广东省2010届高考样本分析考试(全省联考)数学理科试题(扫描版)
- 格式:doc
- 大小:970.00 KB
- 文档页数:8
广东省各地市2010年高考数学最新联考试题(3月-6月)分类汇编第4部分:三角函数一、选择题:6. (广东省惠州市2010届高三第三次调研理科)已知()cos(),(0)3f x x πωω=+>的图像与1y =的图像的两相邻交点间的距离为π,要得到()y f x = 的图像,只须把sin y x ω=的图像( )A .向左平移512π个单位B . 向右平移512π个单位 C . 向左平移1112π个单位 D . 向右平移1112π个单位【答案】A【解析】把sin 2y x =的图像向左平移4π个单位,可得到cos 2y x =的图像,再把cos 2y x =的图像向向左平移6π个单位,即可得到cos(2)3y x π=+的图像,共向左平移512π个单位。
3.(广东省惠州市2010等于( )A .23±B .23C .23- D .21【答案】D11cos12022==-=.∴选D 。
2.(2010年广东省揭阳市高考一模试题理科)设函数()cos(2)f x x π=-,x R ∈,则()f x 是 A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为2π的奇函数 D .最小正周期为2π的偶函数 【答案】B【解析】()cos(2)cos 2f x x x π=-=-,可知答案选B. 3. (2010年广东省揭阳市高考一模试题文科)已知1sin()23πα+=,则cos(2)πα+的值为 A.79- B.79 C.29 D 23-【答案】B 【解析】由1sin()23πα+=得1cos 3α=,27cos(2)cos 2(2cos 1)9πααα+=-=--=,选B.6. (2010年广东省揭阳市高考一模试题文科)如图,设A 、B 两点在河的两岸,一测量者在A 的同侧,在所在的河岸边选定一点C,测出AC 的距离为50m ,∠ ACB =45°,∠CAB =105°后,就可以计 算出A 、B 两点的距离为A.m【答案】A【解析】由正弦定理得sin sin AB ACACB B =∠∠21250sin sin AC ACB AB B ⋅∠∴===∠选A3.(广东省佛山市顺德区2010年4月普通高中毕业班质量检测试题理科)在"3""23sin ",π>∠>∆A A ABC 是中的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.(广东省佛山市顺德区2010年4月普通高中毕业班质量检测试题理科)函数()sin f x x =在区间[,]a b 上是增函数,且()1,()1f a f b =-=,则cos2a b+=( D ), C.1-, D.1. 6.(广东省佛山市顺德区2010年4月普通高中毕业班质量检测试题理科)ABC △内有一点O ,满足0OA OB OC ++=,且OA OB OB OC ⋅=⋅.则ABC △一定是( D )A . 钝角三角形B . 直角三角形C . 等边三角形D . 等腰三角形4.(2010年3月广东省广州市高三一模数学文科试题)已知3sin 5α=,则cos2α的值为( C ) A .2425-B .725-C .725D .24253.(2010年3月广东省深圳市高三年级第一次调研考试文科)在ABC ∆中,a b c ,,分别为角A B C ,,所对边,若2cos a b C =,则此三角形一定是( C ) A .等腰直角三角形 B .直角三角形 C .等腰三角形D .等腰或直角三角形二、填空题:(10)(广东省江门市2010届高三数学理科3月质量检测试题)函数x x x x f cos sin 322cos )(⋅-=的最小正周期是 . π(15)(广东省江门市2010届高三数学理科3月质量检测试题)在三角形ABC 中,,,A B C ∠∠∠所对的边长分别为,,a b c , 其外接圆的半径36R =,则222222111()()sin sin sin a b c A B C++++的最小值为___________.25613.(2010年3月广东省广州市高三一模数学文科试题)在△ABC 中,三边a 、b 、c 所对的角分别为A 、B 、C ,若2220a b c +-=,则角C 的大小为 .34π(或135)三、解答题 16.(2010年3月广东省广州市高三一模数学理科试题)(本小题满分12分) 已知函数()sin cos cos sin f x x x ϕϕ=+(其中x ∈R ,0ϕπ<<). (1)求函数()f x 的最小正周期; (2)若函数24y f x π⎛⎫=+⎪⎝⎭的图像关于直线6x π=对称,求ϕ的值.16.(本小题满分12分)(本小题主要考查三角函数性质和三角函数的基本关系等知识,考查化归与转化的数学思想方法,以及运算求解能力)(1)解:∵()()sin f x x ϕ=+,∴函数()f x 的最小正周期为2π. (2)解:∵函数2sin 244y f x x ππϕ⎛⎫⎛⎫=+=++ ⎪ ⎪⎝⎭⎝⎭, 又sin y x =的图像的对称轴为2x k ππ=+(k ∈Z ),令242x k ππϕπ++=+,将6x π=代入,得12k πϕπ=-(k ∈Z ).∵0ϕπ<<,∴1112πϕ=. 16.(2010年3月广东省广州市高三一模数学文科试题)(本小题满分12分) 已知函数()sin cos cos sin f x x x ϕϕ=+(其中x ∈R ,0ϕπ<<). (1)求函数()f x 的最小正周期; (2)若点1,62π⎛⎫⎪⎝⎭在函数26y f x π⎛⎫=+ ⎪⎝⎭的图像上,求ϕ的值.16.(本小题满分12分)(本小题主要考查三角函数性质和三角函数的基本关系等知识,考查化归与转化的数学思想方法,以及运算求解能力)(1)解:∵()()sin f x x ϕ=+,∴函数()f x 的最小正周期为2π. (2)解:∵函数2sin 266y f x x ππϕ⎛⎫⎛⎫=+=++ ⎪ ⎪⎝⎭⎝⎭, 又点1,62π⎛⎫⎪⎝⎭在函数26y f x π⎛⎫=+ ⎪⎝⎭的图像上,∴1sin 2662ππϕ⎛⎫⨯++= ⎪⎝⎭. 即1cos 2ϕ=. ∵0ϕπ<<,∴3πϕ=.16. (广东省惠州市2010届高三第三次调研理科)(本小题满分12分)已知1tan 3α=-,cos β=,(0,)αβπ∈ (1)求tan()αβ+的值;(2)求函数())cos()f x x x αβ=-++的最大值.16.(2010年广东省揭阳市高考一模试题理科)(本题满分12分)已知复数1sin 2 z x i λ=+,2() (,,,)z m m x i m x R λ=+∈,且12z z =. (1)若0λ=且0x π<<,求x 的值;(2)设λ=()f x ,已知当x α=时,12λ=,试求cos(4)3πα+的值. 16.解:(1)∵12z z =∴sin 22x mm xλ=⎧⎪⎨=⎪⎩∴sin 22x x λ-=--------------------------------------2分若0λ=则sin 220x x =得tan 2x =------4分∵0,x π<< 022x π∴<< ∴2,3x π=或423x π=∴6x π=或23π------------------------------------------------------------------------------------------6分 (2)∵1()sin 222(sin 2cos 2)22f x x x x x λ===-=2(sin 2coscos 2sin )33x x ππ-2sin(2)3x π=------------------------------------------8分 ∵当x α=时,12λ=∴12sin(2)32πα-=,1sin(2)34πα-=,1sin(2)34πα-=-------------------------------9分∵cos(4)3πα+=2cos 2(2)2cos (2)166ππαα+=+-=22sin (2)13πα------------11分 ∴cos(4)3πα+2172()148=⨯--=-.------------------------------------------------------------12分16.