析】试题分析:原式=m (m +2).故答案为:m (m +2). 考点:因式分解﹣提公因式法.45.(2017某某省某某市)已知21a a +=,则代数式23a a --的值为. 【答案】2. 【解析】试题分析:∵21a a +=,∴原式=23()a a -+=3﹣1=2.故答案为:2.考点:1.代数式求值;2.条件求值;3.整体思想. 46.(2017某某省某某市)因式分解:26x x +=.【答案】x (x +6). 【解析】试题分析:原式=x (6+x ),故答案为:x (x +6). 考点:因式分解﹣提公因式法.47.(2017某某省某某市)分解因式:2x y y -=. 【答案】y (x +1)(x ﹣1).考点:1.提公因式法与公式法的综合运用;2.因式分解. 48.(2017某某市B 卷)计算:0|3|(4)-+-. 【答案】4. 【解析】试题分析:原式=3+1=4.故答案为:4. 考点:1.实数的运算;2.零指数幂. 三、解答题49.(2017某某省某某市)化简21(1)1x x x x x --÷++,再任取一个你喜欢的数代入求值. 【答案】1x x -,当x =5时,原式=54. 【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再选取合适的x 的值代入进行计算即可.试题解析:原式=2211x x x x x x x +-+⋅+-=21(1)1x x x x x +⋅+-=1x x - ∵x ﹣1≠0,x (x +1)≠0,∴x ≠±1,x ≠0,当x =5时,原式=551-=54. 考点:分式的化简求值.50.(2017某某省某某市)计算:6118cos 4520173--+-+. 【答案】13.考点:1.二次根式的混合运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.51.(2017某某省某某市)先化简,再求值:2211a a a a a +-⎛⎫+÷ ⎪⎝⎭,其中a =2. 【答案】11a a +-,3. 【解析】试题分析:先化简分式,再代入求值.试题解析:原式=221(1)(1)a a a a a a ++⨯+-=2(1)(1)(1)a a a a a +⨯+-=11a a +- 当a =2时,原式=3. 考点:分式的化简求值.52.(2017某某省眉山市)先化简,再求值:2(3)2(34)a a +-+,其中a =﹣2. 【答案】21a +,5. 【解析】试题分析:原式利用完全平方公式化简,去括号合并得到最简结果,把a 的值代入计算即可求出值. 试题解析:原式=26968a a a ++--=21a +,当a =﹣2时,原式=4+1=5. 考点:整式的混合运算—化简求值.53.(2017某某省某某市)(1)计算:|21|)2(45cos 04.012----+-; (2)先化简,再求值:y x yxyx x y xy x y x 2)22(222-÷--+--,其中x =22y 2. 【答案】(1)0.7;(2)1y x-,2-.考点:1.分式的化简求值;2.实数的运算;3.负整数指数幂;4.特殊角的三角函数值. 54.(2017某某省达州市)计算:112017122cos 453-⎛⎫--++︒ ⎪⎝⎭.【答案】5. 【解析】试题分析:首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可. 试题解析:原式=2121322-+++⨯=522-+ =5. 考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值. 55.(2017某某省达州市)设A =223121a a a a a a -⎛⎫÷- ⎪+++⎝⎭.(1)化简A ;(2)当a =3时,记此时A 的值为f (3);当a =4时,记此时A 的值为f (4);… 解关于x 的不等式:()()()27341124x x f f f ---≤+++,并将解集在数轴上表示出来.【答案】(1)21a a+;(2)x ≤4.考点:1.分式的混合运算;2.在数轴上表示不等式的解集;3.解一元一次不等式;4.阅读型;5.新定义.56.(2017某某省枣庄市)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=pq.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=34.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【答案】(1)证明见解析;(2)15,26,37,48,59;(3)34.考点:1.因式分解的应用;2.新定义;3.因式分解;4.阅读型. 57.(2017某某省)计算:()11713π-⎛⎫---+ ⎪⎝⎭. 【答案】9. 【解析】试题分析:直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案. 试题解析:原式=7﹣1+3=9.考点:1.实数的运算;2.零指数幂;3.负整数指数幂. 58.(2017某某省)先化简,再求值:()211422x x x ⎛⎫+⋅- ⎪-+⎝⎭,其中x 5 【答案】2x ,25 【解析】试题分析:先计算括号内分式的加法,再计算乘法即可化简原式,将x 的值代入求解可得.试题解析:原式=()()()()222222x x x x x x ++-+--+=2x 当x =5时,原式=25.考点:分式的化简求值.59.(2017某某四市)先化简,再求值:2211121x x x x x ---÷++,其中15-=x . 【答案】11x +,55. 考点:分式的化简求值.60.(20171014()20172.【答案】3.【解析】 试题分析:首先计算开方,乘方、然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可. 试题解析:原式=2+2﹣1=3.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.61.(2017某某省某某市)先化简,再求值:35222x x x x ,其中33x .【答案】13x -,33. 【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把x 的值代入计算即可求出值.