汽轮机抽汽系统介绍解读
- 格式:ppt
- 大小:1.26 MB
- 文档页数:28
南汽15MW抽汽式汽轮机调节系统说明书-图文南汽15MW抽汽式汽轮机是一种高效的发电设备,需要一个先进的调节系统来实现安全稳定的运行。
本说明书将详细介绍南汽15MW抽汽式汽轮机调节系统的结构、原理和工作流程,并附带图文说明,使用户能够更好地理解和操作该系统。
一、调节系统的结构南汽15MW抽汽式汽轮机的调节系统由多个部分组成,包括控制柜、自动调节器、执行器和传感器等。
其中,控制柜是整个系统的核心部分,它集成了多种控制元件和接口,用于接受来自自动调节器的指令并对整个系统进行调节。
自动调节器负责监测和控制汽轮机的各项参数,如压力、温度和转速等,以保持其在安全范围内稳定运行。
执行器接收控制柜发出的指令,并根据指令调节汽轮机的工作状态。
传感器则负责采集汽轮机的各项参数,并将数据传输给自动调节器进行处理。
二、调节系统的工作原理南汽15MW抽汽式汽轮机调节系统的工作原理是通过自动调节器对汽轮机的工作状态进行监控和调整,以实现对其各项参数的精确控制。
自动调节器会根据预设的参数范围对汽轮机进行实时监测,一旦发现参数超出范围,就会向控制柜发送指令。
控制柜根据指令对执行器进行控制,进而调节汽轮机的工作状态,使其回到安全范围内。
三、调节系统的工作流程1.启动汽轮机:首先,将汽轮机的控制柜接通电源,然后按照标准程序启动汽轮机,使其达到运行温度和转速要求。
2.监测参数:启动后,自动调节器会开始监测汽轮机的各项参数,如压力、温度和转速等。
同时,执行器会根据预设参数进行调节,以保持参数在安全范围内。
3.调整参数:如果自动调节器发现一些参数超出安全范围,就会向控制柜发送指令。
控制柜接收指令后,会通过执行器调整汽轮机的工作状态,使该参数恢复到安全范围内。
4.监控运行状态:在汽轮机运行过程中,自动调节器会持续监测各项参数,并及时调整,以保持汽轮机的稳定运行。
同时,控制柜也会不断接收传感器采集到的数据,以便进行必要的调节。
5.停机操作:当需要停机时,首先将汽轮机的负荷逐渐减小,然后将其停机。
汽轮机介绍之回热抽汽系统汽轮机是一种利用高温高压蒸汽驱动的热能转换装置,其工作原理是通过燃烧燃料产生高温高压蒸汽,然后利用蒸汽的热能将轮叶推动转子旋转,最终输出机械能。
而在汽轮机的工作过程中,会产生大量的低温低压蒸汽,这些蒸汽还能够进一步发挥作用,提高汽轮机的热能利用效率。
回热抽汽系统就是利用这种低温低压蒸汽,将其回收利用的一种技术。
其主要作用是在汽轮机的排汽过程中,将高温高压的蒸汽与低温低压的蒸汽进行热量交换,从而使低温低压蒸汽的热能得到利用,提高汽轮机的热能转换效率。
回热抽汽系统由回热器、抽汽涡轮以及与主汽轮机相连接的管道系统组成。
在汽轮机工作过程中,高温高压的蒸汽从高压缸排出后,进入回热器进行热量交换。
回热器是一种换热设备,通过将高温高压蒸汽与低温低压蒸汽进行热量交换,使高温高压蒸汽冷却、降压同时,使低温低压蒸汽升温、升压,从而实现热量的回收利用。
在回热抽汽系统中,低温低压蒸汽经过回热器后,进一步被抽入抽汽涡轮中,通过抽汽涡轮的旋转将蒸汽的热能转化为机械能输出。
抽汽涡轮与主汽轮机是通过一条共同的轴线连接的,因此抽汽涡轮的旋转也将带动主汽轮机的旋转,增加了汽轮机的输出功率。
回热抽汽系统的优势在于可以将一部分原本被浪费的低温低压蒸汽的热能回收利用。
通过回热抽汽系统,汽轮机的热能利用效率得到了提高,可以有效地节约能源资源,减少对环境的影响。
此外,由于回热抽汽系统可以提高汽轮机的输出功率和热效率,因此对于提高汽轮机的运行经济性和稳定性也具有重要作用。
