第2章 随机变量及其分布
- 格式:doc
- 大小:764.50 KB
- 文档页数:18
概率论与数理统计教学教案 第2章 随机变量及其分布授课序号01教 学 基 本 内 容一.随机变量1. 随机变量:设E 是随机试验,样本空间为S ,如果对随机试验的每一个结果ω,都有一个实数()X ω与之对应,那么把这个定义在S 上的单值实值函数()X X ω=称为随机变量.随机变量一般用大写字母,,X Y Z ,…表示.2.随机变量的两种常见类型:离散型随机变量和连续型随机变量. 二.分布函数1. 分布函数:设X 是一个随机变量,x 是任意实数,称函数{}(),F x P X x x =≤-∞<<∞为随机变量X 的分布函数,显然,()F x 是一个定义在实数域R 上,取值于[0,1]的函数.2.几何意义:在数轴上,将X 看成随机点的坐标,则分布函数()F x 表示随机点X 落在阴影部分(即X x ≤)内的概率,如下图.3.对任意的实数,,()a b c a b <,都有:授课序号02(,)B n p ,其中在二项分(1,)B p X 服从(0-1)分布是二项分布的特例,简记0,1,2,...,其中λ为大于()P λ.在一次试验中出现的概率为(12,kk nnC p p -.)说明:泊松定理表明,泊松分布为二项分布的极限分布,即在试验次数很大,而n np 不太大时,()G p.)说明:几何分布描述的是试验首次成功的次数次才取得第一次成功,前)超几何分布:若随机变量X的分布律为H n N(,,件不合格,从产品中不放回)超几何分布与二项分布之间的区别:超几何分布是不放回抽取,二项分布是放回抽取,因此,二项两个分布之间也有联系,当总体的容量授课序号03(,)U a b .内的任一个子区间()E λ.1,0,xe x λ-⎧->⎪⎨⎪⎩其它.)定理:(指数分布的无记忆性)设随机变量()E λ,则对于任意的正数{}{P X s t t P X >+>=为连续型随机变量,若概率密度为2(,N μσ处取到最大值,并且对于同样长度(iii )当参数μ固定时,σ的值越大,()f x 的图形就越平缓;σ的值越小,()f x 的图形就越尖狭,由此可见参数σ的变化能改变图形的形状,称σ为形状参数.(iv )当参数σ固定时,随着μ值的变化,()f x 图形的形状不改变,位置发生左右平移,由此可见参数μ的变化能改变图形的位置,称μ为位置参数.(4)标准正态分布(0,1)XN(i )概率密度221(),2x x e x ϕπ-=-∞<<∞(ii )分布函数221(),.2t xx e dt x π--∞Φ=-∞<<∞⎰(iii )根据概率密度()x ϕ的对称性,有()1().x x Φ-=-Φ (5)定理:(标准化定理)若2(,)XN μσ,则(0,1).X Z N μσ-=(6)标准化定理的应用:设,,()x a b a b <为任意实数,则(){}{}{}(),X x x x F x P X x P P Z μμμμσσσσ----=≤=≤=≤=Φ{}{}()().a X b b a P a X b P μμμμμσσσσσ-----<≤=<≤=Φ-Φ6.“3σ”法则:设2(,)XN μσ,则{33}(3)(3)2(3)10.997,P X μσμσ-<<+=Φ-Φ-=Φ-≈即正态分布2(,)N μσ的随机变量以99.7%的概率落在以μ为中心、3σ为半径的区间内,落在区间以外的概率非常小,可以忽略不计,这就是“3σ”法则. 三.例题讲解例1.车流中的“时间间隔”是指一辆车通过一个固定地点与下一辆车开始通过该点之间的时间长度.设X 表示在大流量期间,高速公路上相邻两辆车的时间间隔,X 的概率密度描述了高速公路上的交通流量规律,其表达式为:0.15(0.5)0.15,0.5,()0,x e x f x --⎧≥⎪=⎨⎪⎩其它.概率密度()f x 的图形如下图,求时间间隔不大于5秒的概率.例2.设随机变量X 表示桥梁的动力荷载的大小(单位:N ),其概率密度为13,02;()880,x x f x ⎧+≤≤⎪=⎨⎪⎩其它.求:(1)分布函数()F x ;(2)概率{1 1.5}P X ≤≤及{1}P X >.例3.某食品厂生产一种产品,规定其重量的误差不能超过3克,即随机误差X 服从(-3,3)上的均匀分布.