试题解析:原式=3(2)(2)5[]222x x x x x x =23922x x x x +-÷--=322(3)(3)x x x x x +-⋅-+-=13x - 当33x 时,原式=1333+-=13=33. 考点:分式的化简求值.62.(2017某某省某某市)计算:0318 3.14. 【答案】0.【解析】试题分析:先去括号、开方、零指数幂,然后计算加减法.试题解析:原式=1﹣2+1=0.考点:1.实数的运算;2.零指数幂.63.(2017某某省某某市)化简:211a a a a . 【答案】21a .考点:分式的乘除法.64.(2017某某省)发现 任意五个连续整数的平方和是5的倍数.验证 (1)22222(1)0123-++++的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数.延伸 任意三个连续整数的平方和被3整除余数是几呢?请写出理由.【答案】(1)3;(2)见解析;延伸 2,理由见解析.【解析】试题分析:(1)直接计算这个算式的值;(2)先用代数式表示出这几个连续整数的平方和,再化简,根据代数式的形式作出结论.试题解析: (1)∵()2222210123-++++=1+0+1+4+9=15=5×3,∴结果是5的3倍.(2)()()()()()2222222211251052n n n n n n n -+-+++++=+=+.∵n 为整数,∴这个和是5的倍数.延伸 余数是2.理由:设中间的整数为n ,()()22221132n n n n -+++=+被3除余2.考点:1.完全平方公式;2.整式的加减.65.(2017某某省某某市)计算:011(2017)()93---+.【答案】1.【解析】试题分析:本题涉及零指数幂、负整数指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=1﹣3+3=1.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.66.(2017某某省某某市)计算:()09213+---. 【答案】1.考点:1.实数的运算;2.零指数幂.67.(2017某某省某某市)先化简,再求值:1211x x ⎛⎫-⋅ ⎪+⎝⎭,其中x =2017. 【答案】21x +,11009. 【解析】试题分析:根据分式的减法和乘法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.试题解析:原式=1121x x x +-⨯+=21x x x ⨯+=21x + 当x =2017时,原式=220171+=22018=11009. 考点:分式的化简求值. 68.(2017某某省某某市)(1) 计算:()02343218π-+--. (2)解不等式:()4521x x +≤+.【答案】(1)﹣3;(2)x ≤32-. 考点:1.解一元一次不等式;2.实数的运算;3.零指数幂.69.(2017某某省襄阳市)先化简,再求值:2111x y x y xy y⎛⎫+÷ ⎪+-+⎝⎭,其中52x =,52y =. 【答案】2xy x y -,12. 【解析】 试题分析:先根据分式的混合运算顺序和法则化简原式,再将x 、y 的值代入求解可得.试题解析:原式=1[]()()()()()x y x y x y x y x y x y y x y -++÷+-+-+=2()()()x y x y x y x y ⋅++- =2xy x y - 当52x =,52y =时,原式2(52)(55252+-+24=12. 考点:分式的化简求值.70.(2017某某市B 卷)计算:(1)2()(2)x y x y x +--; (2)23469(2)22a a a a a a --++-÷--. 【答案】(1)222x y +;(2)3a a -.考点:1.分式的混合运算;2.单项式乘多项式;3.完全平方公式.71.(2017某某市B 卷)对任意一个三位数n ,如果n 满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n ).例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F (123)=6.(1)计算:F (243),F (617);(2)若s ,t 都是“相异数”,其中s =100x +32,t =150+y (1≤x ≤9,1≤y ≤9,x ,y 都是正整数),规定:k =()()F s F t ,当F (s )+F (t )=18时,求k 的最大值. 【答案】(1)F (243)=9,F (617)=14;(2)54. 【解析】 试题分析:(1)根据F (n )的定义式,分别将n =243和n =617代入F (n )中,即可求出结论;(2)由s =100x +32、t =150+y 结合F (s )+F (t )=18,即可得出关于x 、y 的二元一次方程,解之即可得出x 、y 的值,再根据“相异数”的定义结合F (n )的定义式,即可求出F (s )、F (t )的值,将其代入k =()()F s F t 中,找出最大值即可.试题解析:(1)F(243)=(423+342+234)÷111=9;F(617)=(167+716+671)÷111=14.(2)∵s,t都是“相异数”,s=100x+32,t=150+y,∴F(s)=(302+10x+230+x+100x+23)÷111=x+5,F (t)=(510+y+100y+51+105+10y)÷111=y+6.∵F(t)+F(s)=18,∴x+5+y+6=x+y+11=18,∴x+y=7.∵1≤x≤9,1≤y≤9,且x,y都是正整数,∴16xy=⎧⎨=⎩或25xy=⎧⎨=⎩或34xy=⎧⎨=⎩或43xy=⎧⎨=⎩或52xy=⎧⎨=⎩或61xy=⎧⎨=⎩.∵s是“相异数”,∴x≠2,x≠3.∵t是“相异数”,∴y≠1,y≠5,∴16xy=⎧⎨=⎩或43xy=⎧⎨=⎩或52xy=⎧⎨=⎩,∴()6()12F sF t=⎧⎨=⎩或()9()9F sF t=⎧⎨=⎩或()10()8F sF t=⎧⎨=⎩,∴k=()()F sF t=12或k=()()F sF t=1或k=()()F sF t=54,∴k的最大值为54.考点:1.因式分解的应用;2.二元一次方程的应用;3.新定义;4.阅读型;5.最值问题;6.压轴题.。