然而,回热抽汽系统也存在一些挑战。
首先,回热抽汽系统的设计与优化需要考虑更多的参数,如回热器的结构与性能、抽汽涡轮的转速等,增加了系统的复杂性。
其次,由于回热抽汽系统的操作与控制相对较为复杂,需要精确调节和控制各个部件的工作参数,以实现系统的平稳运行。
总之,回热抽汽系统是汽轮机中一种重要的热能回收利用技术,通过回收利用低温低压蒸汽的热能,提高汽轮机的热能利用效率,节约能源资源,减少对环境的影响。
汽轮机抽汽系统简介【运维之道】汽轮机各设备的作用,满满100条,让你轻松学习汽机系统!抽汽系统采用以热定电的方式,即在供热工况下,机组以热负荷为调节对象,满足外界供热需求后,剩余的蒸汽用来发电。
汽轮机抽汽系统由测压元件、放大元件、执行元件及调节对象(抽汽压力)四部分组成。
抽汽系统根据抽汽压力的变化自动调整供热蝶阀的开度以适应外界供热需求的变化也可通过手动增减按钮,由操作员控制蝶阀的开度。
测压传感获得抽气压力信号(电气信号),通过DEH 对其进行计算、校验等综合处理,并将其差值信号经功率放大后,送到蝶阀执行机构电液伺服阀,通过电液伺服阀控制油缸下腔的油量,使活塞上下移动,从而控制蝶阀的开度(蝶阀的关闭靠弹簧力来保证);同时与油动机活塞相连的LVDT 将其行程信号反馈至DEH,当阀门开大或关小到需要的位置时,DEH 将其指令和LVDT 反馈信号综合处理后,使蝶阀执行机构电液伺服阀回到平衡位置,使阀门停留在指定位置。
为防止热电联供甩负荷时,若抽汽管道上的阀门因故不能关闭,供热系统蒸汽大量倒灌,引起严重超速,设计如下:1)每根供热抽汽管道上除常规要求的一个逆止阀和一个电动阀外,还串联一个具有快关功能的抽汽调节阀,其主要目的是为甩负荷(包括只甩热负荷)时快关而设。
2)甩负荷信号联动抽汽快关调节阀快关,也联动碟阀暂关,使高中压缸短时做负功,以阻止机组超速。
3)甩热负荷信号联动抽汽快关调节阀与逆止阀快关,迅速切除供热抽汽,同时联动蝶阀快开,让抽汽快速改道进入低压缸,供热工况为纯凝汽工况。
4)在供热工况甩负荷,还应密切注意抽汽系统工作情况,如有异常,应采取措施。
建议供热工况甩负荷,应停机,不要求机组再维持空转。
END来源于:上汽自控中心。
汽机抽汽回热系统1、概述:回热抽气系统指与汽轮机回热抽汽有关的管道及设备,在蒸汽热力循环中,通常是从汽轮机数个中间级抽出一部分蒸汽,送到给水加热器中用于锅炉给水的加热(即抽汽回热系统)及各种厂用汽等。
采用回热循环的主要目的是:提高工质在锅炉内吸热过程的平均温度,以提高级组的热经济性。
2、抽汽回热系统作用:抽汽回热系统是原则性热力系统最基本的组成部分,采用蒸汽加热锅炉给水的目的在于减少冷源损失,一定量的蒸汽作了部分功后不再至凝汽器中向空气放热,即避免了蒸汽的热量被空气带走,使蒸汽热量得到充分利用,热好率下降,同时由于利用了在汽轮机作过部分功的蒸汽加热给水,提高了给水温度,减少了锅炉受热面的传热温差,从而减少了给水加热工程中不可逆损失,在锅炉中的吸热量也相应减少。
综合以上原因说明抽汽回热系提高了机组循环热效率。
因此,抽汽回热系的正常投运对提高机组的热经济性具有决定性的影响。
3、影响抽汽回热系统经济型地主要参数:影响给水回热加热经济性的主要参数为回热加热分配、相应的最佳给水温度和回热级数,三者紧密联系,互有影响。
在求解最佳回热分配的计算分析中,以Z级理想回热循环的循环效率最大值求其最佳回热分配,(所谓理想回热循环,即假定为混合式加热器,端差为零,不计新蒸汽,抽汽压损和泵功、忽略散热损失)求得理想回热循环的最佳回热分配通式后,根据忽略一些次要因素,进一步简化,即可获得其它近似的最佳回热分配通式。