(2010年广东省揭阳市高考一模试题文科)(本题满分12分)已知复数1sin 2 z x i λ=+,2() (,,,)z m m x i m x R λ=+∈,且12z z =. (1)若0λ=且0x π<<,求x 的值;(2)设λ=()f x ,求()f x 的最小正周期和单调减区间. 16.解:(1)∵12z z =∴sin 22x m m xλ=⎧⎪⎨=⎪⎩∴sin 22x x λ=-------------2分若0λ=则sin 220x x -=得tan 2x =分∵0,x π<< 022x π∴<< ∴2,3x π=或423x π=∴263x ππ=或-------------------------------------------------6分 (2)∵1()sin 222(sin 2cos 2)22f x x x x x λ===-=2(sin 2coscos 2sin )33x x ππ-2sin(2)3x π=---------------9分∴函数的最小正周期为T π=-----------------------------------------10分由3222,232k x k k Z πππππ+≤-≤+∈得511,1212k x k k Z ππππ+≤≤+∈∴()f x 的单调减区间511[,],1212k k k Z ππππ++∈.-------------------------12分(16)(广东省江门市2010届高三数学理科3月质量检测试题)(本小题满分12分)已知函数()()f x x ()sin =+>≤≤ωϕωϕπ00,为偶函数,且其图象上相邻两对称轴之间的距离为π。
2010年普通高等学校招生全国统一考试(广东卷)语文本试卷共8页,24小题,满分150分。
考试用时150分钟注意事项:1.答卷前,考生务必用黑色字迹的铅笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B铅笔将试卷类型(A)填涂在答题卡相应位置上,将条形号码贴在答题卡右上角“条形码粘贴处”。
选择题每小题选出答案后,用2B铅笔把答题卡上对应的题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再填涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的铅笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案,不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B铅笔填涂选做题的题级号的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、本大题四小题,每小题3分,共12分。
1.下列词语中加点的字,每对读音都不相同...的一组是A.皎洁/打搅业绩./污渍.纤.维/纤夫..B.效.仿/发酵.空旷./粗犷.盛.开/盛.饭C.隐瞒./蛮.横挑衅./抚恤.埋.伏/埋.怨D.市侩./反馈.濒.临/频.繁辟.谣/精辟.2.下面语段中画线的词语,使用不恰当的一项是中国历代文人视为至宝的笔、墨、纸、砚,是中国传统文化的代表性符号。
它们虽然有着不同的发展轨迹,但殊途同归。
它们在艺术创作中淋漓尽致地表现了中国古代书画艺术的神韵,记录了岁月的斗转星移,体现了古代文人的生活情趣。
今天他们并没有因为现在高科技手段的甚嚣尘上而销声匿迹,而是继续在书画艺术中展示着华夏民族的质朴和灵动。
A.殊途同归 B.斗转星移 C.甚嚣尘上 D.销声匿迹3.下列句子中,没有语病....的一项是A.以“城市,让生活更美好”为主题的上海世博会,让肤色不同、语言不同的人们在这样一个巨大的平台上共同寻找答案。
广东省2010届高考样本分析考试数学文试题考生注意:1.本试卷共150分。
考试时间120分钟。
2. 请将各题答案填在答题卷上。
3。
本试卷主要考试内容:高考全部内容。
一、选择题(本大题共10小题,每小题5分,满分50分) 1. 已知集合{}{}1,2,21|M N a a M ==-∈,则M N 等于A 、{}1B 、{}1,2C 、{}1,2,3D 、∅2.若()2a i i b i -=-,其中,a b R i ∈、是虚数单位,则3bai 等于A 、1B 、2C 、52D 、53. 设()2log f x x =的反函数为()y g x =,若1114g a ⎛⎫= ⎪-⎝⎭,则等于A 、12B 、12-C 、2D 、—24。
已知αβγ、、是三个不同的平面,命题“//,αβ且αγβγ⊥⇒⊥”是正确的.如果把αβγ、、中的任意两个换成直线,在所得的命题中,真命题有 A 、0个 B 、1个C 、2个D 、3个5。
已知等差数列{}n a 的公差0d <,且3537790a a a a a a ++=,则当前项和n S 取得最大值时,等于A 、5B 、6C 、5或6D 、6或76。
如图,ABC ∆为等腰三角形,30A B ∠=∠=°,设,,AB a AC b AC ==边上的高为BD 。
若用,a b 表示BD ,则表达式为 A 、32a b + B 、32a b - C 、32b a + D 、32b a -7. 设O 是坐标原点,点M 的坐标为()2,1,若点(),N x y 满足不等式组43021201x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,则使得OM ON ⋅取得最大值时点N 的个数有A 、1个B 、2个C 、3个D 、无数个8. 已知“命题()()2:3p x m x m ->-”是“命题2:340q x x +-<”成立的必要不充分条件,则实数的取值范围为A 、1m >或7m <-B 、1m ≥或7m ≤-C 、71m -<<D 、71m -≤≤9。
绝密★启用前 试卷类型:A2010年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时.请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的.答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}|21A x x =-<<,{}|02B x x =<<,则集合AB =A .{}|11x x -<<B .{}|21x x -<<C .{}|22x x -<<D .{}|01x x << 2.若复数11z i =+,23z i =-,则12z z ⋅=A .4B .2+ iC .2+2 iD .3 3.若函数()33xxf x -=+与()33xxg x -=-的定义域均为R ,则A .()f x 与()g x 均为偶函数B .()f x 为奇函数,()g x 为偶函数C .()f x 与()g x 均为奇函数D .()f x 为偶函数.()g x 为奇函数4.已知数列{}n a 为等比数列,n S 是是它的前n 项和,若2312a a a ⋅=,且4a 与27a 的等差中项为54,则5S = A .35 B .33 C .3l D .29 5.“14m <”是“一元二次方程20x x m ++=有实数解”的 A .充分非必要条件 B .充分必要条件 C .必要非充分条件 D .非充分非必要条件6.如图1,ABC 为正三角形,'''////AA BB CC ,'CC ⊥平面ABC ,''32BB ==且3AA 'CC AB =,则多面体'''ABC A B C -的正视图(也称主视图)是7. 已知随机变量X 服从正态分布(3,1)N ,且(24)0.6826P X ≤≤=,则(4)P X >= B . C586 D8.为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定。