专题10:四边形一、选择题1.(2017北京第6题)若正多边形的一个内角是150°,则该正多边形的边数是( )A . 6B . 12C . 16D .18【答案】B .【解析】试题分析:设多边形的边数为n ,则有(n -2)×180°=n ×150°,解得:n =12.故选B .考点:多边形的内角与外角2. (2017河南第7题)如图,在ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能..判定ABCD 是菱形的只有( )A .AC BD ⊥B .AB BC = C .AC BD = D .12∠=∠【答案】C .考点:菱形的判定.3. (2017湖南长沙第10题)如图,菱形ABCD 的对角线BD AC ,的长分别为cm cm 8,6,则这个菱形的周长为( )A .cm 5B .cm 10C .cm 14D .cm 20【答案】D【解析】试题分析:根据菱形的对角线互相垂直,可知OA =3,OB =4,根据勾股定理可知AB =5,所以菱形的周长为4×5=20.故选:D考点:菱形的性质4. (2017湖南长沙第12题)如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点D C ,重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,CHG ∆的周长为n ,则mn 的值为( ) A .22 B .21 C .215- D .随H 点位置的变化而变化【答案】B【解析】试题分析:设正方形ABCD 的边长为2a ,正方形的周长为m =8a ,设CM =x ,DE =y ,则DM =2a -x ,EM =2a -y ,∵∠EMG =90°,∴∠DME +∠CMG =90°.∵∠DME +∠DEM =90°,∴∠DEM =∠CMG ,又∵∠D =∠C =90°△DEM ∽△CMG , ∴CG CM MG DM DE EM ==,即22CG x MG a x y a y==-- ∴CG =(2)(2)=,x a x x a y CG MG y y--= △CMG 的周长为CM +CG +MG =24ax x y-在Rt △DEM 中,DM 2+DE 2=EM 2即(2a -x )2+y 2=(2a -y )2整理得4ax -x 2=4ay∴CM +MG +CG =2444ax x ay a y y-===n . 所以12n m = 故选:B .考点:1、正方形,2、相似三角形的判定与性质,3、勾股定理5. (2017山东临沂第7题)一个多边形的内角和是外角和的2倍,这个多边形是( )A .四边形B .五边形C .六边形D .八边形【答案】C【解析】试题分析:根据多边形的外角和为360°,可知其内角和为720°,因此可根据多边形的内角和公式(n -2)·180°=720°,解得n =6,故是六边形.故选:C考点:多边形的内外角和6. (2017山东临沂第12题)在ABC V 中,点D 是边BC 上的点(与B 、C 两点不重合),过点D 作DE AC ∥,DF AB ∥,分别交AB ,AC 于E 、F 两点,下列说法正确的是( )A .若AD BC ⊥,则四边形AEDF 是矩形B .若AD 垂直平分BC ,则四边形AEDF 是矩形C .若BD CD =,则四边形AEDF 是菱形D .若AD 平分BAC ∠,则四边形AEDF 是菱形【答案】D【解析】试题分析:根据题意可知:DE AC ∥,DF AB ∥,可得四边形AEDF 是平行四边形.若AD ⊥BC ,则四边形AEDF 是平行四边形,不一定是矩形;选项A 错误;若AD 垂直平分BC ,则四边形AEDF 是菱形,不一定是矩形;选项B 错误;若BD =CD ,则四边形AEDF 是平行四边形,不一定是菱形;选项C 错误;若AD 平分∠BAC ,则四边形AEDF 是菱形;正确.故选:D考点:特殊平行四边形的判定7. (2017山东青岛第7题)如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E ,3=AB ,AC =2,BD =4,则AE 的长为( )A .23B .23C .721D .7212 【答案】D考点:1、平行四边形的性质,2、勾股定理,3、面积法求线段长度8. (2017四川泸州第11题)如图,在矩形ABCD 中,点E 是边BC 的中点,AE BD ⊥,垂足为F ,则tan BDE ∠的值是 ( )A .24B .14C .13D .23【答案】A .【解析】试题分析:由AD ∥BC 可得△ADF ∽△EBF ,根据相似三角形的性质可得AD AF DF EB EF BF== ,因点E 是边BC 的中点且AD =BC ,所以AD AF DF EB EF BF ===2,设EF =x ,可得AF =2x ,在Rt △ABE 中,由射影定理可得BF =2x ,再由AD AF DF EB EF BF ===2可得DF =22x ,在Rt △DEF 中,tan BDE ∠=2422EF x DF x == ,故选A . 9. (2017江苏苏州第10题)如图,在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂足为E .将F ∆AE 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为A .283B .243C .323D .3238-【答案】A .【解析】试题分析:作,,DH AB PK AB FL AB ⊥⊥⊥在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点 423,3AF EF EL ∴==∴=,P 是F E 的中点,32PK ∴= 43DH = 1373322PP CD ∴-= 高为4 7382832S ∴=⨯=L K H故答案选A .考点:平行四边形的面积,三角函数. 10.(2017江苏苏州第7题)如图,在正五边形CD AB E 中,连接BE ,则∠ABE 的度数为A .30B .36C .54D .72【答案】B .【解析】试题分析:∠ABE =3601=3652︒⨯︒ 故答案选B . 考点:多边形的外角,等腰三角形的两底角相等11.(2017浙江台州第10题) 如图,矩形EFGH 的四个顶点分别在菱形ABCD 的四条边上,BE BF =,将,AEH CFG ∆∆分别沿,EH FG 折叠,当重叠部分为菱形且面积是菱形ABCD 面积的116时,则AE EB 为 ( )A . 