现任取出一件产品进行称重,求误差在-1~2之间的概率.例4.设随机变量X 在(1,4)上服从均匀分布,对X 进行三次独立的观察,求至少有两次观察值大于2的概率.例5.设随机变量X 表示某餐馆从开门营业起到第一个顾客到达的等待时间(单位:min ),则X 服从指数分布,其概率密度为0.40.4,0,()0,xex f x -⎧>⎪=⎨⎪⎩其它.求等待至多5分钟的概率以及等待3至4分钟的概率.例6.汽车驾驶员在减速时,对信号灯做出反应所需的时间对于帮助避免追尾碰撞至关重要.有研究表明,驾驶员在行车过程中对信号灯发出制动信号的反应时间服从正态分布,其中μ=1.25秒,σ=0.46秒.求驾驶员的制动反应时间在1秒至1.75秒之间的概率?如果2秒是一个非常长的反应时间,那么实际的制动反应时间超过这个值的概率是多少?例7.设某公司制造绳索的抗断强度服从正态分布,其中μ=300千克,σ=24千克.求常数a ,使抗断强度以不小于95%的概率大于a .授课序号0450。
第二章 随机变量及其分布第二节 离散随机变量一、选择1 设离散随机变量X 的分布律为:),,3,2,1(,}{ ===k b k X P kλ )(0为,则且λ>b11)D (11)C (1)B (0)A (-=+=+=>b bb λλλλ的任意实数).()0(,11111·,1,11)1(·lim lim 1)1(·1}{111C b b b b S b b S b k X P n n n n n nk kn k kk 所以应选因所以时当于是可知即因为解><+==-<=--=--=====∞→∞→=∞=∞=∑∑∑λλλλλλλλλλλλ二、填空1 如果随机变量X 的分布律如下所示,则=C .X0 1 2 3PC1 C 21 C 31 C 41.12251)(31==∑=C x P x i 得:根据解 2 进行重复独立试验,设每次试验成功的概率为54, 失败的概率为51, 将试验进行到出现一次成功为止, 以X 表示所需试验次数, 则X 的分布律是__ ___ ____.(此时称X 服从参数为p 的几何分布).解:X 的可能取值为1,2,3 ,{}{}.,1~1次成功第次失败第K K K X -==所以X 的分布律为{} 1,2, , 54)51(1=⋅==-K K X P K 三、简答1 一个袋子中有5个球,编号为1,2,3,4,5, 在其中同时取3只, 以X 表示取出的3个球中的最大号码, 试求X 的概率分布.的概率分布是从而,种取法,故只,共有任取中,,个号码可在,另外只球中最大号码是意味着事件种取法,故只,共有中任取,,个号码可在,另外只球中最大号码是意味着事件只有一种取法,所以只球号码分布为只能是取出的事件的可能取值为解X C C X P C X C C X P C X C X P X X 53}5{624,321253},5{103}4{2321243},4{1011}3{,3,2,13},3{.5,4,335242235232335=============X 3 4 5 P101 103 532 一汽车沿一街道行驶, 需要通过三个均设有绿路灯信号的路口, 每个信号灯为红和绿与其他信号为红或绿相互独立, 且红绿两种信号显示时间相等, 以X 表示该汽车首次遇到红灯前已通过的路口个数, 求X 的概率分布.故分布律为于是相互独立,且,遇到红灯个路口首次汽车在第表示设的可能值为由题设知解3321321332132122121132121)()()()(}3{21)()()()(}2{21)()()(}1{21)(}0{,21)()(,,"")3,2,1(,3,2,1,0==================A P A P A P A A A P X P A P A P A P A A A P X P A P A P A A P X P A P X P A P A P A A A i i A X i i iX 0 1 2 3 P21 221 321 321 第三节 超几何分布 二项分布 泊松分布一、选择1 甲在三次射击中至少命中一次的概率为0.936, 则甲在一次射击中命中的概率p =______.