广东省六所名校2010届高三第三次联考数学(理科) 2009.12.18命题:深圳实验学校高中部 高三数学备课组本试卷共4页,20小题,满分150分.考试用时120分钟. 参考公式:锥体体积Sh V 31=(其中S 是底面积,h 是高),球体体积334R V π=(其中R 是半径). 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.如图1,正方体1111D C B A ABCD -中,异面直线1BD 与D A 1 所成的角等于A .︒30B .︒45C .︒60D .︒902.要得到函数⎪⎭⎫ ⎝⎛π-=42cos x y 的图象,只要将函数x y 2sin =的图象A .向左平移8π个单位B .向右平移8π个单位C .向左平移4π个单位D .向右平移4π个单位3.设],[b a X =,],[d c Y =都是闭区间,则“直积”},|),{(Y y X x y x Y X ∈∈=⨯表示直角坐标平面上的A .一条线段B .两条线段C .四条线段D .包含内部及边界的矩形区域4.设4443342241404)(x C x C x C x C C x f +-+-=,则导函数)('x f 等于 A .3)1(4x - B .3)1(4x +- C .3)1(4x + D .3)1(4x -- 5.函数)1(log 913x x y +=在定义域内有A .最大值41 B .最小值41C .最大值22D .最小值226.公差不为零的等差数列}{n a 中,2a ,3a ,6a 成等比数列,则其公比q 为 A .1 B .2 C .3 D .47.已知向量y x b a ,,,满足1||||==b a ,0=⋅b a ,且⎩⎨⎧-=+-=y x b yx a 2,则|y ||x |+等于A .32+B .52+C .53+D .7 8.已知点),(y x 所在的可行域如图2所示.若要使目标函数BCD A1B 1C 1D 1A 1图yaxz+=取得最大值的最优解有无数多个,则a的值为A.4 B.41C.35D.53二、填空题:本大题共6小题,每小题5分,满分30分.把答案填在题中横线上.9.将编号分别为1,2,3,4,5的五个红球和五个白球排成一排,要求同编号球相邻,但同色球不相邻,则不同排法的种数为(用数字作答).10.若△ABC的三个内角满足CCBBA222sinsinsinsinsin++=,则A∠等于.11.据研究,甲、乙两个磁盘受到病毒感染,感染的量y(单位:比特数)与时间x(单位:秒)的函数关系式分别是x ey=甲和2xy=乙.显然,当1≥x时,甲磁盘受到的病毒感染增长率比乙磁盘受到的病毒感染增长率大.试根据上述事实提炼一个不等式是.12.若偶函数)(xf在]0,(-∞内单调递减,则不等式)(lg)1(xff<-的解集是.13.如图3,有一轴截面为正三角形的圆锥形容器,内部盛水的高度为h,放入一球后,水面恰好与球相切,则球的半径为(用h表示).14.给出下列四个命题:①设∈21,xx R,则11>x且12>x的充要条件是221>+xx且121>xx;②任意的锐角三角形ABC中,有BA cossin>成立;③平面上n个圆最多将平面分成4422+-nn个部分;④空间中直角在一个平面上的正投影可以是钝角.其中真命题的序号是(要求写出所有真命题的序号).三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.15.(本小题满分12分)设有同频率的两个正弦电流)3100sin(31ππ+=tI,)6100sin(2ππ-=tI,把它们合成后,得到电流21III+=.(1)求电流I的最小正周期T和频率f;(2)设0≥t,求电流I的最大值和最小值,并指出I第一次达到最大值和最小值时的t值.2图3图16.(本小题满分12分)如图4,正三棱柱111CBAABC-中,11==ABAA,P、Q分别是侧棱1BB、1CC上的点,且使得折线1APQA的长1QAPQAP++最短.(1)证明:平面⊥APQ平面CCAA11;(2)求直线AP与平面PQA1所成角的余弦值.17.(本小题满分14分)已知函数)(xf满足Cxxfxxf+-⎪⎭⎫⎝⎛+=2332')((其中⎪⎭⎫⎝⎛32'f为)(xf在点32=x处的导数,C为常数).(1)求函数)(xf的单调区间;(2)若方程0)(=xf有且只有两个不等的实数根,求常数C;(3)在(2)的条件下,若031>⎪⎭⎫⎝⎛-f,求函数)(xf的图象与x轴围成的封闭图形的面积.18.(本小题满分14分)如图5,G是△OAB的重心,P、Q分别是边OA、OB上的动点,且P、G、Q三点共线.(1)设λ=,将用λ、OP、OQ表示;(2)设OAxOP=,y=,证明:yx11+是定值;(3)记△OAB与△OPQ的面积分别为S、T.求ST的取值范围.19.(本小题满分14分)已知数列}{na的前n项和)1(23-=nnaS,+∈Nn.(1)求}{na的通项公式;B CA1A1C1BPQ4图OA BPQMG5图(2)设∈n N +,集合},,|{+∈≤==N i n i a y y A i n ,},14|{+∈+==N m m y y B .现在集合n A 中随机取一个元素y ,记B y ∈的概率为)(n p ,求)(n p 的表达式.20.(本小题满分14分)如果对于函数)(x f 的定义域内任意的21,x x ,都有|||)()(|2121x x x f x f -≤-成立,那么就称函数)(x f 是定义域上的“平缓函数”.(1)判断函数x x x f -=2)(,]1,0[∈x 是否是“平缓函数”;(2)若函数)(x f 是闭区间]1,0[上的“平缓函数”,且)1()0(f f =.证明:对于任意 的∈21,x x ]1,0[,都有21|)()(|21≤-x f x f 成立. (3)设a 、m 为实常数,0>m .若x a x f ln )(=是区间),[∞+m 上的“平缓函数”,试估计a 的取值范围(用m 表示,不必证明....).数学(理科)参考答案及评分标准 20091218命题:深圳实验学校高中部 高三数学备课组本试卷共4页,20小题,满分150分.考试用时120分钟.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题:本大题共6小题,每小题5分,满分30分.把答案填在题中横线上. 9. 240 . 10. 120° . 11.xe x 2>.12.),10()101,0(∞+ . 13. 153h. 14. ②④ .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 15.(本小题满分12分)设有同频率的两个正弦电流)3100sin(31ππ+=t I ,)6100sin(2ππ-=t I ,把它们合成后,得到电流21I I I +=.(1)求电流I的最小正周期T和频率f;(2)设0≥t,求电流I的最大值和最小值,并指出I第一次达到最大值和最小值时的t值.解:(1)(法1)∵21III+=)3100sin(3ππ+=t)6100sin(ππ-+t)100cos23100sin21(3ttππ+=)100cos21100sin23(ttππ-+……2分ttππ100cos100sin3+=)6100sin(2ππ+=t,………………………………4分∴电流I的最小正周期5011002==ππT,频率501==Tf.………………6分(法2)∵21III+=)3100sin(3ππ+=t)6100sin(ππ-+t)3100sin(3ππ+=t]2)3100sin[(πππ-++t)3100sin(3ππ+=t)3100cos(ππ+-t……………………………2分)6100sin(2ππ+=t……………………………………………4分∴电流I的最小正周期5011002==ππT,频率501==Tf.………………6分(2)由(1)当ππππkt226100+=+,即300150+=kt,N∈k时,2max=I;当π+π=π+πkt2236100,即75150+=kt,N∈k时,2min-=I.…9分而0≥t,∴I第一次达到最大值时,3001=t;I第一次达到最小值时,751=t.………………………12分16.(本小题满分12分)如图4,正三棱柱111CBAABC-中,11==ABAA,P、Q分别是侧棱1BB、1CC上的点,且使得折线1APQA的长1QAPQAP++最短.(1)证明:平面⊥APQ平面CCAA11;(2)求直线AP与平面PQA1所成角的余弦值.解:(1)∵正三棱柱111CBAABC-中,11==ABAA,∴将侧面展开后,得到一个由三个正方形拼接而成的矩形""''11AAAA(如图),B CA1A1C1BPQ4图B CA1A1C1BPQ'A'1A"A"1A从而,折线1APQA的长1QAPQAP++最短,当且仅当'A、P、Q、"A四点共线,∴P、Q分别是1BB、1CC上的三等分点,其中311==QCBP.