53B .2C . 52D .4 【答案】A考点:1、菱形的性质,2、翻折变换(折叠问题)二、填空题1.(2017天津第17题)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点G F ,分别在边CD BC ,上,P 为AE 的中点,连接PG ,则PG 的长为 .【答案】5.【解析】试题分析:连结AC ,根据正方形的性质可得A 、E 、C 三点共线,连结FG 交AC 于点M ,因正方形ABCD 和正方形EFCG 的边长分别为3和1,根据勾股定理可求得EC =FG =2,AC =32,即可得AE =22,因P 为AE 的中点,可得PE =AP =2,再由正方形的性质可得GM =EM =22,FG 垂直于AC ,在Rt △PGM 中,PM =322,由勾股定理即可求得PG =5.2.(2017福建第15题)两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则AOB ∠等于 度.【答案】108【解析】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD =∠ODC =180°-108°=72°,∴∠COD =36°,∴∠AOB =360°-108°-108°-36°=108°.D C3.(2017广东广州第16题)如图9,平面直角坐标系中O 是原点,OABC 的顶点,A C 的坐标分别是()()8,0,3,4,点,D E 把线段OB 三等分,延长,CD CE 分别交,OA AB 于点,F G ,连接FG ,则下列结论:①F 是OA 的中点;②OFD ∆与BEG ∆相似;③四边形DEGF 的面积是203;④453OD =;其中正确的结论是 .(填写所有正确结论的序号)【答案】①③【解析】试题分析:如图,分别过点A 、B 作AN OB ⊥ 于点N ,BM x ⊥ 轴于点M在OABC 中,(80)(34)(114)137A C B OB ∴= ,,,,,D E 、 是线段AB 的三等分点, 12OD BD ∴= ,CB OF ODF BDC ∴∆∆111222OF OD OF BC OA BC BD ∴==∴==, F ∴ 是OA 的中点,故①正确.(34)5C OC OA ∴=≠ ,,OABC ∴ 不是菱形.,DOF COD EBG ODF COD EBG ∴∠≠∠=∠∠≠∠=∠(40)17,F CF OC CFO COF ∴=<∴∠>∠ ,,DFO EBG ∴∠≠∠故OFD ∆ 和BEG ∆ 不相似.则②错误;由①得,点G 是AB 的中点,FG ∴ 是OAB ∆ 的中位线1137,22FG OB FG OB ∴== D E 、 是OB 的三等分点,1373DE ∴= 1118416222OAB S OB AN OA BM ∆=⋅=⋅=⨯⨯= 解得:1162AN OB= ,DF FG ∴ 四边形DEGH 是梯形()551202121223DEGF DE FG h S OB h OB AN -∴==⋅=⋅=四边形 则③正确 113733OD OB == ,故④错误. 综上:①③正确.考点: 平行四边形和相似三角形的综合运用4.(2017广东广州第11题)如图6,四边形ABCD 中,0//,110AD BC A ∠=,则B ∠=___________.【答案】70°【解析】试题分析:两直线平行,同旁内角互补,可得:B ∠=180°-110°=70°考点:平行线的性质5.(2017山东临沂第18题)在ABCD Y 中,对角线AC ,BD 相交于点O .若4AB =,10BD =,3sin 5BDC ∠=,则ABCD Y 的面积是 .【答案】24【解析】试题分析:作OE ⊥CD 于E ,由平行四边形的性质得出OA =OC ,OB =OD =12BD =5,CD =AB =4,由sin ∠BDC =35,证出AC ⊥CD ,OC =3,AC =2OC =6,得出▱ABCD 的面积=CD •AC =24. 故答案为:24.考点:1、平行四边形的性质,2、三角函数,3、勾股定理6.(2017山东青岛第13题)如图,在四边形 ABCD 中,∠ABC =∠ADC =90°,E 为对角线AC 的中点,连接BE 、ED 、BD ,若∠BAD =58°,则∠EBD 的度数为__________度.【答案】32 【解析】 试题分析:如下图由∠ABC =∠ADC =90°,E 为对角线AC 的中点,可知A ,B ,C ,D 四点共圆,圆心是E ,直径AC 然后根据圆周角定理由∠BAD =58°,得到∠BED =116°,然后根据等腰三角形的性质可求得∠EBD =32°. 故答案为:32.考点:1、圆周角性质定理,2、等腰三角形性质7.(2017山东滨州第16题)如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在AB 边上的E 处,EQ 与BC 相交于点F .若AD =8,AB =6,AE =4,则△EBF 周长的大小为___________.ABCDHQGFE【答案】8.【解析】由折叠的性质可得DH =EH ,设AH =x ,则DH =EH =8-x ,在Rt △AEH 中,根据勾股定理可得2224(8)x x +=- ,解得x =3,即可得AH =3,EH =5;根据已知条件易证△AEH ∽△BFE ,根据相似三角形的性质可得AH AE EH BE BF EF == ,即3452BF EF ==,解得BF =83 ,EF =103,所以△EBF 的周长为2+83+103=8. 8.(2017江苏宿迁第15题)如图,正方形CD AB 的边长为3,点E 在边AB 上,且1BE =.若点P 在对角线D B 上移动,则PA +PE 的最小值是 .【答案】10.9.(2017辽宁沈阳第16题)如图,在矩形ABCD 中,53AB BC ==,,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是 .【答案】3105. 