如“焓降分配法”,这种分配方法是将每一级加热器的焓升取作等于前一级至本级的蒸汽在汽轮机中的焓降;又如“平均分配法”,这种回热分配方法的原则是每一级加热器的焓升相等;其他还有“等焓降分配法”等。
可见给水回热总加热量在各级中的分配是在一定的给水温度和一定级数的条件下,使循环热效率最高为原则,由此对应的各级抽汽回热参数,即为最有利分配的参数。
4、提高系统循环热效率的措施:将给水加热到多少温度,才能使循环热效率达到最高值?以单级抽汽回热为例,回热时给水温度从汽轮机排汽压力下的饱和温度开始逐渐增加,热效率也逐渐增加,热效率达最大值时的给水温度称为最佳给水温度,再提高给水加热温度时,热效率反会减小,热经济性就降低。
第1章汽轮机抽汽回热系统1.1. 概述在蒸汽热力循环中,通常要从汽轮机数个中间级抽出一部分蒸汽,送到给水加热器中用于锅炉给水的加热(即抽汽回热系统)以及用于各种厂用汽如给水泵汽轮机用汽等。
抽汽回热系统是原则性热力系统最基本的组成部分,采用抽汽加热锅炉给水的目的在于减少冷源损失,即避免了蒸汽的热量被循环冷却水带走,使蒸汽热量得到充分利用,热耗率下降;同时提高了给水温度,减少了锅炉受热面的传热温差,从而减少了给水加热过程的不可逆损失。
综合以上原因,抽汽回热系统提高了循环热效率,因此抽汽回热系统的正常投运对提高机组的热经济性具有决定性的影响。
理论上抽汽回热的级数越多,汽轮机的热循环过程就越接近卡诺循环,汽热循环效率就越高。
但回热抽汽的级数受投资和场地的制约,不可能设置的很多,而随着级数的增加,热效率的相对增长随之减少,相对得益不多,因此,600MW机组的加热级数一般为7~8级。
给水回热总加热量在各级中的分配是在一定的给水温度和一定级数的条件下,使循环热效率最高为原则,由此对应的各级抽汽回热参数,即为最有利分配的参数,抽汽参数的安排应当是:高品味(高焓、低熵)处的蒸汽少抽,而低品味(低焓、高熵)处的蒸汽则尽可能多抽。
确定了分配方式,也就确定了汽轮机的抽汽点,通常,用于高压加热器和除氧器的抽汽由高、中压缸或它们的排汽管引出,而用于低压加热器的抽汽由低压缸引出。
对于加热器的性能要求,可归结为尽可能地缩小进入加热器的蒸汽饱和温度与加热器出口给水(凝结水)温度之间的差值,我们称之为给水(凝结水)端差,为实现这一目的,目前主要通过两种途径。
一种途径是采用混合式加热器,从汽轮机抽来的蒸汽在加热器内和进入加热器的给水(凝结水)直接混合,蒸汽凝结成水,其汽化潜热释放到水中,压力温度相同,端差为0,但这种方式需设置水泵为给水(凝结水)提供压力,使其与相应段的抽汽压力一致,这就会消耗一定的能源,除氧器即是一种混合式加热器。
汽机技术抽汽系统知识讲解1.回热循环的意义回热循环:把汽轮机中部分作过功的蒸汽抽出,送入加热器中加热凝结水和给水,这种循环叫回热循环。
回热循环的意义是:一方面从汽轮机中间抽出一部分蒸汽加热给水提高给水温度减少给水在锅炉中的吸热量;另一方面抽出的蒸汽不在排汽装置中凝结放热,减少了冷源损失。
我厂七段非调整抽汽系统,高压级后#1高加,高压11级后(高排汽)#2高加、轴封供汽辅助蒸汽,中压级后#3高加,中压8级后(中排汽)除氧器,低压级后#5低加,低压级后#6低加,低压级后#7低加。
2、各工况时各级抽汽参数汽轮机THA性能验收工况时各级抽汽参数抽汽级数流量kg/h压力MPa(a)温度。
