江苏高二数学练习(含答案)
- 格式:doc
- 大小:212.00 KB
- 文档页数:4
2023-2024学年江苏省常州市高二(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A 72−C 75=( )A .63B .10C .21D .02.用最小二乘法得到一组数据(x ,y )(i =1,2,3,4,5,6)的线性回归方程为y =2x +3,若∑ 6i=1x i =30,则∑ 6i=1y i =( ) A .11B .13C .63D .783.方程x 22+k +y 28−k =1表示焦点在y 轴上的椭圆,则实数k 的取值范围为( )A .k >﹣2B .k <8C .﹣2<k <8D .﹣2<k <34.若双曲线E :x 29−y 216=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=7,则|PF 2|等于( ) A .1B .13C .1或13D .155.定义:“各位数字之和为8的三位数叫幸运数”,比如116,431,则所有幸运数的个数为( ) A .21B .35C .36D .456.已知正项等比数列{a n }的前n 项和为S n ,若S 6=6,则8S 3+S 9的最小值为( ) A .18B .24√2C .30D .337.已知圆M :x 2+y 2+4x =0和圆N :x 2+y 2﹣4y ﹣12=0相交于A ,B 两点,点P 是圆M 上任意一点,则|PA →+PB →|的取值范围是( ) A .[2√2,4+√2] B .[4−√2,4+√2]C .[4−√2,2√2]D .[4−2√2,4+2√2]8.经过双曲线C :x 212−y 2b2=1(b >0)的右焦点F 作该双曲线的一条渐近线的垂线l ,垂足为M ,且l 交另一条渐近线于点N ,若3FN →=5MF →,则b 的值为( ) A .2√6B .4C .2D .√3二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.点A (﹣2,1),B (a ,1﹣a ),过A ,B 的直线为l ,下列说法正确的有( )A .若a =1,则直线l 的方程为x +3y ﹣1=0B .若a =﹣1,则直线l 的倾斜角为π4C .任意实数a ,都有|AB|≥√3D .存在两个不同的实数a ,能使直线l 在x ,y 轴上的截距互为相反数 10.甲、乙、丙等6人排成一列,下列说法正确的有( ) A .若甲和乙相邻,共有240种排法 B .若甲不排第一个共有480种排法C .若甲与丙不相邻,共有480种排法D .若甲在乙的前面,共有360种排法11.已知直线l :mx ﹣y ﹣m =0(m ∈R )与圆O :x 2+y 2=r 2(r >0)交于A ,B 两点,点Q 为线段AB 的中点,且点T 的坐标为(3,0).当m =1时,|AB|=√14,则( ) A .r =2B .|AB |的最小值为2√3C .存在点A ,使∠ATO =45°D .存在m ,使QO →⋅QT →=−5412.在等比数列{a n }中,a 2>0,a 1+a 2<0,T n 为数列{a n }的前n 项积,下列说法正确的有( ) A .﹣1<q <0 B .a 10+a 11<0C .若(a 10﹣1)(a 12﹣1)<0,则T n 的最大项为T 11D .若(a 9+1)(a 11+1)<0,则T n 的最小项为T 10 三、填空题:本题共4小题,每小题5分,共20分.13.(x 2﹣y )6的展开式中,各项系数的绝对值之和为 .14.已知等差数列{a n }的公差不为0,其前n 项和为S n ,且S 1,S 2,S 4成等比数列,则a 3+a 4a 1+a 2= .15.在平面直角坐标系xOy 中,A ,B 为抛物线C :y 2=4x 上两个不同的点,F 为抛物线的焦点,若AF →=3FB →,则△OAB 的面积为 . 16.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为e ,点T (b ,0),若椭圆C 上存在四个不同的点到点T 的距离相等,则e 2的取值范围为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)杭州第19届亚运会,是继1990年北京亚运会、2010年广州亚运会之后,中国第三次举办亚洲最高规格的国际综合性体育赛事.中国体育代表团获得201金111银71铜,共383枚奖牌,取得亚运会参赛历史最好成绩.亚运会结束后,某调查小组为了解杭州市不同年龄段的市民每日运动的情况,在市民中随机抽取了200人进行调查,结果如下表所示,其中每日平均运动低于1万步的人数占样本总数的2,40岁以上(含40岁)的人数占样本总数的1.(1)将题中表格补充完整(填写在答题卡上);(2)判断是否有99.9%的把握认为该市市民每日平均运动的步数与年龄有关. 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),其中n =a +b +c +d .18.(12分)设S n 是正项数列{a n }的前n 项和,且a 1=1,S n +S n−1−2a n=0(n ∈N ∗,n ≥2). (1)求证;数列{S n 2}是等差数列;(2)求数列{a n }的通项公式. 19.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为(1,0),点A(−1,32)在C 上.(1)求C 的方程;(2)斜率为1的直线l 与C 交于M ,N 两点,线段MN 的中点为P ,求点P 的横坐标的取值范围. 20.(12分)已知f(x)=(x 2+2x +3)8=a 0+a 1(x +1)+a 2(x +1)2+⋯+a 16(x +1)16. (1)求a n (n =0,1,2,…,16)的最大值; (2)求f (5)﹣5被13除的余数.21.(12分)已知等差数列{a n }满足a 3+a 4=12,a 5+a 7=22,数列{b n }满足b 1=3,且b n +1=2b n ﹣n +1. (1)证明:{b n ﹣n }是等比数列,并求数列{a n }和{b n }的通项公式;(2)将数列{a n }和{b n }的公共项从小到大排成的数列记为{c n },求{(﹣1)n c n }的前2n 项和S 2n . 22.(12分)已知抛物线C :y 2=4x 的焦点为F ,过点Q (﹣1,0)的直线l (斜率为正数)与C 由左至右交于A ,B 两点,连结BF 并延长交C 于点D . (1)证明:∠BQF =∠DQF ;(2)当△BDQ 的内切圆半径r ∈[12,23]时,求|QA |•|QB |的取值范围.2023-2024学年江苏省常州市高二(上)期末数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A 72−C 75=( )A .63B .10C .21D .0解:A 72−C 75=A 72−C 72=7×6−7×62=21. 故选:C .2.用最小二乘法得到一组数据(x ,y )(i =1,2,3,4,5,6)的线性回归方程为y =2x +3,若∑ 6i=1x i =30,则∑ 6i=1y i =( ) A .11B .13C .63D .78解:∵∑ 6i=1x i =30,∴x =16×30=5, ∵线性回归方程y =2x +3一定过点(x ,y ), ∴y =2x +3=2×5+3=13, ∴∑ 6i=1y i =6×13=78. 故选:D .3.方程x 22+k +y 28−k =1表示焦点在y 轴上的椭圆,则实数k 的取值范围为( )A .k >﹣2B .k <8C .﹣2<k <8D .﹣2<k <3解:∵方程x 22+k +y 28−k=1表示焦点在y 轴上的椭圆,∴8﹣k >2+k >0, ∴﹣2<k <3,∴实数k 的取值范围是(﹣2,3). 故选:D .4.若双曲线E :x 29−y 216=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=7,则|PF 2|等于( ) A .1B .13C .1或13D .15解:双曲线E :x 29−y 216=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=7,a =3,b =4,c =5.点P 在双曲线E 左支上. 则|PF 2|=2a +|PF 1|=6+7=13. 故选:B .5.定义:“各位数字之和为8的三位数叫幸运数”,比如116,431,则所有幸运数的个数为( ) A .21B .35C .36D .45解:按百位数字分类讨论:①百位数字为1时,后两位相加为7,有8种; ②百位数字为2时,后两位相加为6,有7种; ③百位数字为3时,后两位相加为5,有6种; ④百位数字为4时,后两位相加为4,有5种; ⑤百位数字为5时,后两位相加为3,有4种; ⑥百位数字为6时,后两位相加为2,有3种; ⑦百位数字为7时,后两位相加为1,有2种; ⑧百位数字为8时,后两位相加为0,有1种, 故共有8+7+6+5+4+3+2+1=36种. 故选:C .6.已知正项等比数列{a n }的前n 项和为S n ,若S 6=6,则8S 3+S 9的最小值为( ) A .18B .24√2C .30D .33解:正项等比数列{a n }中,S 6=6, 又S 3,S 6﹣S 3,S 9﹣S 6成等比数列, 所以(6﹣S 3)2=S 3(S 9﹣6),整理得,S 9=36S 3+S 3﹣6,S 3>0, 则8S 3+S 9=36S 3+9S 3﹣6≥2√36S 3⋅9S 3−6=30,当且仅当36S 3=9S 3,即S 3=2时取等号. 故选:C .7.已知圆M :x 2+y 2+4x =0和圆N :x 2+y 2﹣4y ﹣12=0相交于A ,B 两点,点P 是圆M 上任意一点,则|PA →+PB →|的取值范围是( ) A .[2√2,4+√2] B .[4−√2,4+√2]C .[4−√2,2√2]D .[4−2√2,4+2√2]解:根据题意,圆M :x 2+y 2+4x =0和圆N :x 2+y 2﹣4y ﹣12=0相交于A ,B 两点, 联立两圆的方程有{x 2+y 2+4x =0x 2+y 2−4y −12=0,两式相减可得:4x +4y +12=0,变形可得x +y +3=0, 即AB 所在直线的方程为x +y +3=0; 设AB 的中点为C ,易得MC ⊥AB ,圆M :x 2+y 2+4x =0,即(x +2)2+y 2=4,其圆心M 为(﹣2,0),半径为2, M 到直线AB 的距离d =|MC |=|−2+3|√1+1=√22, C 为AB 的中点,由平行四边形法则,有PA →+PB →=2PC →,则有|PA →+PB →|=2|PC →|, P 为圆M 上任意一点,则|PC →|的最小值为r ﹣|MC |=2−√22,最大值为r +|MC |=2+√22,故|PA →+PB →|的取值范围是[4−√2,4+√2]. 