(A) 0.3 (B) 0.4 (C) 0.5 (D) 0.6 解: D设=X ”三次射击中命中目标的次数”,则),3(~p B X , 已知936.0)1(1)0(1)1(3=--==-=≥p X P X P , 解之得6.04.01064.0)1(3=⇒=-⇒=-p p p2 设随机变量),3(~),,2(~p b Y p b X , {}{}=≥=≥1,951Y P X P 则若______. 43)A (2917)B ( 2719)(C 97)D ( 解: C二、填空1设离散随机变量X 服从泊松分布,并且已知{}{},21===X P X P{}______4=则=X P .解:232-e 三、简答1.某地区的月降水量X (单位:mm )服从正态分布N(40,24),试求该地区连续10个月降水量都不超过50mm 的概率.9396.09938.010Y P 9938.010B Y mm 50Y 10mm 50109938.0)5.2()44050440P )50P A P mm 50A 10=)==(),(~的月数”,则过=“该地区降水量不超设天贝努利试验,相当做超过个月该地区降水量是否观察(()=(”=“某月降水量不超过解:设==-≤-=≤φx x2 某地区一个月内发生交通事故的次数X 服从参数为λ的泊松分布,即)(~λP X ,据统计资料知,一个月内发生8次交通事故的概率是发生10次交通事故的概率的2.5倍.(1) 求1个月内发生8次、10次交通事故的概率; (2)求1个月内至少发生1次交通事故的概率; (3)求1个月内至少发生2次交通事故的概率;983.001.000248.0}1{}0{1}2{01487.06}1{)3(9975.000248.01}0{1}1{00248.0}0{)2(0413.0!106}10{1033.0!86}8{)1(6,36!105.2!8}10{5.2}8{.,.,2,1,0,!}{),(~610610682108≈+≈=-=-=≥≈==≈-≈=-=≥≈===≈==≈====⨯====⋯===-------X P X P X P e X P X P X P e e X P e X P e X P e e X P X P k k e k X P P X k λλλλλλλλλλλλ解出即据题意有关键是求出是未知的这里题这是泊松分布的应用问解第五节 随机变量的分布函数一、 填空题1设离散随机变量,216131101~⎪⎪⎭⎫⎝⎛-X 则X 的分布函数为 .⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤--<==++=≤=≥=+=≤=<≤=≤=<≤-=≤=-<1,110,2101,311,0)(1216131}{)(1;216131}{)(1031}{)(01;0}{)(1x x x x x F x X P x F x x X P x F x x X P x F x x X P x F x 当当当当整理,得时,当时,当时,当时,当解二、选择1 设)(1x F 与)(2x F 分别为随机变量1X 与2X 的分布函数,为使)()()(21x bF x aF x F -=是某一变量的分布函数,在下列给定的数值中应取52,53)A (-==b a 32,32)B (==b a 23,21)C (=-=b a 23,21)D (-==b a ).(1)(lim )(lim )(lim ,1)(lim 21A b a x F b x F a x F x F x x x x 故应选即因此有根据分布函数的性质:分析-=-==+∞→+∞→+∞→+∞→2. 设函数⎪⎩⎪⎨⎧≥<≤<=1x , 11x 0 , 2x 0x,0)(x F .则)(x F ______.(A) 是随机变量的分布函数. (B) 不是随机变量的分布函数.(C) 是离散型随机变量的分布函数. (D) 是连续型随机变量的分布函数. 解: A显然)(x F 满足随机变量分布函数的三个条件:(1))(x F 是不减函数 , (2) 1)(,0)(,1)(0=+∞=-∞≤≤F F x F 且 , (3))()0(x F x F =+3. 设⎪⎪⎩⎪⎪⎨⎧≥<<≤=2x, 12x (*) , 4x(*)x,0)(2x F 当(*)取下列何值时,)(x F 是随机变量的分布函数.