…………………2分(注:直接正确指出点P、Q的位置,不扣分)连结AQ,取AC中点D,AQ中点E,连结BD、DE、EP.由正三棱柱的性质,平面⊥ABC平面CCAA11,而ACBD⊥,⊂BD平面ABC,平面ABC平面ACCCAA=11,∴⊥BD平面CCAA11.………………………………………………4分又由(1)知,BPCQDE==//21//,∴四边形BDEP是平行四边形,从而BDPE//.∴⊥PE平面CCAA11.而⊂PE平面APQ,∴平面⊥APQ平面CCAA11.………………………8分(2)(法一)由(2),同理可证,平面⊥PQA1平面BBAA11.…………………10分而⊂AP平面BBAA11,平面PQA1平面APBBAA=11,∴PA1即为AP在平面PQA1上的射影,从而1APA∠是直线AP与平面PQA1所成的角.……………………12分在△1APA中,11=AA,31022=+=BPABAP,313212111=+=PBBAPA,由余弦定理,130130731331021913910cos1=⨯⨯-+=∠APA,即直线AP与平面PQA1所成角的余弦值为1301307.…………………………14分(法二)取BC中点O为原点,OA为x轴,OC为y轴,建立如图所示的空间直角坐标系xyzO-,由(1)及正三棱柱的性质,可求得:)0,0,23(A,)1,0,23(1A,)31,21,0(-P,)32,21,0(Q.从而)31,21,23(--=AP,)32,21,23(1---=A,)31,21,23(1--=A.…………………10分设平面PQA1的一个法向量为),,(zyx=n,则⎪⎩⎪⎨⎧⊥⊥AA11nn,所以⎪⎩⎪⎨⎧=⋅=⋅11AAnn,B CA1A1C1BPQDEB CA1A1C1BPQB即⎪⎪⎩⎪⎪⎨⎧=-+-=---03121230322123z y x z y x ,解之,得⎪⎪⎩⎪⎪⎨⎧-=-=z y z x 3133,………………………12分取3-=z ,得3=x ,1=y ,∴)3,1,3(-=n .从而()()1309313312123331121323,cos 222222-=-++⨯⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-⨯-⨯-⨯-=⨯>=<|n |||n AP ,即直线AP 与平面PQ A 1所成角的正弦值为1309|,cos |=><n AP , ∴直线AP 与平面PQ A 1所成角的余弦值为1301307130912=⎪⎪⎭⎫ ⎝⎛-. …………14分 17.(本小题满分14分)已知函数)(x f 满足C x x f x x f +-⎪⎭⎫ ⎝⎛+=2332')((其中⎪⎭⎫⎝⎛32'f 为)(x f 在点32=x 处的导数,C 为常数).(1)求函数)(x f 的单调区间;(2)若方程0)(=x f 有且只有两个不等的实数根,求常数C ;(3)在(2)的条件下,若031>⎪⎭⎫⎝⎛-f ,求函数)(x f 的图象与x 轴围成的封闭图形的面积.解:(1)由C x x f x x f +-⎪⎭⎫ ⎝⎛+=2332')(,得132'23)('2-⎪⎭⎫⎝⎛+=x f x x f .取32=x ,得13232'232332'2-⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛f f ,解之,得132'-=⎪⎭⎫⎝⎛f ,∴C x x x x f +--=23)(. ……………………………………2分从而()1313123)('2-⎪⎭⎫ ⎝⎛+=--=x x x x x f ,列表如下:∴)(x f 的单调递增区间是)3,(--∞和),1(∞+;)(x f 的单调递减区间是)1,31(-.………………4分 (2)由(1)知,C C f x f +=+⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=27531313131)]([23极大值;C C f x f +-=+--==1111)1()]([23极小值.………………………………6分∴方程0)(=x f 有且只有两个不等的实数根,等价于0)]([=极大值x f 或0)]([=极小值x f . ………8分∴常数275-=C 或1=C . ……………………………………9分(3)由(2)知,275)(23---=x x x x f 或1)(23+--=x x x x f .而031>⎪⎭⎫⎝⎛-f ,所以1)(23+--=x x x x f .………………10分令01)(23=+--=x x x x f ,得)1()1(2=+-x x ,11-=x ,12=x .……………………………12分∴所求封闭图形的面积()⎰-+--=1 1231dx x x x 11234213141-⎪⎭⎫⎝⎛+--=x x x x 34=.………………14分18.(本小题满分14分)如图5,G 是△OAB 的重心,P 、Q 分别是边OA 、OB 上的动点,且P 、G 、Q 三点共线.(1)设λ=,将用λ、、表示;(2)设x =,y =,证明:yx 11+是定值;(3)记△OAB 与△OPQ 的面积分别为S 、T .求ST的取值范围.解:(1))(-+=+=+=λλλλ+-=)1(.…………………………………………2分(2)一方面,由(1),得y x λλλλ+-=+-=)1()1(;① 另一方面,∵G 是△OAB 的重心, ∴3131)(213232+=+⨯==.② ……………4分而、不共线,∴由①、②,得⎪⎩⎪⎨⎧==-.31,31)1(y x λλ……………………6分解之,得⎪⎪⎩⎪⎪⎨⎧=-=.31,331λλyx,∴311=+y x (定值). …………………8分OAP QMG5图(3)xy OB OA AOB POQ ST ==∠⋅∠⋅=||||sin ||||21sin ||||21.……………………10分 由点P 、Q 的定义知121≤≤x ,121≤≤y , 且21=x 时,1=y ;1=x 时,21=y .此时,均有21=S T .32=x 时,32=y .此时,均有94=S T .以下证明:2194≤≤S T .(法一)由(2)知13-=x xy ,∵0)13(9)23(94139422≥--=--=-x x x x S T ,∴94≥S T .…………………………12分 ∵0)13(2)12)(1(2113212≤---=--=-x x x x x S T ,∴21≤S T . ∴S T的取值范围]21,94[.………………………………14分 (法二)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-=-==32)31(91)31(31132x x x x xy S T ,令31-=x t ,则⎪⎭⎫ ⎝⎛++=329131t t S T ,其中3261≤≤t .利用导数,容易得到,关于t 的函数⎪⎭⎫ ⎝⎛++=329131t t S T 在闭区间]31,61[上单调递减,在闭区间]32,31[上单调递增.………………………………12分∴31=t 时,9432313131min =⎪⎭⎫ ⎝⎛++=⎪⎭⎫⎝⎛S T . 而61=t 或32=t 时,均有2132326131max =⎪⎭⎫ ⎝⎛++=⎪⎭⎫⎝⎛S T . ∴S T的取值范围]21,94[.…………………………14分 注:也可以利用“几何平均值不小于调和平均值”来求最小值.19.(本小题满分14分)已知数列}{n a 的前n 项和)1(23-=n n a S ,+∈N n . (1)求}{n a 的通项公式;(2)设∈n N +,集合},,|{+∈≤==N i n i a y y A i n ,},14|{+∈+==N m m y y B .现在集合n A 中随机取一个元素y ,记B y ∈的概率为)(n p ,求)(n p 的表达式. 解:(1)因为)1(23-=n n a S ,+∈N n ,所以)1(2311-=++n n a S . 两式相减,得)(2311n n n n a a S S -=-++,即)(2311n n n a a a -=++,∴n n a a 31=+,+∈N n .…………………………3分又)1(2311-=a S ,即)1(2311-=a a ,所以31=a . ∴}{n a 是首项为3,公比为3的等比数列.从而}{n a 的通项公式是n n a 3=,+∈N n .