C第一级(至1号高力口)981046.03352.5第二级(至2号高加)1672324.421312.7第二级(至厂用汽)///第三级(至3号高力口)740301.986459.1第四级(至除氧器)931670.991362.4第四级(至厂用汽)1/1第五级(至5号低力口)955840.405256.1第五级(至厂用汽)///第六级(至6号低加)612180.122135.7第七级(至7号低力口)591170.04780.53、各工况定义:本工程工况定义采用正C60045-1标准。
以IEC60045-1标准定义铭牌功率时,汽轮机各工况定义如下:一、铭牌功率(额定、最大连续功率)工况(TMCR)汽轮发电机组能在下列规定条件下,在保证寿命期内任何时间都能安全连续运行,发电机输出额定功率660MW(当采用静态励磁和/或采用不与汽机同轴的电动主油泵时,扣除各项所消耗的功率),此工况称为额定出力工况,此工况下的进汽量称为额定进汽量,是机组额定、最大连续出力保证值的验收工况。
其条件如下:1)额定主蒸汽参数、再热蒸汽参数及所规定的汽水品质;2)汽轮机低压缸排汽背压为:13kPa(a);(平均背压)3)补给水量为:1.5%;4)所规定的最终给水温度:约275.5o C;5)全部回热系统正常运行,但不带厂用辅助蒸汽;6)电动给水泵正常运行,满足额定给水参数;7)空冷系统满足设计负荷;8)在额定电压、额定频率、额定功率因数0.9(滞后)、额定氢压、发电机效率为99%o二、热耗率验收工况(THA)当机组功率(当采用静态励磁、和/或采用不与汽机同轴的电动主油泵时,扣除各项所消耗的功率)为铭牌功率660MW,除补水率为0%以外其它条件同(TMCR)时称为机组的热耗率验收(THA)工况,此工况为热耗率保证值的验收工况。
汽轮机TSI、DEH、ETS系统介绍汽轮机TSI、DEH、ETS系统介绍1: TSI系统介绍1.1 TSI系统概述TSI(Turbine Supervisory Instrumentation)系统,又称为汽轮机监控系统,是用于对汽轮机性能进行监测和控制的关键系统。
它通过对汽轮机的各项性能参数进行实时监测和分析,确保汽轮机的运行安全稳定,并及时发现并修复潜在的故障。
1.2 TSI系统功能- 实时监测汽轮机的振动、温度、压力等关键参数;- 分析并预测汽轮机的运行状态,并给出相应的报警和建议;- 调整汽轮机的控制参数,以优化汽轮机的性能;- 存储和记录汽轮机的历史运行数据,方便后续分析和评估。
1.3 TSI系统组成TSI系统由传感器、数据采集设备、监控软件和人机界面等多个组件组成。
其中传感器用于对汽轮机各项参数进行实时监测,数据采集设备用于将传感器采集到的数据传输给监控软件,监控软件用于分析和处理数据,并通过人机界面向操作人员提供有关汽轮机状态的信息。
2: DEH系统介绍2.1 DEH系统概述DEH(Digital Electro-Hydraulic)系统,即数字电液系统,是一种用于汽轮机控制的先进技术。
它通过传感器采集汽轮机的各项参数,并根据这些参数通过数字信号控制液压装置,从而实现对汽轮机的精确控制。
2.2 DEH系统功能- 实时监测汽轮机的转速、压力、温度等参数,并将其进行数字化处理;- 根据监测结果自动调节液压装置,控制汽轮机的转速、负荷和压力等;- 对汽轮机的运行状态进行模拟和优化,并给出相应的报警和建议;- 存储和记录汽轮机的控制参数和历史运行数据,方便后续分析和评估。
2.3 DEH系统组成DEH系统由传感器、控制器、液压装置和人机界面等多个组件组成。
其中传感器用于对汽轮机各项参数进行实时监测,控制器用于数字化处理监测数据并根据算法控制液压装置,液压装置用于实现对汽轮机的精确控制,人机界面用于向操作人员提供有关汽轮机控制的信息和操作界面。