【解析】试题分析:如图,过点C 作MN ⊥BG ,分别交BG 、EF 于点M 、N ,根据旋转的旋转可得AB =BG =EF =CD =5,AD =GF =3,在Rt △BCG 中,根据勾股定理求得CG =4,再由1122BCG S BC CG BG CM =⋅=⋅ ,即可求得CM =125 ,在Rt △BCM 中,根据勾股定理求得BM =22221293()55BC CM -=-=,根据已知条件和辅助线作法易知四边形BENMW 为矩形,根据矩形的旋转可得BE =MN =3,BM =EN =95,所以CN =MN -CM =3-125=35,在Rt △ECN 中,根据勾股定理求得EC =22223990310()()55255CN EN +=+==.考点:四边形与旋转的综合题.10.(2017江苏苏州第18题)如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB (结果保留根号).【答案】745. 【解析】试题分析:连接AG ,设DG =x ,则 G=4+x ''AB =B在'Rt AB G ∆ 中,22492(4)1x x x +=+⇒= ,则5,7AB BC =='254974'55CC BB +∴==考点:旋转的性质 ,勾股定理 .11. (2017山东菏泽第11题)菱形ABCD 中, 60=∠A ,其周长为cm 24,则菱形的面积为____2cm . 【答案】183. 【解析】试题分析:如图,连接BD ,作DE ⊥AB ,已知菱形的周长为cm 24,根据菱形的性质可得AB =6;再由 60=∠A ,即可判定△ABD 是等边三角形;求得DE =33,所以菱形的面积为:6×33=183.12. (2017浙江湖州第13题)已知一个多边形的每一个外角都等于72,则这个多边形的边数是 . 【答案】5考点:多边形的外角和三、解答题1. (2017北京第20题) 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.,(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》) 请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD S S S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________). 易知,ADC ABC S S ∆∆=,_____________=______________,______________=_____________. 可得NFGD EBMF S S =矩形矩形.【答案】,,,AEF CFM ANF AEF FGC CFM S S S S S ∆∆∆∆∆;;S . 【解析】试题分析:由矩形的对角线的性质,对角线把矩形分成两个面积相等的三角形计算即可. 本题解析:由矩形对角线把矩形分成两个面积相等的两部分可得:(),()ADC ANF FGC ABC AEF FMC NFGD EBMF S S S S S S S S ∆∆∆∆∆=-+=-+矩形矩形 ,∴,,ADC ABC ANF AEF FGC FMC S S S S S S ∆∆∆∆∆∆=== , ∴NFGD EBMF S S =矩形矩形 . 考点:矩形的性质,三角形面积计算.2. (2017北京第22题)如图,在四边形ABCD 中,BD 为一条对角线,0//,2,90AD BC AD BC ABD =∠=,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分,1BAD BC ∠=,求AC 的长. 【答案】(1)证明见解析.(2)3. 【解析】试题分析:(1)先证四边形是平行四边形,再证其为菱形;(2)利用等腰三角形的性质,锐角三角函数,即可求解.本题解析:(1)证明:∵E 为AD 中点,A D =2BC ,∴BC =ED , ∵AD ∥BC , ∴四边形ABCD 是平行四边形,∵AD =2BE , ∠ABD =90°,AE =DE ∴BE =ED , ∴四边形ABCD 是菱形.(2)∵AD ∥BC ,AC 平分∠BAD ∴∠BAC =∠DAC =∠BCA ,∴BA =BC =1, ∵AD =2BC =2,∴sin ∠ADB =12,∠ADB =30°, ∴∠DAC =30°, ∠ADC =60°.在RT △ACD 中,AD =2,CD =1,AC = 3 .考点:平行线性质,菱形判定,直角三角形斜边中线定理.3. (2017天津第24题)将一个直角三角形纸片ABO 放置在平面直角坐标系中,点)0,3(A ,点)1,0(B ,点)0,0(O .P 是边AB 上的一点(点P 不与点B A ,重合),沿着OP 折叠该纸片,得点A 的对应点'A .(1)如图①,当点'A 在第一象限,且满足OB B A ⊥'时,求点'A 的坐标; (2)如图②,当P 为AB 中点时,求B A '的长;(3)当030'=∠BPA 时,求点P 的坐标(直接写出结果即可).【答案】(1)点A ’的坐标为(2,1);(2)1;(3)3333(,)22--或2333(,)22- . 【解析】试题分析:(1)因点)0,3(A ,点)1,0(B ,可得OA =3 ,OB =1,根据折叠的性质可得△A ’OP ≌△AOP ,由全等三角形的性质可得OA ’=OA =3,在Rt △A ’OB 中,根据勾股定理求得'A B 的长,即可求得点A的坐标;(2)在Rt △AOB 中,根据勾股定理求得AB =2,再证△BOP 是等边三角形,从而得∠OPA =120°.在判定四边形OPA ’B 是平行四边形,根据平行四边形的性质即可得B A '的长; 试题解析:(1)因点)0,3(A ,点)1,0(B , ∴OA =3 ,OB =1.根据题意,由折叠的性质可得△A ’OP ≌△AOP .∴OA ’=OA =3,由OB B A ⊥',得∠A ’BO =90°.在Rt △A ’OB 中,22''2A B OA OB =-=, ∴点A ’的坐标为(2,1). (2) 在Rt △AOB 中,OA =3 ,OB =1, ∴222AB OA OB =+= ∵当P 为AB 中点, ∴AP =BP =1,OP =12AB =1. ∴OP =OB =BP , ∴△BOP 是等边三角形 ∴∠BOP =∠BPO =60°, ∴∠OPA =180°-∠BPO =120°. 由(1)知,△A ’OP ≌△AOP ,∴∠OPA ’=∠OPA =120°,P ’A =PA =1,又OB =PA ’=1,∴四边形OPA ’B 是平行四边形. ∴A ’B =OP =1. (3)3333(,)22--或2333(,)22- .4. (2017福建第24题)如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(Ⅰ)若PCD ∆是等腰三角形时,求AP 的长; (Ⅱ)若2AP =,求CF 的长.