实验十二用三表法测量交流电路等效参数
- 格式:docx
- 大小:308.68 KB
- 文档页数:8
竭诚为您提供优质文档/双击可除三表法测电路参数实验报告篇一:用三表法测量电路等效参数实验报告(含数据处理)实验七用三表法测量电路等效参数一、实验目的1.学会用交流电压表、交流电流表和功率表测量元件的交流等效参数的方法。
2.学会功率表的接法和使用。
二、原理说明1.正弦交流信号激励下的元件的阻抗值,可以用交流电压表、交流电流表及功率表分别测量出元件两端的电压u、流过该元件的电流I和它所消耗的功率p,然后通过计算得到元件的参数值,这种方法称为三表法。
计算的基本公式为:up,电路的功率因数cos??IuIp等效电阻R=2=│Z│cosφ,等效电抗x=│Z│sinφI阻抗的模Z?2.阻抗性质的判别方法可用在被测元件两端并联电容的方法来判别,若串接在电路中电流表的读数增大,则被测阻抗为容性,电流减小则为感性。
其原理可通过电压、电流的相量图来表示:图7-1并联电容测量法图7-2相量图(:三表法测电路参数实验报告) 3.本实验所用的功率表为智能交流功率表,其电压接线端应与负载并联,电流接线端应与负载串联。
三、实验设备DgJ-1型电工实验装置:交流电压表、交流电流表、功率表、自耦调压器、白炽灯、镇流器、电容器。
四、实验内容测试线路如图7-3所示,根据以下步骤完成表格7-1。
1.按图7-3接线,将调压器调到表1中的规定值。
2.分别测量15w白炽灯(R)、镇流器(L)和4.7μF电容器(c)的电流和功率以及功率因数。
3.测量L、c串联与并联后的电流和功率以及功率因数。
4.如图7-4,用并联电容法判断以上负载的性质。
Z图7-3图7-4五、实验数据的计算和分析根据表格7-1的测量结果,分别计算每个负载的等效参数。
up=2386.6,cos??=1IuIup镇流器L:Z?=551.7,cos??=0.172IuIup1电容器c:Z?=647.2,cos??=0,??2?f,|Z|?,f=50hz,因此c=4.9?FIuI?cupL和c串联:Z?=180.9,cos??=0.35;并联1?F电容后,电流增大,所以是容IuI白炽灯:Z?性负载L和c并联:Z?性负载由以上数据计算等效电阻R=│Z│cosφ,等效电抗x =│Z│sinφ,填入表7-1中。
三表法测量交流参数实验报告总结
本次实验是以三表法测量交流参数,主要是通过使用电压表、电流表和功率表来测量交流电路中的电压、电流和功率等参数。
通过实验,我们可以更加深入地了解交流电路的基本参数和特性,为今后的学习和实践打下坚实的基础。
在实验中,我们首先需要了解三表法的基本原理和操作方法。
三表法是一种常用的测量交流电路参数的方法,它可以同时测量电压、电流和功率等参数,具有简单、准确、可靠等优点。
在实验中,我们需要将电压表、电流表和功率表依次接入电路中,通过读取表盘上的数值来测量电路中的各项参数。
在实验过程中,我们需要注意一些细节问题。
首先,需要选择合适的电压表、电流表和功率表,以保证测量的准确性和可靠性。
其次,需要正确接线,避免接错或接反导致测量结果出现误差。
最后,需要注意安全问题,避免触电等危险情况的发生。
通过本次实验,我们不仅学习了三表法测量交流参数的基本原理和操作方法,还深入了解了交流电路的基本参数和特性。
同时,我们也发现了一些问题和不足之处,需要在今后的学习和实践中加以改进和完善。
总之,本次实验对我们的学习和实践都具有重要的意义和价值。
实验七 用三表法测量电路等效参数一、实验目的1. 学会用交流电压表、 交流电流表和功率表测量元件的交流等效参数的方法。
2. 学会功率表的接法和使用。
二、原理说明1. 正弦交流信号激励下的元件的阻抗值,可以用交流电压表、 交流电流表及功率表分别测量出元件两端的电压U 、流过该元件的电流I 和它所消耗的功率P ,然后通过计算得到元件的参数值,这种方法称为三表法。