………………………6分 (2)设n i i A a y ∈==3,n i ≤,+∈N n . 当k i 2=,+∈N k 时,∵++=+===-110288)18(93k k k k k k k C C y …kk k k C C ++-81++⨯=--211088(24k k k kC C …1)1++-k k C ,∴B y ∈. ………………………9分 当12-=k i ,+∈N k 时,∵++⨯=+⨯==------21110111288(3)18(33k k k k k k C C y …)81121----++k k k k C C ++⨯=----31120188(64k k k k C C …3)21++--k k C ,∴B y ∉.…………………12分又∵集合n A 含n 个元素,∴在集合n A 中随机取一个元素y ,有B y ∈的概率⎪⎩⎪⎨⎧-=. , 21, , 21)(为偶数为奇数n nn n n p .……………………14分20.(本小题满分14分)如果对于函数)(x f 的定义域内任意的21,x x ,都有|||)()(|2121x x x f x f -≤-成立,那么就称函数)(x f 是定义域上的“平缓函数”.(1)判断函数x x x f -=2)(,]1,0[∈x 是否是“平缓函数”;(2)若函数)(x f 是闭区间]1,0[上的“平缓函数”,且)1()0(f f =.证明:对于任意 的∈21,x x ]1,0[,都有21|)()(|21≤-x f x f 成立. (3)设a 、m 为实常数,0>m .若x a x f ln )(=是区间),[∞+m 上的“平缓函数”,试估计a 的取值范围(用m 表示,不必证明....). 证明:(1)对于任意的∈21,x x ]1,0[,有11121≤-+≤-x x ,1|1|21≤-+x x .…………………………2分从而|||1||||)()(||)()(|21212122212121x x x x x x x x x x x f x f -≤-+-=---=-. ∴函数x x x f -=2)(,]1,0[∈x 是“平缓函数”. ………………………4分(2)当21||21<-x x 时,由已知得21|||)()(|2121<-≤-x x x f x f ; ……………6分当21||21≥-x x 时,因为∈21,x x ]1,0[,不妨设1021≤<≤x x ,其中2112≥-x x , 因为)1()0(f f =,所以=-|)()(|21x f x f |)()1()0()(|21x f f f x f -+-|)()1(||)0()(|21x f f f x f -+-≤|1||0|21x x -+-≤121+-=x x 21121=+-≤. 故对于任意的∈21,x x ]1,0[,都有21|)()(|21≤-x f x f 成立. ………………………10分 (3)结合函数x a x f ln )(=的图象性质及其在点m x =处的切线斜率,估计a 的取值范围是闭区间],[m m -.…………………………(注:只需直接给出正确结论)…………14分。
2010年高考广东理科数学试题及答案一、选择题(共8小题;共40分)1. 若集合A=x−2<x<1,B=x0<x<2,则集合A∩B= A. x−1<x<1B. x−2<x<1C. x−2<x<2D. x0<x<12. 若复数z1=1+i,z2=3−i,则z1⋅z2= A. 4+2iB. 2+iC. 2+2iD. 33. 若函数f x=3x+3−x与g x=3x−3−x的定义域均为R,则 A. f x与g x均为偶函数B. f x为偶函数,g x为奇函数C. f x与g x均为奇函数D. f x为奇函数,g x为偶函数4. 已知数列a n为等比数列,S n是它的前n项和,若a2⋅a3=2a1,且a4与2a7的等差中项为5,则4 S5= A. 35B. 33C. 31D. 29"是"一元二次方程x2+x+m=0有实数解"的 5. " m<14A. 充分非必要条件B. 充分必要条件C. 必要非充分条件D. 非充分非必要条件BBʹ=CCʹ=AB,则多6. 如图,△ABC为正三角形,AAʹ∥BBʹ∥CCʹ,CCʹ⊥平面ABC,且3AAʹ=32面体ABC−AʹBʹCʹ的正视图(也称主视图)是 A. B.C. D.7. 已知随机变量X服从正态分布N3,1,且P2≤X≤4=0.6826,则P X>4= A. 0.1588B. 0.1587C. 0.1586D. 0.15858. 为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定,每个彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯所闪亮的颜色各不相同.记这5个彩灯有序地闪亮一次为一个闪烁,在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒.如果要实现所有不同的闪烁,那么需要的时间至少是 A. 1205秒B. 1200秒C. 1195秒D. 1190秒二、填空题(共7小题;共35分)9. 函数f x=lg x−2的定义域是.10. 若向量a=1,1,x,b=1,2,1,c=1,1,1,满足条件c−a⋅2b=−2,则x=.11. 已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=3,A+C=2B,则sin A=.12. 若圆心在x轴上、半径为的圆O位于y轴左侧,且与直线x+y=0相切,则圆O的方程是.13. 某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中n位居民的月均用水量分别为x1,⋯,x n(单位:吨).根据如图所示的程序框图,若n=2,且x1,x2分别为1,2,则输出的结果S为.,∠OAP=30∘,则14. 如图,AB,CD是半径为a的圆O的两条弦,它们相交于AB的中点P,PD=2a3CP=.15. 在极坐标系ρ,θ0≤θ<2π中,曲线ρ=2sinθ与ρcosθ=−1的交点的极坐标为.三、解答题(共6小题;共78分)16. 已知函数f x=A sin3x+φA>0,x∈−∞,+∞,0<φ<π在x=π12时取得最大值4.(1)求f x的最小正周期;(2)求f x的解析式;(3)若f23α+π12=125,求sinα.17. 某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为490,495,495,500,⋯,510,515,由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求重量超过505克的产品数量.(2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列.(3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率.18. 如图,AEC是半径为a的半圆,AC为直径,点E为AC的中点,点B和点C为线段AD的三等分点,平面AEC外一点F满足FB=FD=5a,EF=6a.(1)证明:EB⊥FD;(2)已知点Q,R分别为线段FE,FB上的点,使得FQ=23FE,FR=23FB,求平面BED与平面RQD所成二面角的正弦值.19. 某营养师要为某个儿童预定午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?−y2=1的左、右顶点分别为A1,A2,点P x1,y1,Q x1,−y1是双曲线上不同的20. 已知双曲线x22两个动点.(1)求直线A1P与A2Q交点的轨迹E的方程;(2)若过点H0, >1的两条直线l1和l2与轨迹E都只有一个交点,且l1⊥l2,求 的值.21. 设A x1,y1,B x2,y2是平面直角坐标系xOy上的两点,现定义由点A到点B的一种折线距离ρA,B为ρA,B=x2−x1+y2−y1.对于平面xOy上给定的不同的两点A x1,y1,B x2,y2,(1)若点C x,y是平面xOy上的点,试证明ρA,C+ρC,B≥ρA,B;(2)在平面xOy上是否存在点C x,y,同时满足①ρA,C+ρC,B=ρA,B;②ρA,C=ρC,B.若存在,请求出所有符合条件的点;若不存在,请予以证明.