【答案】(Ⅰ)AP 的长为4或5或145;(Ⅱ)CF =324【解析】试题分析:(Ⅰ)分情况CP =CD 、PD =PC 、DP =DC 讨论即可得;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,通过证明△ADP ∽△CDF ,从而得34CF CD AP AD == ,由AP =2 ,从而可得CF =324. 试题解析:(Ⅰ)在矩形ABCD 中,AB =6,AD =8,∠ADC =90°,∴DC =AB =6, AC =22AD DC + =10;要使△PCD 是等腰三角形,有如下三种情况: (1)当CP =CD 时,CP =6,∴AP =AC -CP =4 ;(2)当PD =PC 时,∠PDC =∠PCD ,∵∠PCD +∠PAD =∠PDC +∠PDA =90°,∴∠PAD =∠PDA ,∴PD =PA ,∴PA =PC ,∴AP =2AC,即AP =5;(3)当DP =DC 时,过D 作DQ ⊥AC 于Q ,则PQ =CQ ,∵S △ADC =12 AD ·DC =12AC ·DQ ,∴DQ =245AD DC AC = ,∴CQ =22185DC DQ -= ,∴PC =2CQ =365 ,∴AP =AC -PC =145. 综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,∵四边形ABCD 和PEFD 都是矩形,∴∠ADC =∠PDF =90°,即∠ADP +∠PDC =∠PDC +∠CDF ,∴∠ADP =∠CDF ,∵∠BCD =90°,OE =OD ,∴OC =12 ED ,在矩形PEFD 中,PF =DE ,∴OC =12PF ,∵OP =OF =12PF ,∴OC =OP =OF ,∴∠OCF =∠OFC ,∠OCP =∠OPC ,又∵∠OPC +∠OFC +∠PCF =180°,∴2∠OCP +2∠OCF =180°,∴∠PCF =90°,即∠PCD +∠FCD =90°,在Rt △ADC 中,∠PCD +∠PAD =90°,∴∠PAD =∠FCD ,∴△ADP ∽△CDF ,∴34CF CD AP AD == ,∵AP =2 ,∴CF =324.5. (2017广东广州第24题)如图13,矩形ABCD 的对角线AC ,BD 相交于点O ,COD ∆关于CD 的对称图形为CED ∆.(1)求证:四边形OCED 是菱形;(2)连接AE ,若6cm AB =,5BC cm =. ①求sin EAD ∠的值;②若点P 为线段AE 上一动点(不与点A 重合),连接OP ,一动点Q 从点O 出发,以1/cm s 的速度沿线段OP 匀速运动到点P ,再以1.5cm /s 的速度沿线段PA 匀速运动到点A ,到达点A 后停止运动.当点Q 沿上述路线运动到点A 所需要的时间最短时,求AP 的长和点Q 走完全程所需的时间.【答案】(1)详见解析;(2)①2sin 3EAD ∠= ②32AP =和Q 走完全程所需时间为32s 【解析】(2)①连接OE ,直线OE 分别交AB 于点F ,交DC 于点GCOD ∆ 关于CD 的对称图形为CED ∆,OE DC DC AB ∴⊥ ,OF AB EF AD ∴⊥在矩形ABCD 中,G 为DC 的中点,且O 为AC 的中点OG ∴ 为CAD ∆ 的中位线 52OG GE ∴==同理可得:F 为AB 的中点,532OF AF ==, 22223593()22AE EF AF ∴=+=+= 32sin sin 932EAD AEFEAD AEF ∠=∠∴∠=∠==②过点P 作PM AB ⊥ 交AB 于点MQ ∴ 由O 运动到P 所需的时间为3s由①可得,23AM AP = ∴ 点O 以1.5/cm s 的速度从P 到A 所需的时间等于以 1/cm s 从M 运动到A 即:11OP PA OP MA t t t OP MA =+=+=+ Q ∴ 由O 运动到P 所需的时间就是OP +MA 和最小.如下图,当P 运动到1P ,即1PO AB 时,所用时间最短. 3t OP MA ∴=+=在11Rt APM ∆ 中,设112,3AM x APx == 2222211115(3)=(2)+()22AP AM PM x x =+∴ 解得:12x = 32AP ∴= 32AP ∴=和Q 走完全程所需时间为32s考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置6. (2017山东青岛第24题)(本小题满分12分)已知:Rt △EFP 和矩形ABCD 如图①摆放(点P 与点B 重合),点F ,B (P ),C 在同一条直线上,AB =EF =6cm ,BC =FP =8cm ,∠EFP =90°。
2017年湘潭市初中毕业学业考试数学试题卷考试时量:120分钟满分:120分一、选择题:本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.2017的倒数是()A.12017B.12017- C.2017 D.2017-【答案】A 【解析】试题分析:性质符号相同,分子分母位置颠倒的两个数称为互为倒数,所以2117的倒数是1 2017考点:互为倒数的定义2.如图所示的几何体的主视图是()A. B.C. D.【答案】D【解析】试题分析:三视图就是主视图(正视图)、俯视图、左视图的总称。
从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状。