计算的基本公式为:阻抗的模I U Z =, 电路的功率因数UI P =ϕcos 等效电阻 R = 2IP=│Z │cos φ, 等效电抗 X =│Z │sin φ2. 阻抗性质的判别方法可用在被测元件两端并联电容的方法来判别, 若串接在电路中电流表的读数增大,则被测阻抗为容性,电流减小则为感性。
其原理可通过电压、电流的相量图来表示:图7-1 并联电容测量法 图7-2 相量图3. 本实验所用的功率表为智能交流功率表,其电压接线端应与负载并联,电流接线端应与负载串联。
三、实验设备DGJ-1型电工实验装置:交流电压表、交流电流表、功率表、自耦调压器、白炽灯、镇流器、电容器。
四、实验内容测试线路如图7-3所示,根据以下步骤完成表格7-1。
1. 按图7-3接线,将调压器调到表1中的规定值。
2. 分别测量15W 白炽灯(R)、镇流器(L) 和μF 电容器( C)的电流和功率以及功率因数。
3. 测量L 、C 串联与并联后的电流和功率以及功率因数。
4. 如图7-4,用并联电容法判断以上负载的性质。
图7-3 图7-4表 7-1被测阻抗测量值计算值 等效参数Z=R+jX U(V ) I(mA )P (W) cos φ |Z| ()cos φR ()X ()15W 白炽灯R100 1 电感线圈L 40 电容器C 40 0 0 L 与C 串联 40 221 L 与C 并联 40L 与C 串联再并1F 电容 40235∕ ∕L 与C 并联再并1F 电容 40 ∕∕五、实验数据的计算和分析根据表格7-1的测量结果,分别计算每个负载的等效参数。
交流电路等效参数的测定实验报告一、实验目的1、加深对交流电路中电阻、电感和电容元件特性的理解。
2、掌握用交流电压表、交流电流表和功率表测定交流电路等效参数的方法。
3、学习使用功率因数表测量电路的功率因数。
二、实验原理在交流电路中,电阻、电感和电容元件对电流的阻碍作用不同。
电阻元件的阻抗是实数,其值等于电阻值;电感元件的阻抗是感抗,与频率成正比;电容元件的阻抗是容抗,与频率成反比。
对于一个由电阻、电感和电容组成的串联交流电路,其总阻抗为:\Z = R + j(X_L X_C)\其中,\(R\)为电阻值,\(X_L\)为感抗,\(X_C\)为容抗。
感抗\(X_L =ωL\),容抗\(X_C =\frac{1}{ωC}\),\(ω\)为角频率,\(L\)为电感值,\(C\)为电容值。
通过测量电路的电压、电流和功率,可以计算出电路的等效参数。
1、电阻\(R\)的测定根据欧姆定律\(R =\frac{U}{I}\),其中\(U\)为电阻两端的电压,\(I\)为通过电阻的电流。
2、电感\(L\)的测定串联电路的阻抗\(Z =\sqrt{R^2 +(X_L X_C)^2}\),当\(X_C \ll X_L\)时,\(Z \approx \sqrt{R^2 + X_L^2}\),又因为\(X_L =ωL\),所以\(L =\frac{\sqrt{Z^2 R^2}}{ω}\)。
3、电容\(C\)的测定当\(X_L \ll X_C\)时,\(Z \approx \sqrt{R^2 + X_C^2}\),又因为\(X_C =\frac{1}{ωC}\),所以\(C =\frac{1}{ω\sqrt{Z^2 R^2}}\)。
三、实验设备1、交流电源(输出电压可调)2、交流电压表3、交流电流表4、功率表5、电感线圈6、电容器7、电阻箱四、实验步骤1、按图连接电路,将电阻箱、电感线圈和电容器串联接入交流电源。
2、调节交流电源的输出电压,使其为一个合适的值(例如\(10V\))。
交流电路等效参数的测量实验一.实验目的1.学会使用交流数字仪表(电压表、电流表、功率表)和自耦调压器。
2.学习用交流数字仪表测量交流电路的电压、电流和功率。
3.学会用交流数字仪表测定交流电路参数的方法。
4.加深对阻抗、阻抗角及相位差等概念的理解。
二.原理说明正弦交流电路中各个元件的参数值,可以用交流电压表、交流电流表及功率表,分别测量出元件两端的电压U,流过该元件的电流I和它所消耗的功率P,然后通过计算得到所求的各值,这种方法称为三表法,是用来测量50Hz 交流电路参数的基本方法。