答案第一部分1. D2. A3. B 【解析】验证f−x=3−x+3−−x=f x,g−x=3−x−3−−x=−g x.4. C 【解析】a2⋅a3=a1q⋅a1q2=2a1,a1q3=2,即a4=2.又a4与2a7的等差中项为54,即a4+2a7=52,得a7=14.所以q=12,a1=16.所以S5=161−1251−12=31.5. A【解析】方程x2+x+m=0有实数解的充要条件为Δ=1−4m≥0,解得m≤1 4 .6. D7. B 【解析】由题设条件知μ=3,则P X>4=1−P2≤X≤4=1−0.6826=0.1587.8. C 【解析】由题意知共有5!=120个不同的闪烁,每次闪烁时间5秒,共5×120=600秒,每两次闪烁之间的间隔为5秒,共5×120−1=595秒.总共就有600+595=1195秒.第二部分9. 2,+∞10. 2【解析】由已知c=1,1,1,a=1,1,x,得c−a=0,0,1−x,所以c−a⋅2b=0,0,1−x⋅2,4,2=21−x=−2,即x=2.11. 12【解析】因为A+C=2B,所以B=60∘,又由正弦定理得:asin A =bsin B,所以sin A=a sin Bb=323=12.12. x+22+y2=213. 14【解析】当i=1时,S1=1,S2=1;当i=2时,S1=1+2=3;S2=1+22=5,此时S=12×5−12×9=14.i的值变成3,从循环体中跳出,输出S的值为14.14. 98a【解析】在△OPA中,P为AB的中点,∠OAP=30∘,所以AP=32a,又由相交弦定理得PC⋅PD=PA2,得PC⋅23a=32a2,即PC=98a.15. 2,34π【解析】两条曲线ρ=2sinθ与ρcosθ=−1的普通方程分别为x2+y2=2y与x=−1,交点坐标为−1,1,对应的极坐标为2,34π .第三部分16. (1)因为f x=A sin3x+φ,所以T=2π3.(2)因为最大值为4,所以A=4.由题意得4sin3×π12+φ =4,则有sin3×π+φ =1,即π+φ=π+2kπ,k∈Z解得φ=π+2kπ,k∈Z因为0<φ<π故φ=π4.所以f x的解析式为f x=4sin3x+π.(3)由题意得4sin32α+π+π=12,即sin2α+π=3,从而cos2α=1−2sin2α=3 ,解得sinα=±5 5 .17. (1)重量超过505克的产品数量是40×0.05×5+0.01×5=12 件.(2)依题意Y 的所有可能取值为0,1,2.P Y =0 =C 282402=63,P Y =1 =C 121C 281C 402=2865,P Y =2 =C 122C 402=11130,所以Y 的分布列为Y 012P632811(3)该流水线上产品重量超过505克的概率为0.3.令ξ为任取的5件产品中重量超过505克的产品数量,则ξ~B 5,0.3 , 故所求的概率为P ξ=2 =C 52 0.3 2 1−0.3 3=0.3087.18. (1)∵E 为AC 的中点,AB =BC ,AC 为直径, ∴EB ⊥AD .∵EF 2=6a 2= 5a 2+a 2=BF 2+BE 2, ∴EB ⊥FB . 又∵BF ∩BD =B , ∴EB ⊥平面BDF . ∵FD ⊂平面BDF , ∴EB ⊥FD .(2)方法一:如图,过D 作HD ∥QR .由FQ =23FE ,FR =23FB ,知QR ∥EB ,∴HD ∥EB .又∵D ∈平面 BED ∩平面 RQD , ∴HD 为平面BED 与平面RQD 的交线. ∵DR ,DB ⊂平面 BDF ,BE ⊥平面 BDF , ∴HD ⊥平面 BDF ,从而HD ⊥BD ,HD ⊥RD ,则∠RDB是平面BED与平面RQD所成二面角的平面角.由FB=FD,BC=CD,得FC⊥BD,则cos∠FBC=BCBF=a5a=55,从而sin∠FBC=25,由余弦定理得RD=BD2+BR2−2BD⋅BR cos∠RBD=2a2+5a3−2⋅2a⋅5a3⋅15=29 3a.由正弦定理得sin∠RDB=RBRD⋅sin∠FBC=5a3293⋅5=229.故平面BED与平面RQD所成二面角正弦值为22929.方法二:如图,以B为原点,BE为x轴正方向,BD为y轴正方向,过B作平面BEC的垂线,建立空间直角坐标系,由此得B0,0,0,C0,a,0,D0,2a,0,E a,0,0,由FD=FB,BC=CD,得FC⊥BD,则FC=2a.由FQ=23FE,FR=23FB,得R0,13a,23a ,从而RQ=23BE=23a,0,0,RD=0,5 3 a,−23a .设平面RQD的法向量为n1=x,y,z,则n1⋅RD=0,n1⋅RQ=0,即ax=0,5ay−2az=0,所以n1=0,2,5.而平面BED的法向量为n2=0,0,1,所以cos n1,n2=529,从而sin n1,n2=229.故平面BED与平面RQD所成二面角正弦值为22929.19. 设为该儿童分别预订x、y个单位的午餐和晚餐,共花费z元,则z=2.5x+4y,且满足以下条件12x+8y≥64,6x+6y≥42,6x+10y≥54,x,y≥0,化简得3x+2y≥16,x+y≥7,3x+5y≥27,x,y≥0,作出可行域如图,则z在可行域的四个顶点A9,0,B4,3,C2,5,D0,8处的值分别为z A=2.5×9+4×0=22.5,z B=2.5×4+4×3=22,z C=2.5×2+4×5=25,z D=2.5×0+4×8=32.比较之,z B最小,因此应当为该儿童预定4个单位的午餐和3个单位的晚餐,就可以满足要求.20. (1)由A1,A2为双曲线的左右顶点知A1 −2,0,A22,0,故有直线A1P的方程为y=1x1+2+2, ⋯⋯①直线A2Q的方程为y=1x1−2−2, ⋯⋯②两式相乘得y 2=−y 1212x 2−2 , 因为点P x 1,y 1 在双曲线上,所以x 122−y 12=1,即y 12x 12−2=12,故y 2=−12 x 2−2 ,整理得x 22+y 2=1, 因为点P ,Q 是双曲线上的不同两点,所以它们与点A 1,A 2均不重合, 故点A 1,A 2均不在轨迹上.过点 0,1 及A 2的直线l 的方程为x + 2y − 2=0, 解方程组x + 2y − 2=0,x 22−y 2=1,得x = y =0,所以直线l 与双曲线只有一个交点A 2. 故轨迹不经过 0,1 ,同理轨迹也不经过点 0,−1 . 综上分析,轨迹E 的方程为x 22+y 2=1,x ≠0 且 x ≠± 2.(2)设l 1:y =kx + k >0 ,则由l 1⊥l 2知,l 2:y =−1k x + . 将l 1:y =kx + 代入x 22+y 2=1,得x 22+ kx + 2=1,即 1+2k 2 x 2+4k x +2 2−2=0,若l 1与椭圆相切,则Δ=16k 2 2−4 1+2k 2 2 2−2 =0,即1+2k 2= 2. 同理,若l 2与椭圆相切,则1+2⋅1k = 2,由l 1与l 2与轨迹E 都只有一个交点包含以下四种情况: ①直线l 1与l 2都与椭圆相切,即1+2k 2= 2,且1+2⋅1k 2= 2,消去 2得1k 2=k 2,即k 2=1,从而2=1+2k 2=3,即 = 3;②直线l 1过点A 1 − 2,0 ,而l 2与椭圆相切,此时k ⋅ − 2 + =0,1+2⋅1k 2= 2,解得 = 1+ 172; ③直线l 2过点A 2 2,0 ,而l 1与椭圆相切,此时−1k ⋅ 2+ =0,1+2k 2= 2,解得 =1+ 172; ④直线l 1过点A 1 − 2,0 ,而直线l 2过点A 2 2,0 ,此时k ⋅ − 2 + =0,−1k⋅ 2 + =0,所以 = 2,综上所述, 的值为 3, , 1+ 172. 21. (1)由绝对值不等式知普通高等学校招生全国统一考试高考数学教师精校版含详解完美版ρA,C+ρC,B=x−x1+x2−x+y−y1+y2−y≥ x−x1+x2−x+y−y1+y2−y=x2−x1+y2−y1=ρA,B,当且仅当x−x1⋅x2−x≥0且y−y1⋅y2−y≥0时等号成立.(2)由ρA,C+ρC,B=ρA,B,得x−x1⋅x2−x≥0,且y−y1⋅y2−y≥0, ⋯⋯①由ρA,C=ρC,B,得x−x1+y−y1=x2−x+y2−y, ⋯⋯②因为A x1,y1,B x2,y2是不同的两点,则:1)若x1=x2且y1≠y2,不妨设y1<y2,由①得x=x1=x2且y1≤y≤y2,由②得y=y1+y22,此时,点C是线段AB的中点,即只有点C x1+x22,y1+y22满足条件;2)若x1≠x2且y1=y2,同理可得:只有AB的中点C x1+x22,y1+y22满足条件;3)若x1≠x2且y1≠y2,不妨设x1<x2. a.若y1<y2时,由①得x1≤x≤x2且y1≤y≤y2,由②得x+y=x1+x22+y1+y22,此时,所求点C的全体为M=x,y x+y=12x1+x2+y1+y2,x1≤x≤x2且y1≤y≤y2.b.若y1>y2时,类似地由条件①可得x1≤x≤x2且y2≤y≤y1,从而由条件②得x−y= 12x1+x2−y1−y2.此时,所求点C的全体为N=x,y x−y=12x1+x2−y1−y2,x1≤x≤x2且y2≤y≤y1.。