故选:B .8.经过双曲线C :x 212−y 2b2=1(b >0)的右焦点F 作该双曲线的一条渐近线的垂线l ,垂足为M ,且l 交另一条渐近线于点N ,若3FN →=5MF →,则b 的值为( ) A .2√6B .4C .2D .√3解:根据题意可得F (c ,0),点F (c ,0)到直线y =ba x 的距离|MF |=√b +(−a)=bcc=b ,因为3FN →=5MF →,所以|FN →|=53|MF →|=53b ,过点F 作FH ⊥ON ,垂足为H ,则|FH |=b ,则tan ∠FNO =b√(53b)2−b2=34=ab+53b, 从而b a =12=2√3,所以b =√3.故选:D .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.点A (﹣2,1),B (a ,1﹣a ),过A ,B 的直线为l ,下列说法正确的有( ) A .若a =1,则直线l 的方程为x +3y ﹣1=0B .若a =﹣1,则直线l 的倾斜角为π4C .任意实数a ,都有|AB|≥√3D .存在两个不同的实数a ,能使直线l 在x ,y 轴上的截距互为相反数 解:当a =1时,点B 的坐标为(1,0),直线的斜率k =0−11+2=−13, 所以直线方程为y =−13(x −1)即x +3y ﹣1=0,所以A 正确;当a =﹣1时,点B 的坐标为(﹣1,2),直线的斜率k =2−1−1+2=1, 所以直线倾斜角为π4,所以B 正确.|AB |=√(a +2)2+(1−a −1)2=√2a 2+4a +4,当a =﹣1时,|AB |取得最小值√2,所以任意实数a ,都有|AB|≥√2,所以C 错误; 直线的方程为y−1x+2=1−a−1a+2,即y =−aa+2(x +2)+1,在x 轴上的截距为2−a a,在y 轴上的截距为2−a a+2,若2−a a+2−a a+2=0,则a =﹣1或a =2,所以存在两个不同的实数a 使直线l 在x ,y 轴上的截距互为相反数,所以D 正确. 故选:ABD .10.甲、乙、丙等6人排成一列,下列说法正确的有( ) A .若甲和乙相邻,共有240种排法 B .若甲不排第一个共有480种排法C .若甲与丙不相邻,共有480种排法D .若甲在乙的前面,共有360种排法解:对于A ,若甲和乙相邻,共有A 22⋅A 55=240种排法,故A 正确;对于B ,若甲不排第一个,共有A 51⋅A 55=600种排法,故B 错误; 对于C ,若甲与丙不相邻,共有A 44⋅A 52=480种排法,故C 正确;对于D ,若甲在乙的前面,共有A 66A 22=360种排法,故D 正确.故选:ACD .11.已知直线l :mx ﹣y ﹣m =0(m ∈R )与圆O :x 2+y 2=r 2(r >0)交于A ,B 两点,点Q 为线段AB 的中点,且点T 的坐标为(3,0).当m =1时,|AB|=√14,则( ) A .r =2B .|AB |的最小值为2√3C .存在点A ,使∠ATO =45°D .存在m ,使QO →⋅QT →=−54解:当m =1时,直线l :x ﹣y ﹣1=0,点O 到直线l 的距离为d =|−1|√1+(−1)2=√22,所以|AB |=2√r 2−d 2=2√r 2−12=√14,解得r =2,故A 正确; 直线l :mx ﹣y ﹣m =0过定点(1,0),圆O 的方程为x 2+y 2=4,当点(1,0)为AB 的中点时,|AB |最小,最小值为2√4−1=2√3,故B 正确; 设∠ATO =α,当TA 与圆O 相切时,∠ATO 最大,此时sin α=23<√22,所以∠ATO <45°,故C 错误;设Q (x ,y ),因为点Q 为线段AB 的中点,所以OQ ⊥AB ,所以Q 的轨迹是以(12,0)为圆心,12为半径的圆,所以点Q 的轨迹方程为(x −12)2+y 2=14,由QO →⋅QT →=−54,得x (x ﹣3)+y 2=54,即(x −32)2+y 2=72,而√142−1<32−12<√142+1, 所以圆(x −12)2+y 2=14与圆(x −32)2+y 2=72相交,所以存在m ,使QO →⋅QT →=−54,故D 正确.故选:ABD .12.在等比数列{a n }中,a 2>0,a 1+a 2<0,T n 为数列{a n }的前n 项积,下列说法正确的有( ) A .﹣1<q <0 B .a 10+a 11<0C .若(a 10﹣1)(a 12﹣1)<0,则T n 的最大项为T 11D .若(a 9+1)(a 11+1)<0,则T n 的最小项为T 10 解:根据题意,依次分析选项:对于A ,等比数列{a n }中,a 2>0,a 1+a 2<0,即a 1<﹣a 2<0,变形可得0<a 2<﹣a 1, 所以q =a 2a 1>−1,且q <0,即﹣1<q <0,A 正确; 对于B ,由题意得,a 10+a 11=a 10(1+q )>0,B 错误;对于C ,若(a 10﹣1)(a 12﹣1)<0,则0<a 12<1<a 10,a 11<0, 则T 10<0,T 11>0,T 12>0,T 12=T 11•a 12<T 11, T n 的最大项为T 11,C 正确;对于D ,若(a 9+1)(a 11+1)<0,则a 9<﹣1<a 11<0,又由﹣1<q <0,a 1<0,则等比数列{a n }奇数项为负,偶数项为正, 则有a 1<a 3<……a 9<﹣1, 则T 9<0,T 10<0,T 11>0,但T 9﹣T 10=T 9(1﹣a 10),不能确定1﹣a 10的符号,则T n 的最小项不一定是T 10,D 错误. 故选:AC .三、填空题:本题共4小题,每小题5分,共20分.13.(x 2﹣y )6的展开式中,各项系数的绝对值之和为 64 .解:二项式的展开式T r+1=C 6r ⋅(−1)r ⋅x 12−2r ⋅y r ,令x =1,y =﹣1,故各项系数的绝对值之和26=64. 故答案为:64.14.已知等差数列{a n }的公差不为0,其前n 项和为S n ,且S 1,S 2,S 4成等比数列,则a 3+a 4a 1+a 2= 3 .解:设等差数列{a n }的公差为d ,由S 1,S 2,S 4成等比数列,且S 1=a 1,S 2=2a 1+d ,S 4=4a 1+6d ,得(2a 1+d)2=a 1(4a 1+6d), ∵d ≠0,∴d =2a 1, ∴a 3+a 4a 1+a 2=2a 1+5d 2a 1+d=6d 2d=3.故答案为:3.15.在平面直角坐标系xOy 中,A ,B 为抛物线C :y 2=4x 上两个不同的点,F 为抛物线的焦点,若AF →=3FB →,则△OAB 的面积为4√33.解:因为抛物线C :y 2=4x ,则F (1,0), 又AF →=3FB →,可得A ,F ,B 三点的共线,设直线AB 为:x =my +1,代入y 2=4x ,可得y 2﹣4my ﹣4=0, 设A (x 1,y 1),B (x 2,y 2),故y 1+y 2=4m ,y 1y 2=﹣4, 由AF →=3FB →,可得(1﹣x 1,﹣y 1)=3(x 2﹣1,y 2),求得﹣y 1=3y 2,故y 1=6m ,y 2=﹣2m ,可得﹣12m 2=﹣4,求得m 2=13,故|y 1﹣y 2|=|8m |=8√33.则△OAB 的面积为:12×|OF |×|y 1﹣y 2|=4√33. 故答案为:4√33. 16.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为e ,点T (b ,0),若椭圆C 上存在四个不同的点到点T 的距离相等,则e 2的取值范围为 (√5−12,1) . 解:由椭圆C 上存在四个不同的点到点T 的距离相等, 可得在直线x =b 的右侧有两个点满足题意,设P (x 0,y 0),则y 02=b 2−b 2a2x 02,则|TP |=√(x 0−b)2+y 02=√c2a2x 02−2bx 0+2b 2,﹣a ≤x 0≤a ,可得﹣a <−−2b2c 2a 2<a ,化为﹣c 2<ab <c 2,即为c 4>a 2(a 2﹣c 2),化为e 4+e 2﹣1>0,解得e 2>√5−12,又e 2<1,可得√5−12<e 2<1. 故答案为:(√5−12,1).四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)杭州第19届亚运会,是继1990年北京亚运会、2010年广州亚运会之后,中国第三次举办亚洲最高规格的国际综合性体育赛事.中国体育代表团获得201金111银71铜,共383枚奖牌,取得亚运会参赛历史最好成绩.亚运会结束后,某调查小组为了解杭州市不同年龄段的市民每日运动的情况,在市民中随机抽取了200人进行调查,结果如下表所示,其中每日平均运动低于1万步的人数占样本总数的2,40岁以上(含40岁)的人数占样本总数的1.(1)将题中表格补充完整(填写在答题卡上);(2)判断是否有99.9%的把握认为该市市民每日平均运动的步数与年龄有关. 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),其中n =a +b +c +d .解:(1)由题意可知,40岁以上(含40岁)的人数为200×12=100,40岁以下的人数为100, 每日平均运动低于1万步的人数为200×25=80, 所以2×2列联表如下:(2)由2×2列联表可得,K 2=200×(80×60−40×20)2120×80×100×100=1003>10.828,所以有99.9%的把握认为该市市民每日平均运动的步数与年龄有关. 18.(12分)设S n 是正项数列{a n }的前n 项和,且a 1=1,S n +S n−1−2a n=0(n ∈N ∗,n ≥2). (1)求证;数列{S n 2}是等差数列;(2)求数列{a n }的通项公式. (1)证明:因为S n +S n−1−2a n=0, 所以S n 2−S n−12=(S n −S n−1)(S n +S n−1)=(S n −S n−1)2a n=2, 所以S n 2−S n−12=2 (常数).所以{S n 2} 是以1为首项,2为公差的等差数列. (2)解:S n 2=1+2(n −1)=2n −1,且a n >0,所以S n =√2n −1,当n ≥2时,S n−1=√2n −3, a n =S n −S n−1=√2n −1−√2n −3. n =1时,a 1=1不满足上式,所以a n ={1,n =1√2n −1−√2n −3,n ≥2.19.