计算的基本公式为:电阻元件的电阻:I U R R =或2IPR = 电感元件的感抗IU X LL =,电感f X L π2L =电容元件的容抗IU X C C =,电容C 21fX C π=串联电路复阻抗的模IUZ =,阻抗角 R Xarctg =ϕ 其中:等效电阻 2IPR =,等效电抗22R Z X -=本次实验电阻元件用白炽灯(非线性电阻)。
电感线圈用镇流器,由于镇流器线圈的金属导线具有一定电阻,因而,镇流器可以由电感和电阻相串联来表示。
**A 350V 4UIu+-LR 图19-1电源负载AZWV图19-2**u+-20V2电容器一般可认为是理想的电容元件。
在R 、L 、C 串联电路中,各元件电压之间存在相位差,电源电压应等于各元件电压的相量和,而不能用它们的有效值直接相加。
电路功率用功率表测量,功率表(又称为瓦特表)是一种电动式仪表,其中电流线圈与负载串联,(具有两个电流线圈,可串联或并联,以便得到两个电流量程),而电压线圈与电源并联,电流线圈和电压线圈的同名端(标有*号端)必须连在一起,如图19—1所示。
本实验使用数字式功率表,连接方法与电动式功率表相同,电压、电流量程分别选450V 和3A 。
三.实验设备1.交流电压、电流、功率、功率因数表; 2.自耦调压器(输出可调的交流电压);3.30W镇流器,400V /4.7μF电容器,电流插头,25W/220V白炽灯。
实验十二用三表法测量交流电路等效参数
Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】
实
验报告
一、实验目的
1. 学会用交流电压表、 交流电流表和功率表测量元件的交流等效参数的方法
2. 学会功率表的接法和使用 二、原理说明
1. 正弦交流激励下的元件值或阻抗值,可以用交流电压表、交流电流表及功率表,分别测量出元件两端的电压U ,流过该元件的电流I 和它所消耗的功率P ,然后通过计算得到所求的各值,这种方法称为三表法,是用以测量50Hz 交流电路参数的基本方法。
计算的基本公式为
阻抗的模 │Z │= U
I 电路的功率因数 cos φ= P UI
等效电阻
R =P
I 2
等效电抗 X=│Z │sin φ 如果被测元件是一个电感线圈,则有: X= XL=│Z │sin φ= 2πf L 如果被测元件是一个电容器,则有:
X= X C =│Z │sin φ=
1
2πfc
2. 阻抗性质的判别方法:
在被测元件两端并联电容或串联电容的方法来加以判别,方法与原理如下:
(1) 在被测元件两端并联一只适当容量的试验电容, 若串接在电路中电流表的读数增大,则被测阻抗为容性,电流减小则为感性。
(a) (b) 图12-1 并联电容测量法
图12-1(a)中,Z 为待测定的元件,C ’为试验电容器。
(b)图是(a)的等效电路,图中G 、B 为待测阻抗Z 的电导和电纳,B'为并联电容C ’的电纳。
在端电压有效值不变的条件下,按下面两种情况进行分析:
① 设B +B ’=B",若B ’增大,B"也增大,则电路中电流I 将单调地上升,故可判断B 为容性元件。
② 设B +B ’=B",若B ’增大,而B"先减小而后再增大,电流I 也是先减小后上升,如图5-2所示,则可判断B 为感性元件。
I I 2 I g
B 2B B ’ 图5-2 I-B'关系曲线
由上分析可见,当B 为容性元件时,对并联电容C ’值无特殊要求;而当B 为感性元件时,B ’<│2B │才有判定为感性的意义。
B ’>│2B │时, 电流单调上升,与B 为容性时相同,并不能说明电路是感性的。
因此B ’<│2B │是判断电路性质的可靠条件,由此得判定条件为 C ’=
2B ω
(2) 与被测元件串联一个适当容量的试验电容,若被测阻抗的端电压下降,则判为容性,端压上升则为感性,判定条件为
1ωC ’
<│2X │
式中X 为被测阻抗的电抗值,C ’为串联试验电容值,此关系式可自行证明。