从正面看到的图是,故选D考点:三视图3.不等式组21x x <⎧⎨>-⎩的解集在数轴上表示为( )A .B .C .D .【答案】B【解析】试题分析:x<2,不包括2,画空心圆圈,小于向左拐;x >-1,不包括-12,画空心圆圈,大于向右拐,故选B 考点:不等式4.下列计算正确的是( )A .32a a a -=B .257+= C.()3322a a = D .632a a a ÷=【答案】A【解析】试题分析:A .32a a a -= 正确 B .2和5 无法进行加法运算 C.()3333822a a a =∙= D .336a a a =÷,故选A考点:代数式的运算5.“莲城读书月”活动结束后,对八年级(三)班45人所阅读书籍数量情况的统计结果如下表所示:根据统计结果,阅读2本书籍的人数最多,这个数据2是( ) A .平均数 B .中位数 C.众数 D .方差 【答案】C 【解析】试题分析:用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2].45个 数据中,数据2共18个,个数最多,故选C 考点:方差;平均数;中位数;众数阅读数量 1本 2本 3本 3本以上 人数(人)10181346.函数2y x =+中,自变量x 的取值范围是( )A .2x ≥-B .2x <- C. 0x ≥ D .2x ≠- 【答案】A 【解析】试题分析:2+x 中,x+2≥2,∴2x ≥-故选C 考点:二次根式 7.如图,在半径为4的O 中,CD 是直径,AB 是弦,且CD AB ⊥,垂足为点E ,90AOB ∠=°,则阴影部分的面积是( )A.44π- B .2π-4 C.π4 D.2π 【答案】D 【解析】试题分析:∵CD AB ⊥,∴︒=∠=∠45BOC AOC ,∴πππ236044536022====r n S S AOC 扇形阴,故选C 考点:垂径定理,扇形的面积8.一次函数y ax b =+的图象如图所示,则不等式0ax b +≥的解集是( )A .2x ≥ B.2x ≤ C.4x ≥ D .4x ≤ 【答案】A 【解析】试题分析:0ax b +≥,即y ≥0,观察图形知,2x ≥故选C 考点:一次函数与不等式的关系二、填空题(本题共8个小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分)9.因式分解:22m n -= . 【答案】(m+n)(m-n) 【解析】试题分析:利用平方差公式()()b a b a b a -+=-22,知()()n m n m n m -+=-22考点:因式分解10.截止2016年底,到韶山观看大型实景剧《中国出了个毛泽东》的观众约为925000人次,将925000用科学计数法表示为 . 【答案】51025.9⨯ 【解析】试题分析:科学记数法的表示形式为a ×n 10的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 所以,925000用科学计数法可表示为51025.9⨯ 考点:科学记数法的表示方法 11.计算:1322a a a -+=++ . 【答案】51025.9⨯ 【解析】 试题分析:1322a a a -+=++122231=++=++-a a a a 考点:分式的运算12.某同学家长应邀安参加孩子就读中学的开放日活动,他打算上午随机听一节孩子所在1班的课,下表是他拿到的当天上午1班的课表,如果每一节课被听的机会均等,那么他听数学课的概率是 .【答案】41 【解析】试题分析:随机听一节孩子所在1班的课,一共4中情况,听数学只占1只占一种情况,∴概率是41 考点:简单的概率计算 13.如图,在O 中,已知120AOB ∠=°,则ACB ∠= .【答案】60° 【解析】试题分析:利用知识点:一条弧所对圆周角等于它所对圆心角的一半,ACB ∠=60° 考点:圆周角定理14.如图,在ABC ∆中,D E 、分别是边AB AC 、的中点,则ADE ∆与ABC ∆的面积比:ADE ABC S S ∆∆= .【答案】41 【解析】试题分析:∵D E 、分别是边AB AC 、的中点,∴DE 是三角形的中位线,∴ADE ∆∽ABC ∆ ∴:ADE ABCS S ∆∆=412122=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛AB AD考点:相似三角形及中位线性质定理15.如图,在Rt ABC ∆中,90C ∠=°,BD 平分ABC ∠交AC 于点D ,DE 垂直平分AB ,垂足为E 点,请任意写出一组相等的线段 .【答案】BC=BE 或DC=DE 【解析】试题分析:利用角平分线性质定理,知BC=BE ;利用BCD ∆∽BED ∆,得DC=DE 考点:角平分线性质定理16.阅读材料:设11(,)a x y =,22(,)b x y =,如果//a b ,则2121x y x y ⋅=⋅.根据该材料填空:已知(2,3)a =,(4,)b m =,且//a b ,则m = .【答案】6 【解析】试题分析:利用新定义设11(,)a x y =,22(,)b x y =,如果//a b ,则2121x y x y ⋅=⋅,2m=4×3,m=6 考点:新定义问题三、解答题 (本大题共10小题,解答应写出文字说明、证明过程或演算步骤.请将解答过程写在答题卡相应位置上,满分72分)17.计算:()0252sin 45π-+--° 考点:(1)、实数运算;(2)、三角函数【解析】试题分析:首先根据0次幂、绝对值以及三角函数的计算法则求出各式的值,然后进行求和. 【解答】原式=()0252sin 45π-+--°=222212=⨯-+ 18. “鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句话的意思是:有若干只鸡兔关在一个笼子里,从上面数,有35个头;从下面数,有94条腿.问笼中各有几只鸡和兔?考点:二元一次方程组的应用【解析】试题分析:设笼中各有x 只鸡,y 只兔,根据:①鸡数+兔数=35,②鸡足+兔足=94,列出方程组求解可得. 【解答】解:设笼中各有x 只鸡,y 只兔,根据题意得⎩⎨⎧=+=+943235y x y x 解得⎩⎨⎧==2411y x∴笼中各有11只鸡,24只兔19. 从这2-,1,3三个数中任取两个不同的数,作为点的坐标. (1)写出该点所有可能的坐标; (2)求该点在第一象限的概率. 考点:树状图或列表求概率 【解析】试题分析:列表如图: -213-2 (-2,-2) (-2,1) (-2,3) 1 (1,-2) (1,1) (1,3) 3(3,-2) (3,1) (3,3)由表可知该点在第一象限的概率为 94【解答】(1)见解析;(2)9420. 如图,在ABCD 中,DE CE =连接AE 并延长交BC 的延长线于点F .(1)求证:ADE FCE ∆≅∆;(2)若2AB BC =,36F ∠=°,求B ∠的度数.考点:平行四边形,全等三角形【解析】试题分析:(1)利用AAS 或ASA,证明ADE FCE ∆≅∆.(2)先证明三角形ABF 是等腰三角形,再B ∠的度数. 