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为(1,0),点A(−1,32)在C 上.(1)求C 的方程;(2)斜率为1的直线l 与C 交于M ,N 两点,线段MN 的中点为P ,求点P 的横坐标的取值范围. 解:(1)易知椭圆C 的左右焦点分别为F 1(﹣1,0),F 2(1,0), 因为点A(−1,32)在C 上,所以AF 1+AF 2=2a =4,解得a =2, 则b =√a 2−c 2=√3, 故C 的方程为x 24+y 23=1;(2)不妨设直线l 的方程为y =x +m ,M (x 1,y 1),N (x 2,y 2),P (x 0,y 0), 联立{y =x +mx 24+y 23=1,消去y 并整理得7x 2+8mx +4m 2﹣12=0,此时Δ=(8m )2﹣4×7×(4m 2﹣12)=48(7﹣m 2)>0, 解得−√7<m <√7, 由韦达定理得x 1+x 2=−8m 7,x 1x 2=4m 2−127, 因为线段MN 的中点为P ,所以x 0=x 1+x 22=−47m ,此时−47√7<x 0<47√7, 故点P 的横坐标的取值范围为(−47√7,47√7).20.(12分)已知f(x)=(x 2+2x +3)8=a 0+a 1(x +1)+a 2(x +1)2+⋯+a 16(x +1)16. (1)求a n (n =0,1,2,…,16)的最大值; (2)求f (5)﹣5被13除的余数.解:(1)因为(x 2+2x +3)8=[2+(x +1)2]8=a 0+a 1(x +1)+a 2(x +1)2+⋯+a 16(x +1)16,所以T r+1=C 8r 28−r [(x +1)2]r =C 8r 28−r(x +1)2r ,r =0,1,2,⋯,8, 所以a 1=a 3=⋯=a 15=0,a 2n =C 8n 28−n ,n =0,1,2, (8)令 C 8n 28−n ≥C 8n+127−n,则2≤n ≤3,所以a n 的最大值为1792.(2)因为f(5)−5=388−5=(39−1)8−5=C 80398+C 81397(−1)+⋯+C 8739(−1)7+1−5,所以f (5)﹣5 被13除的余数,即为﹣4被13除的余数为9.21.(12分)已知等差数列{a n }满足a 3+a 4=12,a 5+a 7=22,数列{b n }满足b 1=3,且b n +1=2b n ﹣n +1. (1)证明:{b n ﹣n }是等比数列,并求数列{a n }和{b n }的通项公式;(2)将数列{a n }和{b n }的公共项从小到大排成的数列记为{c n },求{(﹣1)n c n }的前2n 项和S 2n . 解:(1)由a 3+a 4=12,a 5+a 7=22,可得{a 1+2d +a 1+3d =12a 1+4d +a 1+6d =22,解得a 1=1,d =2,所以a n =2n ﹣1.根据b n +1=2b n ﹣n +1,整理得b n +1﹣(n +1)=2(b n ﹣n ), 因为b 1﹣1=2≠0,可知b n ﹣n ≠0,所以b n+1−(n+1)b n −n=2(常数),所以{b n ﹣n }是公比为2的等比数列,首项为b 1﹣1=2,可得b n ﹣n =2×2n ﹣1=2n ,即b n =2n +n . (2)根据(1)的结论,可知:c n =b 2n−1=22n−1+(2n −1),则S 2n =﹣c 1+c 2﹣c 3+c 4+⋯﹣c 2n ﹣1+c 2n =﹣(2+1)+(23+3)﹣(25+5)+⋯﹣(24n ﹣3+4n ﹣3)+(24n﹣1+4n ﹣1)=(﹣2+23﹣25+27+…﹣24n ﹣3+24n ﹣1)+[﹣1+3﹣5+7+…﹣(4n ﹣3)+(4n ﹣1)] =−2−24n−1×(−4)1−(−4)+[(−1+3)+(−5+7)+⋯+(−4n +3+4n −1)]=24n+1−25+2n .22.(12分)已知抛物线C :y 2=4x 的焦点为F ,过点Q (﹣1,0)的直线l (斜率为正数)与C 由左至右交于A ,B 两点,连结BF 并延长交C 于点D . (1)证明:∠BQF =∠DQF ;(2)当△BDQ 的内切圆半径r ∈[12,23]时,求|QA |•|QB |的取值范围.(1)证明:设BF :x =ny +1,A (x 1,y 1),B (x 2,y 2),D (x 3,y 3),y 2>y 1, 由 {x =nyy 2=4x,得y 2﹣4ny ﹣4=0,y 2+y 3=4n ,k BQ +k DQ =y 2x 2+1+y 3x 3+1=y 2ny 2+2+y 3ny 3+2=2ny 2y 3+2(y 2+y 3)(ny 2+2)(ny 3+2)=2n(−4)+2(4n)(ny 2+2)(ny 3+2)=0,所以∠BQF =∠DQF .(2)解:过B 作BB ′垂直抛物线的准线于B ′,设直线l 的倾斜角为θ,如图:由(1)可知:△BDQ 的内切圆圆心在x 轴上,所以设圆心M (a ,0),﹣1<a <1,设直线l :x =my ﹣1(m >0), 由{x =my −1y 2=4x,得y 2﹣4my +4=0,则Δ>0⇒m 2>1⇒m >1,y 2+y 1=4m ,y 1y 2=4, 因为△BDQ 的内切圆为圆M ,所以|QM||FM|=|BQ||BF|=|BQ||BB′|=1cosθ=√1+m 2m,即a+11−a=√1+m 2m,又点M 到直线l 的距离为r =|a+1|√1+m ,所以√m 2+1=1−a m=r ,所以a =r 24,所以m =1−a r =1−r 24r =1r −r4,因为y =1r −r 4 在 r ∈[12,23] 上单调减,所以m ∈[43,158], 所以|QA|⋅|QB|=(√1+m 2⋅y 1)(√1+m 2⋅y 2)=(1+m 2)y 1y 2=4(1+m 2)∈[1009,28916|.。
江苏高二高中数学期末考试班级:___________ 姓名:___________ 分数:___________一、填空题1.六个数5,7,7,8,10,11的方差是_______.2.已知复数(是虚数单位),则=_______.3.命题“”的否定是____________.4.某工厂生产三种不同型号的产品,产品的数量之比依次为,现用分层抽样的方法抽出样本容量为的样本,样本中型产品有16件,则样本容量n为 .5.已知集合,,则________.6.如果执行下面的程序框图,那么输出的______.7.如图,运行伪代码所示的程序,则输出的结果是________.8.已知一个质点在腰长为4的等腰直角三角形内随机运动,则某时刻该质点距离三角形的三个顶点的距离均超过1的概率为_____9.口袋中有若干红球、黄球与蓝球,摸出红球的概率为0.45,摸出红球或黄球的概率为0.65,则摸出红球或蓝球的概率为___.10.观察下列等式:,,,,……猜想:_____().11.已知条件条件且是的充分不必要条件,则a的取值范围可以是______.12.已知正数满足,则的最小值为______.13.点P是曲线上任意一点,则点P到直线的距离的最小值是14.已知奇函数是上的单调函数,若函数只有一个零点,则实数k的值是.二、解答题1.已知复数满足 (为虚数单位),复数的虚部为2,且是实数.(1)求及;(2)求及.2.从参加数学竞赛的学生中抽出20名学生,将其成绩(均为整数)整理后画出的频率分布直方图如图所示.观察图形,回答下列问题:(1)这一组的频率和频数分别为多少?(2)估计该次数学竞赛的及格率(60分及以上为及格);(3)若从第一组和第三组的所有学生中随机抽取两人,求他们的成绩相差不超过10分的概率.3.设命题:;命题:函数的定义域为R.(1)若且是真命题,求实数的取值范围;(2)若或是真命题,且是假命题,求实数的取值范围.4.若二次函数满足,且.(1)求的解析式;(2)若在区间[-1,1]上,不等式恒成立,求实数的取值范围;(3)解关于的不等式.5.在某次水下考古活动中,需要潜水员潜入水深为30米的水底进行作业.其用氧量包含3个方面:①下潜时,平均速度为(米/单位时间),单位时间内用氧量为 ;②在水底作业需5个单位时间,每个单位时间用氧量为0.4;③返回水面时,平均速度为(米/单位时间), 单位时间用氧量为0.2.记该潜水员在此次考古活动中,总用氧量为.(1)将表示为的函数;(2)试确定下潜速度,使总的用氧量最少.6.已知函数,,,其中,且.⑴当时,求函数的最大值;⑵求函数的单调区间;⑶设函数若对任意给定的非零实数,存在非零实数(),使得成立,求实数的取值范围.7.(矩阵与变换)若点在矩阵的变换下分别得到点.(Ⅰ)求矩阵;(Ⅱ)若曲线C在的作用下的新曲线为,求曲线C的方程.8.(坐标系与参数方程)求直线()被曲线所截的弦长。
高二上学期期末数学试题一、单选题1.在等比数列中,,公比,则( ) {}n a 13a =2q =4a =A .24 B .48 C .54 D .66【答案】A【分析】根据等比数列通项公式基本量计算出答案.【详解】.33413224a a q ==⨯=故选:A2.曲线处的切线与直线平行,则实数( ) y =()1,1y kx =k =A . B .C .D .12-12-12【答案】C【分析】根据导数的几何意义求解.【详解】时,,所以. y '=1x =12y ¢=12k =故选:C .3.已知平面的一个法向量,平面的一个法向量,若,则α()13,0,n λ= β()22,1,6n =αβ⊥λ=( )A .B .4C .D .1921-【答案】C【分析】根据题意,由面面垂直可得法向量也相互垂直,结合空间向量的坐标运算,代入计算即可得到结果.【详解】因为,则可得,αβ⊥12n n ⊥且,, ()13,0,n λ= ()22,1,6n =则可得,解得 660λ+=1λ=-故选:C4.若直线与圆相切,则实数取值的集合为( )340x y m ++=2220x y y +-=mA .B .C .D .{}1,1-{}9,1-{}1{}8,2-【答案】B【分析】根据题意,由直线与圆相切可得,结合点到直线的距离公式,代入计算,即可得到d r =结果.【详解】由圆可得,表示圆心为,半径为的圆,2220x y y +-=()2211x y +-=()0,11则圆心到直线的距离340x y m ++=d 因为直线与圆相切,340x y m ++=2220x y y +-=所以,解得或,d r =11m =9m =-即实数取值的集合为 m {}9,1-故选:B5.