(A) 0 (B) 0.5 (C) 1.0 (D)1.5解: A 只有A 使)(x F 满足作为随机变量分布函数的三个条件.三.简答1 设随机变量X 的分布函数为x B A x F arctan )(+=,求B A ,的值. 解:由随机变量分布函数的性质.0)(lim =-∞→x F x .1)(lim =+∞→x F x 知.2)2()a r c t a n (lim )(lim 0B A B A x B A x F x x ππ-=-⨯+=+==-∞→-∞→.22)arctan (lim )(lim 1B A B A x B A x F x x ππ+=⨯+=+==+∞→+∞→ 解⎪⎪⎩⎪⎪⎨⎧=+=-1202B A B A ππ得π1,21==B A第六节 连续随机变量的概率密度一、选择1.设()f x 、()F x 分别表示随机变量X 的密度函数和分布函数,下列选项中错误的是( A )(A ) 0()1f x ≤≤ (B ) 0()1F x ≤≤(C )()1f x dx +∞-∞=⎰(D ) '()()f x F x =2.下列函数中,可为随机变量X 的密度函数的是( B )(A ) sin ,0()0,x x f x π≤≤⎧=⎨⎩其它 (B )sin ,0()20,x x f x π⎧≤≤⎪=⎨⎪⎩其它(C ) 3sin ,0()20x x f x π⎧≤≤⎪=⎨⎪⎩,其它(D )()sin ,f x x x =-∞<<+∞ 二、填空1.设连续随机变量X 的分布函数为11()arctan ,2F X x x π=+-∞<<+∞ (1)(11)P X -≤≤= 0.5 , (2)概率密度()f x =21,(1)x x π-∞<<+∞+三、简答题1. 设随机变量X 的概率密度20()0,x Ax e x f x x -⎧>=⎨≤⎩,求:(1)常数A ;(2)概率(1)P X ≥。
第2章随机变量及其分布1,设在某一人群中有40%的人血型是A 型,现在在人群中随机地选人来验血,直至发现血型是A 型的人为止,以Y 记进行验血的次数,求Y 的分布律。
解:显然,Y 是一个离散型的随机变量,Y 取k 表明第k 个人是A 型血而前1-k 个人都不是A 型血,因此有116.04.0)4.01(4.0}{--⨯=-⨯==k k k Y P , ( ,3,2,1=k )上式就是随机变量Y 的分布律(这是一个几何分布)。
2,水自A 处流至B 处有3个阀门1,2,3,阀门联接方式如图所示。
当信号发出时各阀门以0.8的概率打开,以X 表示当信号发出时水自A 流至B 的通路条数,求X 的分布律。
设各阀门的工作相互独立。
解:X 只能取值0,1,2。
设以)3,2,1(=i A i记第i 个阀门没有打开这一事件。
则)}(){()}({}0{3121321A A A A P A A A P X P ⋃=⋃==)()()()()()()(}{}{}{32131213213121A P A P A P A P A P A P A P A A A P A A P A A P -+=-+= 072.0)8.01()8.01()8.01(322=---+-=,类似有512.08.0)()}({}2{3321321=====A A A P A A A P X P ,416.0}2{}0{1}1{==-=-==X P X P X P ,综上所述,可得分布律为3,据信有20%的美国人没有任何健康保险,现任意抽查15个美国人,以X 表示15个人中无任何健康保险的人数(设各人是否有健康保险相互独立)。
问X 服从什么分布?写出分布律。
并求下列情况下无任何健康保险的概率:(1)恰有3人;(2)至少有2人;(3)不少于1人且不多于3人;(4)多于5人。
解:根据题意,随机变量X 服从二项分布B(15, 0.2),分布律为15,2,1,0,8.02.0)(1515 =⨯⨯==-k C k X P kk k 。