【解答】 (1)∵ABCD ∴AD ∥DF ∴∠ADE=∠EFC∵DE CE =,∠AED=∠CEF ∴ADE FCE ∆≅∆ (2)∵ABCD ∴AD=BC∵ADE FCE ∆≅∆ ∴AD=FC ∴FC=BC ∵2AB BC = ∴AB=BF ∵36F ∠=° ∴B ∠=108°21.为响应习总书记足球进校园的号召,某学校积极开展与足球有关的宣传与实践活动.学生会体育部为了解本学校对足球运动的态度,随机抽取了部分学生进行调查,并绘制了如下的统计图表(部分信息未给出).(1)在上面的统计表中m = ,n = . (2)请你将条形统计图补充完整;(3)该校共有学生1200人,根据统计信息,估计爱好足球运动(包括喜欢和非常喜欢)的学生有多少人?【解析】 (1)利用频率频数总数=,求得总数100人,再求m=40 (2)先求出喜欢足球人数35人,再将条形统计图补充完整 (3)1200⨯(0.05+0.35)=480 【解】(1)m=5÷0.05-50-10=40,n=50÷100=0.5 (2)100⨯0.35=35 图形如下:(3)1200⨯(0.05+0.35)=480 考点:统计图22.由多项式乘法:2()()()x a x b x a b x ab ++=+++,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:2()()()x a b x ab x a x b +++=++示例:分解因式:256x x ++=2(23)23x x +++⨯=(2)(3)x x ++ (1)尝试:分解因式:268x x ++=(x +___)(x +___);(2)应用:请用上述方法....解方程:2340x x --=. 【解析】(1)把8分解成2⨯4,且2+4=6(2)把-4分解成1⨯(-4),且1+(-4)=-3 【解】(1)268x x ++=(x +_2_)(x +_4_);(2)2340x x --= 解:()()4,104,0104121=-==-=+=-+x x x x x x 考点:“十字相乘法”因式分解,解一元二次方程23.某游乐场部分平面图如图所示,C E A 、、在同一直线上,D E B 、、在同一直线上,测得A 处与E 处的距离为80米,C 处与D 处的距离为34米,90C ∠=°,90ABE ∠=°,30BAE ∠=°.(2 1.4,3 1.7)≈≈(1)求旋转木马E 处到出口B 处的距离;(2)求海洋球D 处到出口B 处的距离(结果保留整数). 【解析】(1)利用BE=AEsin30°,求BE (2)利用DE=CDCOS30°,求DE 【解】(1)∵AE=80,∠BAE=30°,90ABE ∠=° ∴BE=AEsin30°=80×21=40米(2)∵∠CED=∠AEB ,∠DCE=90ABE ∠=° ∴∠D=30BAE ∠=° ∵CD=34米∴DE=CDCOS30°=34×23=317 ∴DB=DE+BE=40+317 考点:三角函数的应用24.已知反比例函数k y x=的图象过点(3,1)A . (1)求反比例函数的解析式;(2)若一次函数6y ax =+(0)a ≠的图象与反比例函数的图象只有一个交点,求一次函数的解析式.【解析】(1)把(3,1)A 代入k y x=得 (2)由一次函数6y ax =+(0)a ≠的图象与反比例函数的图象只有一个交点,知⎪⎩⎪⎨⎧=+=xy ax y 36只有一组解,得0362=-+x ax 有2个相等的实数根,再利用0=∆求a【解】(1)∵(3,1)A∴313==k k∴x y 3=(2)∵一次函数6y ax =+(0)a ≠的图象与反比例函数x y 3=的图象只有一个交点 ∴⎪⎩⎪⎨⎧=+=xy ax y 36只有一组解 ∴x ax 36=+只有一组解∴0362=-+x ax 有2个相等的实数根∴0)3(462=-⨯-=∆aa= -3∴y= -3x+6考点:一次函数与反比例函数25.已知抛物线的解析式为21520y x bx =-++.(1)当自变量2x ≥时,函数值y 随x 的增大而减少,求b 的取值范围;(2)如图,若抛物线的图象经过点(2,5)A ,与x 轴交于点C ,抛物线的对称轴与x 轴交于B .①求抛物线的解析式;②在抛物线上是否存在点P ,使得PAB ABC ∠=∠?若存在,求出点P 的坐标;若不存在,请说明理由.【解析】(1)∵自变量2x ≥时,函数值y 随x 的增大而减少,∴02≥-a b ,b ≥0 (2)①把(2,5)A 代入21520y x bx =-++,得101=b ②作线段AB 的垂直平分线,交抛物线于两点,此时PAB ABC ∠=∠【解】(1)∵自变量2x ≥时,函数值y 随x 的增大而减少∴对称轴在直线x=2的右边 ∴02≥-ab 02012≥⎪⎭⎫ ⎝⎛-⨯-b b ≥0(2)①把(2,5)A 代入21520y x bx =-++,得101=b ∴51012012++-=x x y ②存在作线段AB 的垂直平分线,与抛物线交于两点,此时PAB ABC ∠=∠ 抛物线51012012++-=x x y 的对称轴是直线x=1,则B (1,0) ∵(2,5)A∴直线AB 表达式y=5x-5,E(1.5,2.5)∴直线21P P 表达式k=51-设直线21P P 表达式b x y +-=51 把E(1.5,2.5)代入表达式得,b=2.8直线21P P 表达式8.251+-=x y 由题意得 ⎪⎩⎪⎨⎧++-=+-=51012018.2512x x y x y 解得⎪⎩⎪⎨⎧-=+=55351153311y x ,⎪⎩⎪⎨⎧+=-=55351153311y x∴⎪⎪⎭⎫ ⎝⎛-+553511,5331P ,⎪⎪⎭⎫ ⎝⎛+-553511,5332P考点:二次函数26.如图,动点M 在以O 为圆心,AB 为直径的半圆弧上运动(点M 不与点A B 、及AB 的中点F 重合),连接OM .过点M 作ME AB ⊥于点E ,以BE 为边在半圆同侧作正方形BCDE ,过M 点作O 的切线交射线DC 于点N ,连接BM 、BN .(1)探究:如左图,当M 动点在AF 上运动时;①判断OEMMDN ∆∆是否成立?请说明理由; ②设ME NC k MN+=,k 是否为定值?若是,求出该定值,若不是,请说明理由; ③设MBN α∠=,α是否为定值?若是,求出该定值,若不是,请说明理由;(2)拓展:如右图,当动点M 在FB 上运动时;分别判断(1)中的三个结论是否保持不变?如有变化,请直接写出正确的结论.(均不必说明理由)∴。