已知,则n =( )22A C 30n n +=A .3B .4C .5D .6【答案】C【分析】利用排列数、组合数公式得到,解方程即得解. ()31302n n -=【详解】解:,整理得, ()()()22131A C 13022n nn n n n n n --+=-+==2200n n --=解得(舍),. n =-45n =故选:C .6.函数的图象如图所示,则函数的图象可能是y ()y ()f x f x ==,的导函数y ()f x =A .B .C .D .【答案】D【详解】原函数先减再增,再减再增,且位于增区间内,因此选D .0x =【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与轴的交点为,且图x 0x 象在两侧附近连续分布于轴上下方,则为原函数单调性的拐点,运用导数知识来讨论函数单0x x 0x 调性时,由导函数的正负,得出原函数的单调区间.'()f x ()f x 7.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有 ()A .12种 B .18种 C .24种 D .36种【答案】D【详解】4项工作分成3组,可得:=6,24C 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成, 可得:种. 36363A ⨯=故选D.8.已知数列首项为2,且,则( ){}n a 112n n n a a ++-=n a =A . B . C . D .2n 121n -+22n -122n +-【答案】D【分析】由已知的递推公式,利用累加法可求数列通项.【详解】由已知得,,则当时,有112n n n a a ++-=12a =2n ≥ ,12111221()()(222)n n n n n n n a a a a a a a a -----=-+-++-=+++()12121121222222222212n n n n n n n a a --+-=++++=++++==-- 经检验当时也符合该式.∴.1n =122n n a +=-故选:D二、多选题9.下列四个选项中,不正确的是( ) A .数列,的一个通项公式是 2345,,,3456⋯1n n a n =+B .数列的图象是一群孤立的点C .数列1,,1,,与数列,1,,1,是同一数列1-1-⋯1-1-⋯D .数列,,是递增数列11,24⋯12n 【答案】ACD【分析】由可判断A ;由数列的通项公式以及可判断B ;由数列定义可判断C ; 11223a =≠N*n ∈由递减数列定义可判断D . 【详解】对于A ,当通项公式为时,,不符合题意,故选项A 错误;1n n a n =+11223a =≠对于B ,由数列的通项公式以及可知,数列的图象是一群孤立的点,故选项B 正确; N*n ∈对于C ,由于两个数列中的数排列的次序不同,因此不是同一数列,故选项C 错误;对于D ,数列,,是递减数列,故选项D 错误.11,24⋯12n 故选:ACD .10.下列结论中正确的有( ) A .若,则B .若,则 sin3y π=0y '=2()3(1)f x x f x =-'(1)3f '=C .若,则D .若,则y x =1y ='+sin cos y x x =+cos sin y x x +'=【答案】ABC【解析】根据常见的基本初等函数的导数公式和常用的导数运算法则求解即可.【详解】选项A 中,若,故A 正确; sin3y π==0y '=选项B 中,若,则, 2()3(1)f x x f x =-⋅'()6(1)f x x f '-'=令,则,解得,故B 正确; 1x =(1)6(1)f f ''=-(1)3f '=选项C 中,若,则,故C 正确;y x =+1y ='+选项D 中,若,则x ,故D 错误. sin cos y x x =+cos sin y x x '=-故选:ABC【点睛】1.常见的基本初等函数的导数公式 (1) (C 为常数); ()0C '=(2); ()1()nn x nx n '∈N -+=(3); ; ()sinx cosx '=()cosx sinx '=-(4);,且); ()xx e e '=()(0x x a a lna a '>=1a ≠(5); ,且). 1(ln )'=x x a a 1 (log )'=log e(a>0x x1a ≠2.常用的导数运算法则法则1: . ()()()()[]u x v x u x v x ±''±'=法则2:. ()()()()()()[]u x v x u x v x u x v x '''=+法则3: ()()()()()()()()22[](0)u x u x v x u x v x v x v x v x '''≠-=11.已知名同学排成一排,下列说法正确的是( ) 7A .甲不站两端,共有种排法 1656A A B .甲、乙必须相邻,共有种排法 5252A A C .甲、乙不相邻,共有种排法2555A A D .甲不排左端,乙不排右端,共有种排法7657652A A A -+【答案】AD【分析】A 选项通过特殊元素法判断;B 选项利用捆绑法判断;C 选项利用插空法判断;D 选项用总情况减去不满足的情况即可.【详解】A 选项:甲不站两端,甲有种,剩余6人全排,共有种排法,正确;15A 1656A A B 选项:甲、乙必须相邻,甲、乙捆绑有种,作为整体和剩余5人全排,共有种排法,错22A 2626A A 误;C 选项:甲、乙不相邻,先排其他5人有种,再把甲、乙插入6个空中,共有种排法,错55A 5256A A 误;D 选项:甲不排左端,乙不排右端,用7人全排减去甲在左端的和乙在右端的,再加上甲在左端同时乙在右端的,共有种排法,正确.7657652A A A -+故选:AD.12.如图,在四面体中,点在棱上,且满足,点,分别是线段,OABC M OA 2OM MA =N G BC的中点,则用向量,,表示向量中正确的为( )MN OA OB OCA .B .111344GN OA OB OC =-++111344OG OA OB OC =-+C . D .113232GM OA OB OC =++111344GM OA OB OC =--【答案】AD【分析】连接,利用空间向量基本定理以及空间向量的线性运算进行求解即可. ON 【详解】连接,ON因为点,分别是线段,的中点,N G BC MN 所以,111211()222322OG OM ON OA OB OC =+=⨯+⨯+ 化简可得,故B 错误;111344OG OA OB OC =++所以,故A 正确 1111111()()2344344GN ON OG OB OC OA OB OC OA OB OC =-=+-++=-++ ,故C 错误,D 正确;11121113443344GM GO OM OA OB OC OA OA OB OC =+=---+=--故选:.AD三、填空题13.已知,1,、,2,、,,,若向量与垂直为坐标原(2A 3)(4B -)x (1C x -2)OA OB + OC(O点),则等于__. x 【答案】4【分析】由向量垂直的坐标表示求解.【详解】,()()()2,1,3,4,2,,1,,2OA OB x OC x ==-=-,∴()2,3,3OA OB x +=-+向量与垂直,OA OB + OC,∴()·23260OA OB OC x x +=--++=.4x ∴=故答案为:4.四、双空题14.已知函数,则函数的单调递增区间是______,值域为______.()()212log 43f x x x =-+-【答案】[2,3)[0,)+∞【解析】令,求得函数的定义域,根据在其定义域内为单调减函2430t x x =-+->()12log f x t =数,求函数的单调递增区间转化为求函数在定义域内的减区间,再利用()()212log 43f x x x =-+-t 二次函数的值域求整个函数的值域.【详解】解:令,可得,故函数的定义域为. 2430t x x =-+->13x <<()1,3因为在其定义域内为单调减函数,()12log f x t =故求在定义域内的减区间,又函数在定义域内的减区间为,243t x x =-+-t [2,3)所以函数的单调递增区间为,()()212log 43f x x x =-+-[2,3)当时,,则,()1,3x ∈243(0,1]t x x =-+-∈()12log [0,)f x t =∈+∞即函数的值域为. ()()212log 43f x x x =-+-[0,)+∞故答案为:;.[2,3)[0,)+∞【点睛】本题主要考查复合函数的单调性,对数函数、二次函数的性质,体现了转化的数学思想,属于基本知识的考查.五、填空题15.求和:Sn =1+++1++++…+=________.1(12+11(1)24++1214181111(1)242n -+++⋯+【答案】2n +-2 112n -【分析】先化简数列,结合分组求和法即可求解. 1212k ka ⎛⎫=- ⎪⎝⎭【详解】被求和式的第k 项为:111111121211242212kk k k a -⎛⎫- ⎪⎛⎫⎝⎭=++++==- ⎪⎝⎭-所以Sn =2=22111(1)(1(1)222n -+-+⋯+-231111(2222n n ⎡⎤-+++⋯+⎢⎥⎣⎦ 111111222212212212n n n n n n -⎡⎤⎛⎫- ⎪⎢⎥⎡⎤⎛⎫⎝⎭⎢⎥=-=--=+- ⎪⎢⎥⎝⎭⎢⎥⎣⎦-⎢⎥⎣⎦故答案为:2n +-2. 112n -16.如图,圆形花坛分为部分,现在这部分种植花卉,要求每部分种植种,且相邻部分不能441种植同一种花卉,现有种不同的花卉供选择,则不同的种植方案共有______种(用数字作答)5【答案】260【分析】先分1,3相同与1,3不相同两类,每类中按分步计数原理,分2,4相同或不同两类求解,然后再分类计数原理求和.【详解】根据题意:当1,3相同时,2,4相同或不同两类,有:种, ()5411380⨯⨯⨯+=当1,3不相同时,2,4相同或不同两类,有:种, ()54312180⨯⨯⨯+=所以不同的种植方案共有种, 80180260+=故答案为:260【点睛】本题主要考查计数原理的应用问题,还考查了分析求解问题的能力,所以中档题.六、解答题17.已知等比数列的首项为2,前项和为,且. {}n a n n S 234230S S S -+=(1)求;n a(2)已知数列满足:,求数列的前项和. {}n b n n b na ={}n b n n T 【答案】(1)2n n a =(2)()1122n n T n +=-⋅+【分析】(1)根据题意,由可得公比,再由等比数列的通项公式即可得到结234230S S S -+=q 果;(2)根据题意,由错位相减法即可求得结果. 