广东省各地市2010年高考数学最新联考试题(3月-6月)分类汇编第3部分:数列一、选择题:4.(广东省惠州市2010届高三第三次调研理科)等差数列}{n a 的前n 项和为2811,30n S a a a ++=若,那么13S 值的是( A )A .130B .65C .70D .以上都不对7.(广东省惠州市2010届高三第三次调研文科)设等比数列{}n a 的公比2q =, 前n 项和为n S ,则42S a =( ) A. 2 B. 4C.152 D. 172【答案】C4.(2010年广东省揭阳市高考一模试题理科)数列{}n a 是公差不为0的等差数列,且137,,a a a 为等比数列{}n b 的连续三项,则数列{}n b 的公比为A .2B .4C .2D .12【答案】C【解析】设数列{}n a 的公差为d (0d ≠),由2317a a a =得2111(2)(6)a d a a d +=+12a d ⇒=故311111222a a d a q a a a +====,选C. 2.(2010年广东省揭阳市高考一模试题文科)已知数列{}n a 是等比数列,且118a =,41a =-,则{}n a 的公比q 为A.2B.-12C.-2D. 12【答案】C 【解析】由34182a q q a ==-⇒=-,故选C. 7.(广东省佛山市顺德区2010年4月普通高中毕业班质量检测试题理科)甲、乙两间工厂的月产值在08年元月份时相同,甲以后每个月比前一个月增加相同的产值.乙以后每个月比前一个月增加产值的百分比相同.到08年11月份发现两间工厂的月产值又相同.比较甲、乙两间工厂08年6月份的月产值大小,则有( C ) A . 甲的产值小于乙的产值 B . 甲的产值等于乙的产值C . 甲的产值大于乙的产值D .不能确定8.(2010年3月广东省广州市高三一模数学理科试题)如图2所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数且两端的数均为1n()2n ≥,每个数是它下一行左右相邻两数 的和,如111122=+,111236=+,1113412=+,…,则第10行第4个数(从左往右数)为( B )A .11260B .1840 C .1504D .136010.(2010年3月广东省广州市高三一模数学文科试题)如图3所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数且两端的数均为1n()2n ≥,每个数是它下一行左右相邻两数的和,如111122=+,111236=+,1113412=+,…, 则第7行第4个数(从左往右数)为( A )A .1140 B .1105 C .160D .1426.(广东省深圳高级中学2010届高三一模理科)数列{}n a 前n 项和为n S ,已知113a =,且对任意正整数,m n ,都有m n m n a a a +=⋅,若n S a <恒成立则实数a 的最小值为( A )A .12 B .23 C .32D .24.(2010年3月广东省深圳市高三年级第一次调研考试文科)已知点n A (n ,n a )(∈n N *)都在函数x y a =(01a a >≠,)的图象上,则37a a +与52a 的大小关系是( A)A .37a a +>52aB .37a a +<52aC .37a a +=52aD .37a a +与52a 的大小与a 有关二、填空题:9. (广东省惠州市2010届高三第三次调研理科) 为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则如图所示,例如,明文1,2,3,4对应密文5,7,18,16. 当接收方收到密文14,9,23,28时,则解密得到的明文为 . 【答案】6,4,1,7【解析】4287,23231,294,2146d d c d c b c b a b a =⇒=+=⇒=+=⇒=+=⇒= 【考点定位】本题考查实际应用能力等数学基本能力。
重基础重能力重应用重创新--- 2010年高考数学广东卷试题和答卷分析及若干建议通过高考阅卷和对高考试题的的深入分析,我们可以看到,2010年普通高考数学广东卷(以下简称广东卷)的命题严格遵循了《考试大纲》和《考试说明》的要求,充分体现了数学新课程标准的核心理念,对中学数学教学实施素质教育起到了很好的引导作用。
本文在对今年广东高考数学试卷和试题进行全面分析的基础上,结合考生在答卷中暴露出的主要问题,对中学数学教学提出一些建议。
1.试卷综述1.1 实行文理分科命题,尊重学生的个性选择,符合中学数学教学的实际。
For personal use only in study and research; not for commercial use2010年普通高考数学广东卷继续实行文理分科命题和制卷,根据文科与理科考生在数学教学上的不同要求,在知识与能力的考查上有所区别。
今年的广东文、理卷,除了少量试题相同或相似外,绝大部分试题都是不同的。
相同的题目有:文理科的第3题(函数的奇偶性)、第4题(数列)、文科的第9题和理科的第6题(三视图),文理科的第19题(线性规划);相似的问题有:文理科的第1题(集合运算),文科的第2题与理科的第9题(对数函数的定义域),文科的第5题与理科的第10题(向量的坐标表示及运算),文科的第6题与理科的第12题(解析几何中圆的切线),文科的第8题与理科的第5题(充要条件的判断),文科的第11题与理科的第13题(算法与程序框图),文科的第13题与理科的第11题(用正弦定理和余弦定理解三角形),文理科中的第18题(立体几何中垂直关系的证明、角与距离的计算)。
在类似问题中,一般而言,文科题目比理科题目容易一些。
这样的命题方式,既符合中学数学教学的实际,又便于对文理科学生的数学水平进行科学评价。
1.2注重对数学基础知识的考查,引导学生从概念和原理出发解题,符合数学教学的基本规律。
试卷紧密结合广东实施新课程标准实验的教学实际和课程标准的基础性要求,重视对中学数学基本概念和基本原理的考查。
2010年广东高考数学1. 引言2010年广东高考数学试卷是广东省教育考试院于2010年举行的一次重要考试。
数学作为高考的一门必考科目,对于考生而言具有重要的意义。
本文将对2010年广东高考数学试卷进行分析和总结,以期对广大考生提供参考和帮助。
2. 试卷结构2010年广东高考数学试卷共分为两个部分,分别是选择题和非选择题。
2.1 选择题选择题是广东高考数学试卷中的第一部分,共计50分。
本部分主要包含单项选择题和多项选择题。
其中单项选择题共有20小题,每小题1分,总分为20分;多项选择题共有5小题,每小题2分,总分为10分。
选择题的题型覆盖了数学的各个知识点,包括代数、几何、概率与统计等。
考生需要熟悉各个知识点的概念和计算方法,才能够应对这部分的考试。
2.2 非选择题非选择题是广东高考数学试卷中的第二部分,共计50分。
本部分主要包含填空题和解答题。
其中填空题共有10小题,每小题1分,总分为10分;解答题共有5小题,每小题8分,总分为40分。
非选择题考查的内容更加深入和综合,往往需要考生灵活运用所学的知识和方法来解答问题。
解答题考察的不仅是知识点的理解和掌握,还需要考生具备一定的分析和解决问题的能力。
3. 难度和考察重点根据广东高考数学试卷的整体难度和题目的分布情况,可以得出以下结论:•选择题整体难度适中,涵盖了数学各个知识点,考察内容比较全面。
•非选择题相对较难,题目涉及的数学内容更为深入和综合,需要考生具备一定的解题技巧和能力,且要求答案简洁明了。