(1),2501.08.02.0)3(123315=⨯⨯==C X P(2)8329.0)0()1(1)2(==-=-=≥X P X P X P ;(3)6129.0)3()2()1()31(==+=+==≤≤X P X P X P X P ;(4))2()3()4()5(1)5(=-=-=-=-=>X P X P X P X P X P0611.0)0()1(==-=-X P X P4,设有一由n 个元件组成的系统,记为][/G n k ,这一系统的运行方式是当且仅当n 个元件中至少有k )0(n k ≤<个元件正常工作时,系统正常工作。
现有一][5/3G 系统,它由相互独立的元件组成,设每个元件的可靠性均为0.9,求这一系统的可靠性。
解:对于][5/3G 系统,当至少有3个元件正常工作时,系统正常工作。
而系统中正常工作的元件个数X 服从二项分布B(5, 0.9),所以系统正常工作的概率为99144.01.09.0)(535553=⨯⨯==∑∑=-=k kk k k Ck XP5,某生产线生产玻璃制品,生产过程中玻璃制品常出现气泡,以至产品成为次品,设次品率为0.001,现取8000件产品,用泊松近似,求其中次品数小于7的概率。
(设各产品是否为次品相互独立) 解:根据题意,次品数X 服从二项分布B(8000, 0.001),所以∑=-⨯=≤=<680008000999.0001.0)6()7(k kk kCX P X P3134.0!8!)001.08000(686001.08000==⨯≈∑∑=-=⨯-k k k k k ek e(查表得)。
6,(1)设一天内到达某港口城市的油船的只数X~)10(π,求}15{>X P (2)已知随机变量X~)(λπ,且有5.0}0{=>X P ,求}2{≥X P 。
解:(1)0487.09513.01}15{1}15{=-=≤-=>X P X P ;(2)根据5.01}0{1}0{=-==-=>-λe X P X P ,得到2ln =λ。
所以1534.02/)2ln 1(5.01}1{}0{1}2{≈-=--==-=-=≥-λλeX P X P X P 。
7,一电话公司有5名讯息员,各人在t 分钟内收到讯息的次数)2(~t X π(设各人收到讯息与否相互独立)。
(1)求在一给定的一分钟内第一个讯息员未收到讯息的概率。
(2)求在给定的一分钟内5个讯息员恰有4人未收到讯息的概率。
(3)写出在一给定的一分钟内,所有5个讯息员收到相同次数的讯息的概率。
解:在给定的一分钟内,任意一个讯息员收到讯息的次数)2(~πX 。
(1)1353.0}0{2≈==-e X P ;(2)设在给定的一分钟内5个讯息员中没有收到讯息的讯息员人数用Y 表示,则Y~ B(5, 0.1353),所以00145.0)1353.01(1353.0}4{445=-⨯==C Y P 。
(3)每个人收到的讯息次数相同的概率为()∑∑∞=-∞=-⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛0510052!32!2k k k k k e k e8,一教授当下课铃打响时,他还不结束讲解。
他常结束他的讲解在铃响后的一分钟以内,以X 表示铃响至结束讲解的时间。
设X 的概率密度为⎩⎨⎧≤≤=他其100)(2x kx x f , (1)确定k ;(2)求}31{≤X P ;(3)求}2141{≤≤X P ;(4)求}32{>X P 。
解:(1)根据3)(112k dx kx dx x f ===⎰⎰+∞∞-,得到3=k ;(2)271313}31{33/102=⎪⎭⎫⎝⎛==≤⎰dx x X P ;(3)64741213}2141{332/14/12=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛==≤≤⎰dx x X P ;(4)27193213}32{313/22=⎪⎭⎫⎝⎛-==>⎰dx x X P 。
9,设随机变量X 的概率密度为⎩⎨⎧≤≤=他其1000003.0)(2x x x f ,求t 的方程04522=-++X Xt t有实根的概率。
解:方程04522=-++X Xt t有实根表明0)45(442≥--=∆X X,即0452≥+-X X,从而要求4≥X 或者1≤X 。