【详解】(1)设等比数列的公比为,{}n a q 因为,所以,234230S S S -+=()234320S S S S -+-=所以,所以,所以.342a a =2q =112n n n a a q -==(2)由(1)得,,所以,……①2nn b n =⨯212222n n T n =⨯+⨯++⨯ 所以,……②()23121222122n n n T n n +=⨯+⨯++-⨯+⨯ ①-②,得,()()21112122222212212n nn n n n T n n n +++⨯--=+++-⨯=-⨯=-⨯-- 所以.()1122n n T n +=-⋅+18.已知双曲线的实轴长为,一个焦点的坐标为-.2222:1x y C a b-=()0,0a b >>4()-(1)求双曲线的标准方程;(2)已知斜率为的直线与双曲线交于,两点,且的方程.1l C A B AB =l 【答案】(1);(2)22148x y -=1y x =±【分析】(1)由双曲线的实轴长及焦点坐标,再由,,之间的关系求出,进而求出双曲线a b c b 的方程;(2)由题意设直线的方程,与双曲线联立求出两根之和及两根之积,进而求出弦长的AB ||AB 值,再由题意可得参数的值,即求出直线的方程.AB【详解】(1)由得,又,24a =2a =c =2228b c a =-=故双曲线的方程为.22148x y -=(2)设直线的方程为,代入双曲线方程可得,l y x m =+22280x mx m ---=设,,,,则,.1(A x 1)y 2(B x 2)y 122x x m +=2128x x m =--因为||AB ==, ==1m =±所以直线的方程为.l 1y x =±19.从4面不同颜色(红、黄、蓝、绿)的旗子中,选出3面排成一排作为一种信号,共能组成多少种信号? 【答案】24【分析】分步完成:第一步选3面旗帜,第二步3面旗帜全排列,由此可得.【详解】从4面不同颜色旗子中,选出3面排成一排能组成种信号.3343C A 24=20.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用(单位:万元)与隔热层厚度(单位:cm )满足关系:,设为C x ()()4011035C x x x =≤≤+()f x 隔热层建造费用与20年的能源消耗费用之和. (1)求的表达式;()f x (2)隔热层修建多厚时,总费用达到最小,并求最小值. ()f x 【答案】(1) 800()635f x x x =++()110x ≤≤(2)当隔热层修建5cm 厚时,总费用最小,最小值为70万元.【分析】(1)根据已给模型确定函数解析式; (2)利用导数求得最小值.【详解】(1)每年能源消耗费用为,建造费用为, 40()35C x x =+6x .. ()()800206635f x C x x x x ∴=+=++()110x ≤≤(2),令得或(舍. ()()22400'635f x x =-+()0f x '=5x =253x =-)当时,,当时,.∴15x ≤<()0f x '<510x <≤()0f x '>在,上单调递减,在,上单调递增.()f x ∴[15)[510]当时,取得最小值(5).∴5x =()f x f 70=当隔热层修建厚时,总费用最小,最小值为70万元.∴5cm21.三棱柱中,,,线段的中点为,且111ABC A B C -112AB AB AA AC ====120BAC ∠= 11A B M .BC AM⊥(1)求证:平面;AM ⊥ABC (2)点在线段上,且,求二面角的余弦值. P 11B C 11123B P B C =11P B A A --【答案】(1)证明见解析【分析】(1)由、根据线面垂直的判定定理可得平面;AB AM ⊥BC AM ⊥AM ⊥ABC (2)以为原点,以所在的直线为建立空间直角坐标系,求出平面、A 、、AN AC AM x y z 、、11B AA 平面的一个法向量由二面角的向量求法可得答案.1PB A 【详解】(1)三棱柱中,,111ABC A B C -11//AB A B 在中,,线段的中点为,所以,所以;11AB A △11AB AA =11A B M 11A B AM ⊥AB AM ⊥因为,平面,平面,,平面,所以BC AM ⊥BC ⊂ABC AB ⊂ABC AB BC B ⋂=AB BC ⊂、ABC 平面; AM ⊥ABC (2)做交于点,AN AC ⊥BC N 以为原点,以所在的直线为建立空间直角坐标系,A 、、AN AC AM x y z 、、则,,, ()0,0,0A )1,0B-112B -,.()0,2,0C (M 所以,,,112AB =-()BC =(AM = 因为,所以,111222,033B P B C BC ⎛⎫=== ⎪ ⎪⎝⎭32P ⎛ ⎝所以,32AP ⎛= ⎝ 设平面的一个法向量,则, 11B AA ()1111,,n x y z =11111111020n AB y n AM ⎧⋅=-+=⎪⎨⎪⋅==⎩ 解得,令,所以, 10z=1y 11x =()1n = 设平面的一个法向量,则, 1PB A ()2222,,n x y z =222221222302102n AP y n AB x y ⎧⋅=+=⎪⎪⎨⎪⋅=-=⎪⎩令,,所以, 2y =23x =21z =-()21n =- 设二面角的平面角为,则11P B A A --()0180θθ≤≤ ,121212cos cos ,n n n n n n θ⋅==== 由图知二面角的平面角为锐角,11P B A A --所以二面角11P B A A --22.已知函数,.()()2e x f x x ax a =--R a ∈(1)讨论函数的单调性;()f x (2)当时,证明:.0a =()2(ln 2)f x x x >+【答案】(1)答案见解析;(2)证明见解析.【分析】(1)求出函数的导数,再分类讨论求出不等式,的解集作()f x ()f x '()0f x '<()0f x ¢>答.(2)将不等式等价变形,再分别证明和即可作答.e 1x x >+ln 1x x ≥+【详解】(1)依题意,,令,则或()()()()222e 2e x x f x x a x a x x a '⎡⎤=+--=+-⎣⎦()0f x '=2x =-.x a =当时,,则函数在上单调递增; 2a =-()()22e 0x f x x '+≥=()f x R 当时,当时,,当时,,2a >-()2,x a ∈-()0f x '<()(),2,x a ∈-∞-∞+ ()0f x ¢>于是得在,上单调递增,在上单调递减;()f x (),2-∞-(),a +∞()2,a -当时,当时,,当时,,2a <-(),2x a ∈-()0f x '<()(),2,x a ∞∞-∈-+ ()0f x ¢>因此函数在、上单调递增,在上单调递减,()f x (),a -∞()2,-+∞(),2a -所以当时,的单调递增区间为,,单调递减区间为;2a >-()f x (),2-∞-(),a +∞()2,a -当时,在上单调递增;2a =-()f x R 当时,函数的单调递增区间为,,单调递减区间为.2a <-()f x (),a -∞()2,-+∞(),2a -(2)当时,,,,0a =()2e x f x x =0x >()222(ln 2)e (ln 2)e ln 2x x f x x x x x x x >+⇔>+⇔>+令,则,函数在上单调递增,()e 1,0x g x x x =-->()e 10x g x '=->()g x (0,)+∞,,即,(0,)∀∈+∞x ()(0)0g x g >=e 1x x >+令,,当时,,当时,, ()ln 1,0h x x x x =-->1()1h x x'=-01x <<()0h x '<1x >()0h x '>即函数在上单调递减,在上单调递增,,,即()h x (0,1)(1,)+∞(0,)∀∈+∞x ()(1)0h x h ≥=,ln 1x x ≥+于是得,而,因此,,e 1ln 2x x x >+≥+20x >22e (ln 2)x x x x >+所以成立.()2(ln 2)f x x x >+【点睛】关键点睛:利用导数探讨含参函数的单调性,求出导数后分类讨论解不等式是解决问题的关键.。
2023-2024学年江苏省苏州市高二(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在平面直角坐标系中,直线l :x +√3y +1=0的倾斜角为( ) A .π6B .π3C .2π3D .5π62.在平面直角坐标系xOy 中,已知双曲线C :x 24−y 2=1的左焦点为F ,点A 在C 的右支上,A 关于O的对称点为B ,则|AF |﹣|BF |=( ) A .−2√5B .2√5C .﹣4D .43.若{a →,b →,c →}构成空间的一个基底,则下列向量不共面的是( )A .b →+c →,b →,b →−c →B .a →,a →+b →,a →−b →C .a →+b →,a →−b →,c →D .a →+b →,a →+b →+c →,c →4.已知{a n }是等比数列,若a 2a 4=a 3,a 4a 5=8,则a 1=( ) A .14B .12C .2D .45.在平面直角坐标系xOy 中,直线l :mx +y ﹣m =0被圆M :x 2+y 2﹣4x ﹣2y +1=0截得的最短弦的长度为( ) A .√2B .2C .2√2D .46.已知平面α={P |n →•P 0P →=0},其中点P 0(1,2,3),法向量n →=(1,1,1),则下列各点中不在平面α内的是( ) A .(3,2,1)B .(﹣2,5,4)C .(﹣3,4,5)D .(2,﹣4,8)7.在平面直角坐标系xOy 中,已知一动圆P 经过A (﹣1,0),且与圆C :(x ﹣1)2+y 2=9相切,则圆心P 的轨迹是( ) A .直线B .椭圆C .双曲线D .抛物线8.2020年7月23日,“天问一号”在中国文昌航天发射场发射升空,经过多次变轨后于2021年5月15日头现软着陆火星表面.如图,在同一平面内,火星轮廓近似看成以O 为圆心、R 1为半径的圆,轨道Ⅰ是以M 为圆心、R 2为半径的圆,着陆器从轨道Ⅰ的A 点变轨,进入椭圆形轨道Ⅱ后在C 点着陆.已知直线AC 经过O ,M ,与圆O 交于另一点B ,与圆M 交于另一点D ,若O 恰为椭圆形轨道Ⅱ的上焦点,且R 1R 2=35,AB =3CD ,则椭圆形轨道Ⅱ的离心率为( )A .13B .23C .25D .35二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.在平面直角坐标系xOy 中,已知曲线C :x 2m−1+y 2=m ,则下列说法正确的有( )A .