从试卷中可以看出,2010年广东高考数学试题更注重考察学生的思维能力、应用能力和解题能力,而不仅仅是对知识点的简单记忆和运算。
4. 经典题目分析以下是2010年广东高考数学试卷中的几道经典题目:4.1 单项选择题4.1.1 题目描述已知向量组$\\mathbf{a}_1 = (1, 1, 1)$, $\\mathbf{a}_2=(-1, 0, 2)$, $\\mathbf{a}_3=(3, t, 4)$,则由向量组$\\{\\mathbf{a}_1, \\mathbf{a}_2, \\mathbf{a}_3\\}$生成的平面方程为()A. x+x+x=0B. x+2x−3x=0C. x+x−xx=0D. x+x+xx=04.1.2 解答过程首先,我们可以通过这三个向量组成的矩阵进行行列变换,找到与之等价的行简化阶梯形矩阵。
2010广东高考数学答案【篇一:2010年广东省高考数学试卷(理科)答案与解析】ss=txt>参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分) 1.(5分)(2010?广东)若集合a={x|﹣2<x<1},b={x|0<x<2},则集合a∩b=() a.{x|﹣1<x<1} b.{x|﹣2<x<1} c.{x|﹣2<x<2} d.{x|0<x<1} 【考点】并集及其运算.【专题】集合.【分析】由于两个集合已知,故由交集的定义直接求出两个集合的交集即可.【解答】解:a∩b={x|﹣2<x<1}∩{x|0<x<2}={x|0<x<1}.故选d.【点评】常用数轴图、函数图、解析几何中的图或文恩图来解决集合的交、并、补运算.2.(5分)(2010?广东)若复数z1=1+i,z2=3﹣i,则z1?z2=() a.4+2i b.2+i c.2+2i d.3【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】把复数z1=1+i,z2=3﹣i代入z1?z2,按多项式乘法运算法则展开,化简为a+bi(a,b∈r)的形式.【点评】本题考查复数代数形式的乘除运算,考查计算能力,是基础题.3.(5分)(2010?广东)若函数f(x)=3+3与g(x)=3﹣3的定义域均为r,则() a.f(x)与g(x)均为偶函数 b.f(x)为奇函数,g(x)为偶函数 c.f(x)与g(x)均为奇函数 d.f(x)为偶函数,g(x)为奇函数【考点】函数奇偶性的判断.【专题】函数的性质及应用.【分析】首先应了解奇函数偶函数的性质,即偶函数满足公式f(﹣x)=f(x),奇函数满足x﹣xx﹣x公式g(﹣x)=﹣g(x).然后在判断定义域对称性后,把函数f (x)=3+3与g(x)=3﹣x﹣3代入验证.即可得到答案.【解答】解:由偶函数满足公式f(﹣x)=f(x),奇函数满足公式g(﹣x)=﹣g(x).x﹣x﹣xx﹣xx对函数f(x)=3+3有f(﹣x)=3+3满足公式f(﹣x)=f(x)所以为偶函数.﹣x﹣xxx对函数g(x)=3﹣3有g(﹣x)=3﹣3=﹣g(x).满足公式g (﹣x)=﹣g(x)所以为奇函数.所以答案应选择d.【点评】此题主要考查函数奇偶性的判断,对于偶函数满足公式f (﹣x)=f(x),奇函数满足公式g(﹣x)=﹣g(x)做到理解并记忆,以便更容易的判断奇偶性.4.(5分)(2010?广东)已知数列{an}为等比数列,sn是它的前n项和,若a2?a3=2a1,且a4与2a7的等差中项为,则s5=() a.35 b.33 c.31 d.29【考点】等比数列的性质;等比数列的前n项和.x【专题】等差数列与等比数列.【分析】用a1和q表示出a2和a3代入a2?a3=2a1求得a4,再根据a4+2a7=a4+2a4q,求得q,进而求得a1,代入s5即可.2【解答】解:a2?a3=a1q?a1q=2a1 ∴a4=233∴q=,a1==16故s5==31故选c.【点评】本题主要考查了等比数列的性质.属基础题.5.(5分)(2010?广东)“”是“一元二次方程x+x+m=0有实数解”的()2a.充分非必要条件 b.充分必要条件c.必要非充分条件 d.非充分非必要条件【考点】必要条件、充分条件与充要条件的判断;一元二次方程的根的分布与系数的关系.【专题】简易逻辑.【分析】利用充分必要条件的判断法判断这两个条件的充分性和必要性.关键看二者的相互推出性.【解答】解:由x+x+m=0知,(或由△≥0得1﹣4m≥0,∴22?.),,未必有.反之“一元二次方程x+x+m=0有实数解”必有因此“2,”是“一元二次方程x+x+m=0有实数解”的充分非必要条件.故选a.【点评】本题考查充分必要条件的判断性,考查二次方程有根的条件,注意这些不等式之间的蕴含关系.6.(5分)(2010?广东)如图,△abc为三角形,aa′∥bb′∥cc′,cc′⊥平面abc 且3aa′=bb′=cc′=ab,则多面体△abc﹣a′b′c′的正视图(也称主视图)是()a. b. c. d.【考点】简单空间图形的三视图.【专题】立体几何.【分析】根据几何体的三视图的作法,结合图形的形状,直接判定选项即可.【解答】解:△abc为三角形,aa′∥bb′∥cc′,cc′⊥平面abc,且3aa′=bb′=cc′=ab,则多面体△abc﹣a′b′c′的正视图中,cc′必为虚线,排除b,c,3aa′=bb′说明右侧高于左侧,排除a.故选dc.d.﹣【考点】两角和与差的余弦函数.【专题】三角函数的求值.故选:a.【点评】本题考查两角和与差的公式,是一个基础题,解题时有一个整理变化的过程,把式子化归我可以直接利用公式的形式是解题的关键,熟悉公式的结构是解题的依据.8.(5分)(2010?广东)为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定.每个彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯闪亮的颜色各不相同,记这5个彩灯有序地闪亮一次为一个闪烁.在每个闪烁中,每秒钟有且只有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒.如果要实现所有不同的闪烁,那么需要的时间至少是()a.1205秒 b.1200秒 c.1195秒 d.1190秒【考点】分步乘法计数原理;排列及排列数公式.【专题】排列组合.【点评】本题考查的是排列问题,把排列问题包含在实际问题中,解题的关键是看清题目的实质,把实际问题转化为数学问题,解出结果以后再还原为实际问题.二、填空题(共7小题,满分30分) 9.(5分)(2011?上海)函数f(x)=lg(x﹣2)的定义域是【考点】对数函数的定义域.【专题】函数的性质及应用.【分析】对数的真数大于0,可得答案.【解答】解:由x﹣2>0,得x>2,所以函数的定义域为(2,+∞).故答案为:(2,+∞).【点评】本题考查对数函数的定义域,是基础题.10.(5分)(2010?广东)若向量满足条件,,则x= 2 .,,【考点】空间向量运算的坐标表示.【专题】空间向量及应用.【分析】先求出,再利用空间向量的数量积公式,方程,求出x 【解答】解:,,解得x=2,故答案为2.【点评】本题考查了空间向量的基本运算,以及空间向量的数量积,属于基本运算.11.(5分)(2010?广东)已知a,b,c分别是△abc的三个内角a,b,c所对的边,若a=1,b=,a+c=2b,则sinc=.【考点】正弦定理.建立【专题】解三角形.;,22相切,则圆o的方程是(x+2).【考点】关于点、直线对称的圆的方程.【专题】直线与圆.【分析】设出圆心,利用圆心到直线的距离等于半径,可解出圆心坐标,求出圆的方程.【解答】解:设圆心为(a,0)(a<0),则22,解得a=﹣2.圆的方程是(x+2)+y=2.22故答案为:(x+2)+y=2.【点评】圆心到直线的距离等于半径,说明直线与圆相切;注意题目中圆o位于y轴左侧,容易疏忽出错.13.(5分)(2010?广东)某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中4位居民的月均用水量分别为x1,…,x4(单位:吨).根据如图所示的程序框图,若分别为1,1.5,1.5,2,则输出的结果s为.【篇二:2010年广东高考理科数学试题及答案word版】010年普通高等学校招生全国统一考试(广东a卷)数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分。