判断待测元件的性质,除上述借助于试验电容C'测定法外还可以利用该元件电流、电压间的相位关系,若i 超前于u ,为容性;i 滞后于u ,则为感性。
三、实验设备
四、实验内容
测试线路如图12-3所示
1. 按图12-3接线,并经指导教师检查后,方可接通市电电源。
2. 分别测量15W白炽灯(R),40W日光灯镇流器(L) 和μf电容器( C)的等效参数。
要求R和C两端所加的电压为220V,L中流过电流小于。
3. 测量L、C串联与并联后的等效参数。
4. 用并接试验电容的方法来判别LC串联和并联后阻抗的性质。
计算所需的电容大小:
因此,L与C串联时为容性,L与C并联时为感性
5.观察并测定功率表电压并联线圈前接法与后接法对测量结果的影响。
A.前接法:
B.后接法:
五、实验注意事项
1. 本实验直接用市电220V 交流电源供电, 实验中要特别注意人身安全,不可用手直接触摸通电线路的裸露部分,以免触电,进实验室应穿绝缘鞋。
2. 自耦调压器在接通电源前,应将其手柄置在零位上(逆时针旋到底),调节时, 使其输出电压从零开始逐渐升高。
每次改接实验线路或实验完毕,都必须先将其旋柄慢慢调回零位,再断电源。
必须严格遵守这一安全操作规程。
4. 功率表要正确接入电路。
5. 电感线圈L 中流过电流不得超过。
六、预习思考题
. 1. 在50Hz 的交流电路中,测得一只铁心线圈的P 、I 和U ,如何算得它的阻值及电感量 答:
2. 如何用串联电容的方法来判别阻抗的性质试用I 随X' c (串联容抗)的变化关系作定性分析,证明串联试验时,C'满足
式中X 为被测阻抗的电抗值,'C 为串联试验电容值。
证明: (电路图)
(1)设'''X X X =+,若'X 增大,''X 也增大,则电流I 变小,被测阻抗的端电压对应下降,则判断为容性。
(2)设'''X X X =+,若'X 增大,''X 先减小后增大,电流先增大后减小,被测阻抗的端电压对应也先上升后下降,则判断为感性。
由上分析可见,当X 为容性元件时,对串联电容 'C 值无特殊要求;而当X 为感性元
件时,'
''2X X <才有判定为感性的意义。
X X 2'>时,被测阻抗的端电压单调下降,与X 为容性时相同,并不能说明电路是感性的。
因此'
''2X X <是判断电路性质的可靠
条件,由此得判定条件为 七、实验报告
1. 根据实验数据,完成各项计算。
计算参考公式(其中电感的单位是mH,电容的单位是f μ): 其计算结果已经显示在实验内容的数据表格中 并联电容'
C 范围的计算: 串联电容'C 范围的计算: 计算结果如下表所示:
误差分析:
幅角误差产生的主要原因是仪表误差
2. 分析功率表并联电压线圈前后接法对测量结果的影响。
A.前接法: B.后接法:
理论分析:
(1)前接法所得结果比负载实际损耗的功率大,所增大的值是电流表损耗的功率I 2R A ,也即电流表的功率。
(2)后接法测出的功率也比负载所损耗的功率大,所增大之值等于U 2
R V
,这也即为电压
表所损耗的功率。
实际结果:
(1)当被测阻抗为单一用电器时,前接法与后接法的测量结果基本相同。
(2)后接法测出的功率比前接法大一些,因并联电压线圈所消耗的功率也计入了功率
表的读数之中,电压表消耗的功率较大,因此误差较大。
3. 总结功率表与自耦调压器的使用方法。
功率表使用方法
(1) 接线
a. 电流端串联在电路中,电压端并联在待测负载两端
b. 两个*号端需接在一起 (2) 读数
a. a.开启电源,显示屏出现“P ”、“cos ”等标识。
b. b.按动功能键一次,显示屏出现“P ”,然后按确认键,即可读出功率P 的读数。
c. c.继续按动功能键,待显示屏出现“cos ”后按确认键,即可读出幅角
COSφ之值。
自耦调压器使用方法
(1)使用前需将旋钮逆时针旋到底,再接通电源
(2)接线时,一端接G(接地端),一端接在W、V、U其中之一
(3)将电压表接入,缓缓旋动旋钮,直到电压表显示电压为预期输出电压值
(4)不用时,要将旋钮逆时针旋到底,确保下次使用时的安全。