若m >1,则C 是椭圆B .若m >2,则C 是椭圆C .若m <0,则C 是双曲线D .若m <1,则C 是双曲线10.已知数列{a n }满足a 1=1,a n +1=pa n +q (p ,q ∈R ,n ∈N *),设{a n }的前n 项和为S n ,则下列说法正确的有( )A .若p =﹣1,q =3,则a 10=2B .若p =﹣1,q =3,则S 10=30C .若p =2,q =1,则a 10=1024D .若p =2,q =1,则S 10=203611.如图,在平行六面体ABCD ﹣A 1B 1C 1D 1中,已知AB =AD =AA 1=1,∠A 1AD =∠A 1AB =∠BAD =60°,E 为棱CC 1上一点,且C 1E →=2EC →,则( )A .A 1E ⊥BDB .A 1E ⊥平面BDD 1B 1C .BD 1=√2D .直线BD 1与平面ACC 1A 1所成角为π412.在平面直角坐标系xOy 中,已知抛物线C :y 2=2x 的焦点为F ,点A ,B 为C 上异于O 不同两点,故OA ,OB 的斜率分别为k 1,k 2,T 是C 的准线与x 轴的交点.若k 1k 2=﹣4,则( ) A .以AB 为直径的圆与C 的准线相切B .存在k 1,k 2,使得|AB |=52C .△AOB 面积的最小值为34D .|AF||BF|=|AT||BT|三、填空题:本题共4小题,每小题5分,共20分.13.在平面直角坐标系xOy 中,已知菱形ABCD 的边长为2,一个内角为60°,顶点A ,B ,C ,D 均在坐标轴上,以A ,C 为焦点的椭圆Γ经过B ,D 两点,请写出一个这样的Γ的标准方程 . 14.在平面直角坐标系xOy 中,已知点A (2,2),记抛物线C :y 2=4x 上的动点P 到准线的距离为d ,则d ﹣|P A |的最大值为 .15.已知圆台的高为2,上底面圆O 1的半径为2,下底面圆O 2的半径为4,A ,B 两点分别在圆O 1、圆O 2上,若向量O 1A →与向量O 2B →的夹角为60°,则直线AB 与直线O 1O 2所成角的大小为 . 16.函数y =[x ]被广泛应用于数论、函数绘图和计算机领域,其中[x ]为不超过实数x 的最大整数,例如:[﹣1]=﹣1,[4.2]=4.已知数列{a n }的通项公式为a n =[log 2(2n +1)],设{a n }的前n 项和为S n ,则使得S n ≤300的最大正整数n 的值为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在平面直角坐标系xOy 中,已知四边形ABCD 为平行四边形,A (﹣1,﹣1),B (2,0),D (0,1).(1)设线段BD 的中点为E ,直线l 过E 且垂直于直线CD ,求l 的方程; (2)求以点C 为圆心、与直线BD 相切的圆的标准方程.18.(12分)已知数列{a n }的前n 项和为S n ,且4S n =(2n +1)a n +1(n ∈N *). (1)求{a n }的通项公式; (2)记b n =1a n a n+1,求数列{b n }的前n 项和T n . 19.(12分)如图,在直三棱柱ABC ﹣A 1B 1C 1中,已知∠BAC =90°,AB =AC =2,点E ,F 分别为线段AB ,AC 上的动点(不含端点),且AF =BE ,B 1F ⊥C 1E . (1)求该直三棱柱的高;(2)当三棱锥A 1﹣AEF 的体积最大时,求平面A 1EF 与平面ACC 1A 1夹角的余弦值.20.(12分)如图,在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴长是短轴长的2倍,焦距为4√3. (1)求C 的标准方程;(2)若斜率为12的直线l (不过原点O )交C 于A ,B 两点,点O 关于l 的对称点P 在C 上,求四边形OAPB 的面积.21.(12分)已知数列{a n }满足a 1=1,a n +1=a n +1+cos n π(n ∈N *). (1)求a 2,a 3及{a n }的通项公式;(2)若数列{b n }满足b 2=2且b 2k ﹣1=a 2k ﹣1,b 2k +2=3b 2k (k ∈N *),记{b n }的前n 项和为S n ,试求所有的正整数m ,使得S 2m =2S 2m ﹣1成立.22.(12分)如图,在平面直角坐标系xOy 中,已知双曲线C 1:x 2a 2−y 2a 2+2=1的右焦点为F (2,0),左、右顶点分别为A 1,A 2,过F 且斜率不为0的直线l 与C 的左、右两支分别交于P 、Q 两点,与C 的两条渐近线分别交于D 、E 两点(从左到右依次为P 、D 、E 、Q ),记以A 1A 2为直径的圆为圆O . (1)当l 与圆O 相切时,求|DE |;(2)求证:直线A 1Q 与直线A 2P 的交点S 在圆O 内.2023-2024学年江苏省苏州市高二(上)期末数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在平面直角坐标系中,直线l :x +√3y +1=0的倾斜角为( ) A .π6B .π3C .2π3D .5π6解:由于直线l :x +√3y +1=0的斜率为−√33,故它的倾斜角为5π6,故选:D .2.在平面直角坐标系xOy 中,已知双曲线C :x 24−y 2=1的左焦点为F ,点A 在C 的右支上,A 关于O的对称点为B ,则|AF |﹣|BF |=( ) A .−2√5B .2√5C .﹣4D .4解:设双曲线C 的右焦点为F ', 由双曲线的对称性可知,|BF |=|AF '|,所以由双曲线的定义知|AF |﹣|BF |=|AF |﹣|AF '|=2a =4. 故选:D .3.若{a →,b →,c →}构成空间的一个基底,则下列向量不共面的是( )A .b →+c →,b →,b →−c →B .a →,a →+b →,a →−b →C .a →+b →,a →−b →,c →D .a →+b →,a →+b →+c →,c →解:由共面向量的充要条件可得:对于A 选项,b →=12(b →+c →)+12(b →−c →),所以b →+c →,b →,b →−c →三个向量共面;对于B 选项,同理:a →,a →+b →,a →−b →三个向量共面; 对于D 选项,a →+b →+c →=(a →+b →)+c →,所以三个向量共面; 故选:C .4.已知{a n }是等比数列,若a 2a 4=a 3,a 4a 5=8,则a 1=( ) A .14B .12C .2D .4解:根据题意,{a n }是等比数列,设其公比为q ,若a 2a 4=a 3,则有a 32=a 3,又由a 3>0,则a 3=1,又由a 4a 5=8,则(a 3q )(a 3q 2)=q 3=8,解可得q =2,所以a 1=a 3q 2=14. 故选:A .5.在平面直角坐标系xOy 中,直线l :mx +y ﹣m =0被圆M :x 2+y 2﹣4x ﹣2y +1=0截得的最短弦的长度为( ) A .√2B .2C .2√2D .4解:直线l :mx +y ﹣m =0过定点A (1,0),圆M :x 2+y 2﹣4x ﹣2y +1=0化为圆M :(x ﹣2)2+(y ﹣1)2=4,可知圆的圆心M (2,1),半径R =2, 因为点A (1,0)在圆M 内,如图, 由圆的几何性质可知,当AM ⊥直线l 时, 弦长最短为2√R 2−|MA|2=2√4−2=2√2. 故选:C .6.已知平面α={P |n →•P 0P →=0},其中点P 0(1,2,3),法向量n →=(1,1,1),则下列各点中不在平面α内的是( ) A .(3,2,1)B .(﹣2,5,4)C .(﹣3,4,5)D .(2,﹣4,8)解:对于A ,P 0P →=(2,0,﹣2),n →⋅P 0P →=1×2+1×0+1×(﹣2)=0,故选项A 在平面α内; 对于B ,P 0P →=(﹣3,3,1),n →⋅P 0P →=1×(﹣3)+1×3+1×1=1≠0,故选项B 不在平面α内; 对于C ,P 0P →=(﹣4,2,2),n →⋅P 0P →=1×(﹣4)+1×2+1×2=0,故选项C 在平面α内; 对于D ,P 0P →=(1,﹣6,5),n →⋅P 0P →=1×1+1×(﹣6)+1×5=0,故选项D 在平面α内. 故选:B .7.在平面直角坐标系xOy 中,已知一动圆P 经过A (﹣1,0),且与圆C :(x ﹣1)2+y 2=9相切,则圆心P 的轨迹是( )A .直线B .椭圆C .双曲线D .抛物线解:根据题意,可知点A (﹣1,0)位于圆C :(x ﹣1)2+y 2=9的内部, 所以圆P 与圆C 内切,且圆P 在圆C 的内部,作出圆C 过切点Q 的半径CQ ,则根据两圆内切的关系,得到点P 在CQ 上, 因为QC =PQ +PC =3,且P A =PQ ,所以P A +PC =3,根据AP +PC =3>AC =2,可知点P 轨迹是以A 、C 为焦点的椭圆.故选:B .8.2020年7月23日,“天问一号”在中国文昌航天发射场发射升空,经过多次变轨后于2021年5月15日头现软着陆火星表面.如图,在同一平面内,火星轮廓近似看成以O 为圆心、R 1为半径的圆,轨道Ⅰ是以M 为圆心、R 2为半径的圆,着陆器从轨道Ⅰ的A 点变轨,进入椭圆形轨道Ⅱ后在C 点着陆.已知直线AC 经过O ,M ,与圆O 交于另一点B ,与圆M 交于另一点D ,若O 恰为椭圆形轨道Ⅱ的上焦点,且R 1R 2=35,AB =3CD ,则椭圆形轨道Ⅱ的离心率为( )A .13B .23C .25D .35解:不妨设R 1=3,R 2=5,CD =m ,则AB =3m ,MB =R 2﹣AB =5﹣3m ,OM =R 1﹣MB =3m ﹣2, 所以MD =R 2=OM +OC +CD =3m ﹣2+R 1+m =4m +1=5⇒m =1,所以a ﹣c =OC =R 1=3①,2a =AC =MA +OM +OC =R 2+3m ﹣2+R 1=9②,联立①②解得a=92,c=32,所以椭圆离心率e=ca=13.故选:A.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.在平面直角坐标系xOy中,已知曲线C:x2m−1+y2=m,则下列说法正确的有()A.若m>1,则C是椭圆B.若m>2,则C是椭圆C.若m<0,则C是双曲线D.