因为001.0003.0}1{12==≤⎰dx xX P , 936.0003.0}4{1042==≥⎰dx xX P所以方程有实根的概率为0.001+0.936=0.937.10,设产品的寿命X (以周计)服从瑞利分布,其概率密度为⎪⎩⎪⎨⎧≥=-他其00100)(200/2x ex x f x(1) 求寿命不到一周的概率; (2) 求寿命超过一年的概率;(3)已知它的寿命超过20周,求寿命超过26周的条件概率。
解:(1)00498.01100}1{200/11200/2≈-==<--⎰edx exX P x ;(2)000001.0100}52{200/270452200/2≈==>-+∞-⎰edx exX P x ;(3)25158.0100100}20{}26{}2026{200/27620200/26200/22≈==>>=>>-∞+-+∞-⎰⎰edxexdxexX P X P X X P x x 。
11,设实验室的温度X (以C计)为随机变量,其概率密度为⎪⎩⎪⎨⎧≤≤--=他其210)4(91)(2x x x f(1) 某种化学反应在温度X >1时才能发生,求在实验室中这种化学反应发生的概率。
(2)在10个不同的实验室中,各实验室中这种化学反应是否会发生时相互独立的,以Y 表示10个实验室中有这种化学反应的实验室的个数,求Y 的分布律。
(3) 求}2{=Y P ,}2{≥X P 。
解:(1)⎰=-=>212275)4(91}1{dx x X P ;(2)根据题意)275,10(~B Y ,所以其分布律为10,2,1,0,2722275)(1010 =⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯==-k C k Y P kkk(3)2998.02722275)2(82210=⎪⎭⎫⎝⎛⨯⎪⎭⎫ ⎝⎛⨯==C Y P ,5778.0)1()0(1)2(==-=-=≥Y P Y P Y P 。
12,(1)设随机变量Y 的概率密度为⎪⎩⎪⎨⎧≤<≤<-+=他其100102.02.0)(y y Cyy f 试确定常数C ,求分布函数)(y F ,并求}5.00{≤≤Y P ,}1.0|5.0{>>Y Y P 。
(2)设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤<<=他其422008/8/1)(x x x x f 求分布函数)(x F ,并求}31{≤≤x P ,}3|1{≤≥X X P 。
解:(1)根据24.0)2.0(2.0)(111C dy Cy dy dy y f +=++==⎰⎰⎰-+∞∞-,得到2.1=C 。
110011)2.12.0(2.0)2.12.0(2.02.00)()(01100101≥<≤<≤--<⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧++++==⎰⎰⎰⎰⎰⎰---∞-y y y y dyy dy dyy dy dydy y f y F y yy11001112.02.06.0)1(2.002≥<≤<≤--<⎪⎪⎩⎪⎪⎨⎧+++=y y y y y y y25.02.045.0)0()5.0(}0{}5.0{}5.00{=-=-=≤-≤=≤≤F F Y P Y P Y P ;7106.0226.0145.01)1.0(1)5.0(1}1.0{1}5.0{1}1.0{}5.0{}1.0|5.0{=--=--=≤-≤-=>>=>>F F Y P Y P Y P Y P Y Y P(2)44220088188181)()(204222≥<≤<≤<⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧++==⎰⎰⎰⎰⎰⎰∞-x x x x dxxdx dxx dx dxdx x f x F xxx442200116/8/02≥<≤<≤<⎪⎪⎩⎪⎪⎨⎧=x x x x x x16/78/116/9)1()3(}31{=-=-=≤≤F F x P ;9/7)3()1()3(}3{}31{}3|1{=-=≤≤≤=≤≥F F F X P X P X X P 。
13,在集合A={1,2,3,….,n}中取数两次,每次任取一数,作不放回抽样,以X 表示第一次取到的数,以Y 表示第二次取到的数,求X 和Y 的联合分布律。