若m<1,则C是双曲线解:当m>1时,曲线C:x2m−1+y2=m化为x2m(m−1)+y2m=1,若m=2,曲线为圆,故A错误;当m>2时,曲线C:x2m−1+y2=m化为x2m(m−1)+y2m=1,曲线为椭圆,故B正确;当m<0时,曲线C:x2m−1+y2=m化为x2m(m−1)+y2m=1,此时m(m﹣1)>0,m<0,曲线为双曲线,故C正确;当m<1时,若m=0,曲线C:x2m−1+y2=m化为y2﹣x2=0,即y=±x,曲线为两条直线,故D错误.故选:BC.10.已知数列{a n}满足a1=1,a n+1=pa n+q(p,q∈R,n∈N*),设{a n}的前n项和为S n,则下列说法正确的有()A.若p=﹣1,q=3,则a10=2B.若p=﹣1,q=3,则S10=30C.若p=2,q=1,则a10=1024D.若p=2,q=1,则S10=2036解:对于选项AB,若p=﹣1,q=3,则a n+1+a n=3,a n+2+a n+1=3,两式相减可得a n+2=a n,∴{a n}为周期2的周期数列,a1=1,a2=2,则a10=a2=2,故A正确;S10=5(a1+a2)=5×3=15,故B错误;对于CD,若p=2,q=1,则a n+1=2a n+1,可得a n+1+1=2(a n+1),∵a1+1=2,∴数列{a n+1}是以2为首项,2为公比的等比数列,∴a n+1=2n,则a n=2n−1,∴a10=210−1=1023,故C错误;S10=2(1−210)1−2−10=2036,故D正确.故选:AD.11.如图,在平行六面体ABCD﹣A1B1C1D1中,已知AB=AD=AA1=1,∠A1AD=∠A1AB=∠BAD=60°,E 为棱CC 1上一点,且C 1E →=2EC →,则( )A .A 1E ⊥BDB .A 1E ⊥平面BDD 1B 1C .BD 1=√2D .直线BD 1与平面ACC 1A 1所成角为π4解:在平行六面体ABCD ﹣A 1B 1C 1D 1中,AB =AD =AA 1=1,∠A 1AD =∠A 1AB =∠BAD =60°, E 为棱CC 1上一点,且C 1E →=2EC →,对于A ,由题意知△A 1AB ≌△A 1AD ,∴A 1D =A 1B , 设AC ∩BD =O ,O 为BD 中点,连接A 1O ,则A 1O ⊥BD , ∵四边形ABCD 为菱形,∴BD ⊥AC ,∴BD ⊥平面A 1ACC 1, ∵A 1E ⊂平面A 1ACC 1,∴A 1E ⊥BD ,故A 正确;对于B ,∵A 1E →=−23AA 1→+AB →+AD →,∴A 1E →⋅AA 1→=(−23AA 1→+AB →+AD →)⋅AA 1→−23AA 1→2+AB →⋅AA 1→+AD →⋅AA 1→=−23+12+12=13≠0,∴A 1E →与AA 1→不垂直,即A 1E →与BB 1→不垂直,∴A 1E 与平面BDD 1B 1不垂直,故B 错误; 对于C ,BD 1→=BA →+AA 1→+A 1D 1→=−AB →+AA 1→+AD →, ∴|BD 1→|2=|−AB →+AA 1→+AD →|2=(AB →)2+(AA 1→)2+(AD →)2−2AB →⋅AA 1→−2AB →⋅AD →+2AA →1⋅AD →=3−2×12−2×12+2×12=2⇒BD 1=√2,故C 正确对于D ,由A 知BD ⊥平面A 1ACC 1,∴直线BD 1与平面ACC 1A 1所成角即为直线BD 1与BD 所成角的余角, BD →=AD →−AB →,∵|BD →|=1,BD →⋅BD 1→=(AD →−AB →)⋅(−AB →+AA →1+AD →)=1 ∴|cos〈BD →,BD 1→〉|=|BD →⋅BD 1→|BD →|⋅|BD 1→||=11×√2=√22,∴直线BD 1与BD 所成角为π4,∴直线BD 1与平面ACC 1A 1所成角为π4,故D 正确.故选:ACD .12.在平面直角坐标系xOy 中,已知抛物线C :y 2=2x 的焦点为F ,点A ,B 为C 上异于O 不同两点,故OA ,OB 的斜率分别为k 1,k 2,T 是C 的准线与x 轴的交点.若k 1k 2=﹣4,则( ) A .以AB 为直径的圆与C 的准线相切 B .存在k 1,k 2,使得|AB |=52C .△AOB 面积的最小值为34D .|AF||BF|=|AT||BT|解:抛物线C :y 2=2x 的焦点为F (12,0),p =1,设A (x 1,y 1),B (x 2,y 2),则k 1k 2=y 1y 2x 1x 2=4y 1y 2=−4,得:y 1y 2=−1=−p 2,故直线AB 过焦点F ,点T 和点F 重合,选项D 正确; 由抛物线的性质得|AF |=x 1+12,|BF |=x 2+12,|AB |=x 1+x 2+1,线段AB 的中点M 到准线的距离为|AF|+|BF|2=x 1+x 2+12=|AB|2,所以以AB 为直径的圆与C 的准线相切,选项A 正确; |AB |≥2p =2,故选项B 正确; 设直线AB 的倾斜角为θ,则S △AOB =p 22sinθ=12sinθ≥12,选项C 错误. (或当AB 为通径时,S △AOB =p 22=12<34,故选项C 错误). 故选:ABD .三、填空题:本题共4小题,每小题5分,共20分.13.在平面直角坐标系xOy 中,已知菱形ABCD 的边长为2,一个内角为60°,顶点A ,B ,C ,D 均在坐标轴上,以A ,C 为焦点的椭圆Γ经过B ,D 两点,请写出一个这样的Γ的标准方程: x 24+y 2=1(答案不唯一) .解:根据题意,顶点A ,B ,C ,D 均在坐标轴上,则该菱形对角线的交点为坐标原点,如图:假设A 、C 在x 轴上,B 、D 在y 轴上,∠BCD =60°, 由菱形的性质,∠BCA =30°,又由菱形ABCD 的边长为2,则OB =1,则BC =2,OC =√3, 即b =1,c =√3,则a 2=b 2+c 2=4, 故该椭圆的一个方程为x 24+y 2=1.故答案为:x 24+y 2=1(答案不唯一).14.在平面直角坐标系xOy 中,已知点A (2,2),记抛物线C :y 2=4x 上的动点P 到准线的距离为d ,则d ﹣|P A |的最大值为 √5 .解:抛物线C :y 2=4x 的焦点F (1,0),由抛物线的定义知d =|PF |,所以d ﹣|P A |=|PF |﹣|P A |≤|AF |=√(2−1)2+(2−0)2=√5, 当点P 位于射线F A 与抛物线交点时,取最大值√5.答案为:√5.15.已知圆台的高为2,上底面圆O 1的半径为2,下底面圆O 2的半径为4,A ,B 两点分别在圆O 1、圆O 2上,若向量O 1A →与向量O 2B →的夹角为60°,则直线AB 与直线O 1O 2所成角的大小为 π3.解:作出示意图形,如下图所示,向量O 1A →与向量O 2B →的夹角为60°,结合O 1A ∥O 2C ,得∠BO 2C =60°, 所以△BO 2C 为等边三角形,设点A 在圆O 2所在平面内的射影为D ,连接AD 、BD , 则AD 与O 1O 2平行且相等,且D 为O 2C 中点,∠BAD (或其补角)就是异面直线AB 与直线O 1O 2所成角, Rt △BCD 中,BD =√42−22=2√3, 在Rt △ADB 中,AD =O 1O 2=2,得tan ∠BAD =BD AD =√3,所以∠BAD =π3, 即直线AB 与直线O 1O 2所成角为π3.故答案为:π3.16.函数y =[x ]被广泛应用于数论、函数绘图和计算机领域,其中[x ]为不超过实数x 的最大整数,例如:[﹣1]=﹣1,[4.2]=4.已知数列{a n }的通项公式为a n =[log 2(2n +1)],设{a n }的前n 项和为S n ,则使得S n ≤300的最大正整数n 的值为 59 . 解:a n =[log 2(2n +1)],可得a 2k−1=[log 2(2k +1)]=k ,a 2k =[log 2(2k+1+1)]=k +1, 故2k ﹣1≤n <2k 时,a n =k ,共2k ﹣2k ﹣1=2k﹣1项,其和为k •2k ﹣1=(k ﹣1)•2k ﹣(k ﹣2)•2k ﹣1,S 2k −1=0⋅21−(−1)⋅20+1⋅22−0⋅21+⋅⋅⋅+(k −1)⋅2k −(k −2)⋅2k−1=(k −1)⋅2k +1, 则S 63=(6﹣1)×26+1=321>300,又32≤n ≤63时,a n =6,故S 60=303,S 59=297, 因此,所求正整数n 的最大值为59. 故答案为:59.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在平面直角坐标系xOy 中,已知四边形ABCD 为平行四边形,A (﹣1,﹣1),B (2,0),D (0,1).(1)设线段BD 的中点为E ,直线l 过E 且垂直于直线CD ,求l 的方程; (2)求以点C 为圆心、与直线BD 相切的圆的标准方程. 解:(1)根据B (2,0),D (0,1),可得BD 的中点为E(1,12).由A (﹣1,﹣1)、B (2,0),得k AB =0+12+1=13, 因为四边形ABCD 为平行四边形,所以AB ∥CD ,得k CD =k AB =13,而直线l ⊥CD ,可知直线l 的斜率为−113=−3,所以直线l 的方程为y −12=−3(x −1),整理得6x +2y ﹣7=0. (2)设C (m ,n ),根据A (﹣1,﹣1),B (2,0),D (0,1), 可得BC →=(m −2,n),AD →=(1,2),结合BC →=AD →,得{m −2=1n =2,,m =3,n =2,即C (3,2),根据k BD =1−00−2=−12,k BC =2−03−2=2,得k BD •k BC =﹣1,即BC ⊥BD , 所以点C 到BD 的距离为BC =√(3−2)2+(2−0)2=√5,因此,以点C 为圆心且与直线BD 相切的圆的标准方程为(x ﹣3)2+(y ﹣2)2=5. 18.(12分)已知数列{a n }的前n 项和为S n ,且4S n =(2n +1)a n +1(n ∈N *). (1)求{a n }的通项公式; (2)记b n =1a n a n+1,求数列{b n }的前n 项和T n . 解:(1)因为4S n =(2n +1)a n +1. 令n =1得a 1=1, 因为4S n =(2n +1)a n +1,所以4S n ﹣1=(2n ﹣1)a n ﹣1+1(n ≥2),两式相减得4a n =(2n +1)a n ﹣(2n ﹣1)a n ﹣1(n ≥2),即(2n ﹣3)a n =(2n ﹣1)a n ﹣1. 所以a n a n−1=2n−12n−3(n ≥2), 所以a 2a 1⋅a 3a 2⋅⋅⋅⋅⋅⋅a n a n−1=31⋅53⋅⋅⋅2n−12n−3,即a na 1=2n −1, 所以当n ≥2时,a n =2n ﹣1, 又a 1=1,所以a n =2n ﹣1. (2)由(1)可得b n =1a n a n+1=1(2n−1)(2n+1)=12(12n−1−12n+1),所以T n =12[(11−13)+(13−15)+⋅⋅⋅+(12n−1−12n+1)]=12(1−12n+1)=n2n+1.19.(12分)如图,在直三棱柱ABC ﹣A 1B 1C 1中,已知∠BAC =90°,AB =AC =2,点E ,F 分别为线段AB ,AC 上的动点(不含端点),且AF =BE ,B 1F ⊥C 1E . (1)求该直三棱柱的高;(2)当三棱锥A 1﹣AEF 的体积最大时,求平面A 1EF 与平面ACC 1A 1夹角的余弦值.解:(1)在直三棱柱ABC ﹣A 1B 1C 1中,∵∠BAC =90°,∴AB ,AC ,AA 1两两垂直, 以A 为坐标原点,建立如图所示的空间直角坐标系,∵AB =AC =2,则A (0,0,0),B (2,0,0),C (0,2,0), 设AA 1=a (a >0),则A 1(0,0,a ),B 1(2,0,a ),C 1(0,2,a ), 设AF =BE =λ(0<λ<2),则E (2﹣λ,0,0),F (0,λ,0), ∴B 1F →=(−2,λ,−a),C 1E →=(2−λ,−2,−a),∵B 1F ⊥C 1E ,∴B 1F →⋅C 1E →=0,即2λ﹣4﹣2λ+a 2=0,解得:a =2, 即该直三棱柱的高为2;(2)在直三棱柱ABC ﹣A 1B 1C 1中,有AA 1⊥平面AEF , 又∠BAC =90°,由(1)知AA 1=2,AE =BE =λ(0<λ<2),∴V A 1−AEF =13S △AEF ⋅AA 1=13λ⋅(2−λ)≤13,当且仅当λ=1时取“=”,即点E ,F 分别为线段AB ,AC 的中点时,三棱锥A 1﹣AEF 的体积最大, 此时E (1,0,0),F (0,1,0),A 1(0,0,2), ∴A 1E →=(1,0,−2),A 1F →=(0,1,−2),设平面A 1EF 的法向量为n 1→=(x ,y ,z), 则{A 1E →⋅n 1→=0A 1F →⋅m 1→=0,即{x −2z =0y −2z =0,取z =1,则n 1→=(2,2,1), 又平面ACC 1A 1的一个法向量为n 2→=(1,0,0),所以|cos〈n 1→,n 2→〉|=|n 1→⋅n 2→|n 1→|⋅|n 2→||=23×1=23, 因为平面A 1EF 与平面ACC 1A 1的夹角θ为锐角,所以cosθ=23.20.(12分)如图,在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴长是短轴长的2倍,焦距为4√3. (1)求C 的标准方程;(2)若斜率为12的直线l (不过原点O )交C 于A ,B 两点,点O 关于l 的对称点P 在C 上,求四边形OAPB 的面积.解:(1)由题意2c =4√3,所以c =2√3=√a 2−b 2,又因为a =2b ,所以a =4,b =2, 所以C 的标准方程为x 216+y 24=1.(2)设直线l :y =12x +m (m ≠0),A (x 1,y 1),B (x 2,y 2),P (x 3,y 3).将y =12x +m 代入C :x 216+y 24=1中,化简整理得x 2+2mx +2m 2﹣8=0,于是有{Δ=32−4m 2>0,x 1+x 2=−2m ,x 1x 2=2m 2−8,所以|AB|=√1+(12)2|x 1−x 2|=√52√(x 1+x 2)2−4x 1x 2=√52√(−2m)2−4(2m 2−8)=√5√8−m 2, 因为点O 关于l 的对称点为P ,所以{y 3−0x 3−0=−2,y 3+02=12⋅x 3+02+m ,解得{x 3=−45my 3=85m,即P(−45m ,85m), 因为P 在C 上,所以(−45m)216+(85m)24=1,解得m 2=2517. 又因为点O 到直线l 的距离d =|m|√1+(12)=2√5, 所以由对称性得S 四边形OAPB =2S △OAB =|AB|⋅d =√5√8−m 2⋅√5=2|m|√8−m 2=25√17×√8−2517=1017√111.21.(12分)已知数列{a n }满足a 1=1,a n +1=a n +1+cos n π(n ∈N *). (1)求a 2,a 3及{a n }的通项公式;(2)若数列{b n }满足b 2=2且b 2k ﹣1=a 2k ﹣1,b 2k +2=3b 2k (k ∈N *),记{b n }的前n 项和为S n ,试求所有的正整数m ,使得S 2m =2S 2m ﹣1成立.解:(1)将n =2,3代入a n +1=a n +1+cos n π,得a 2=1,a 3=3, 令n =2k ,2k ﹣1,得a 2k +1=a 2k +2,a 2k =a 2k ﹣1,所以a 2k +1=a 2k ﹣1+2,又a 1=1,从而a 2k ﹣1=1+2(k ﹣1)=2k ﹣1, 所以a 2k =a 2k ﹣1=2k ﹣1,从而a n ={n ,n 为奇数,n −1,n 为偶数.;(2):由b 2k ﹣1=a 2k ﹣1=2k ﹣1,又b 2=2,b 2k +2=3b 2k , 所以{b 2k }是以2为首项,3为公比的等比数列, 所以b 2k =2⋅3k−1,所以b n ={n ,n =2k −1(k ∈N ∗),2⋅3n2−1,n =2k(k ∈N ∗), 因为S 2m =2S 2m ﹣1,所以b 2m =S 2m ﹣1.因为S 2m ﹣1=b 1+b 2+•+b 2m ﹣1=(b 1+b 3+•+b 2m ﹣1)+(b 2+b 4+•+b 2m ﹣2) =m(1+2m−1)2+2(3m−1−1)3−1=3m−1+m 2−1,所以2•3m ﹣1=3m ﹣1+m 2﹣1,即3m ﹣1=m 2﹣1当m =1时,3m ﹣1=m 2﹣1无解;当m >1时,因为(m+1)2−13m−m 2−13m−1=−2m 2+2m+33m<0,所以当且仅当m =2时,m 2−13m−1取最大值1,即3m ﹣1=m 2﹣1的解为m =2.综上所述,满足题意的m 的值为2.22.(12分)如图,在平面直角坐标系xOy 中,已知双曲线C 1:x 2a 2−y 2a 2+2=1的右焦点为F (2,0),左、右顶点分别为A 1,A 2,过F 且斜率不为0的直线l 与C 的左、右两支分别交于P 、Q 两点,与C 的两条渐近线分别交于D 、E 两点(从左到右依次为P 、D 、E 、Q ),记以A 1A 2为直径的圆为圆O . (1)当l 与圆O 相切时,求|DE |;(2)求证:直线A 1Q 与直线A 2P 的交点S 在圆O 内.解:(1)因为F (2,0),所以a 2+(a 2+2)=4,所以a 2=1, 所以圆O 的半径r =1,由题意知l 的斜率存在,设l :y =k (x ﹣2)(k ≠0),当l 与圆O 相切时,O 到l 的距离d =r ,即√1+k 2=1,解得k =±√33,由{y =k(x −2),x 2−y 23=0,得(k 2﹣3)x 2﹣4k 2x +4k 2=0,即2x 2+x ﹣1=0,解得x D =﹣1,x E =12, 所以|DE|=√1+k 2|x D −x E |=√3.(2)证明:设P (x 1,y 1),Q (x 2,y 2),由{y =k(x −2),x 2−y 23=1,得(k 2﹣3)x 2﹣4k 2x +4k 2+3=0, 此时k ≠0,Δ>0,x 1x 2=4k 2+3k 2−3<0,解得0<k 2<3,且{x 1+x 2=4k 2k 2−3=4+12k 2−3,x 1x 2=4k 2+3k 2−3=4+15k 2−3,所以x 1x 2=54(x 1+x 2)−1, 因为A 1(﹣1,0),A 2(1,0),所以A 1Q :y =y 2x 2+1(x +1),A 2P :y =y1x 1−1(x −1),联立A 1Q ,A 2P 方程,消去y 得x+1x−1=(x 2+1)y 1(x 1−1)y 2=k(x 2+1)(x 1−2)k(x 1−1)(x 2−2)=x 1x 2+x 1−2x 2−2x 1x 2−x 2−2x 1+2.所以x 1x 2+x 1−2x 2−2x 1x 2−x 2−2x 1+2=54(x 1+x 2)−1+x 1−2x 2−254(x 1+x 2)−1−x 2−2x 1+2=94x 1−34x 2−3−34x 1+14x 2+1=−3,即x+1x−1=−3,所以x =12.将x=12代入A2P方程,得y=−y12(x1−1),即S(12,−y12(x1−1)).因为x1<﹣1,所以(−y12(x1−1))2=3(x12−1)4(x1−1)2=3(x1+1)4(x1−1)=34[1+2x1−1]∈(0,34),所以(12)2+(−y12(x1−1))2<1,即直线A1Q,A2P的交点S在圆O内.。
江苏高二高中数学期末考试班级:___________ 姓名:___________ 分数:___________一、填空题1.抛物线的焦点坐标为▲ .2.直线ax+y-a=0与圆x2+y2=4的位置关系是-----▲.3.在△中,“”是“”的▲.(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”之一)4.若曲线表示双曲线,则的取值范围是▲.5.以双曲线的左焦点为焦点的抛物线标准方程是▲.6.若直线是+1的切线,则▲.7.已知为互不重合的平面,为互不重合的直线,给出下列四个命题:①;②;③;④.其中正确命题的序号是____ ▲ __ __.8.已知,则▲.9.若双曲线左支上一点P到右焦点的距离为8,则P到左准线的距离为___ ▲ __10.已知直线过点,且点,到直线的距离相等,则直线的方程为▲.11.以椭圆的左焦点为圆心,c为半径的圆与椭圆的左准线交于不同的两点,则该椭圆的离心率的取值范围是▲.12.已知圆心在直线上,且过两圆,交点,则该圆的方程为▲.13.▲.14.若是R上的减函数,且,设,若“”是“”的必要不充分条件,则实数的取值范围是▲ .二、解答题1.已知命题“方程表示焦点在轴上的椭圆”,命题“方程表示双曲线”.(1)若是真命题,求实数的取值范围;(2)若是真命题,求实数的取值范围;(3)若“”是真命题,求实数的取值范围.2.如图,四棱锥P-ABCD的底面为矩形,且AB=,BC=1,E,F分别为AB,PC中点.(1)求证:EF∥平面PAD;(2)若平面PAC⊥平面ABCD,求证:平面PAC⊥平面PDE.3.已知函数(1)求曲线在点处的切线的方程;(2)直线为曲线的切线,且经过原点,求直线的方程及切点的坐标;(3)如果曲线的某一切与直线垂直,求切点坐标和切线方程。
4.如图,已知四棱锥中,底面是直角梯形,是线段上不同于的任意一点,且(1)求证:;(2)求证:;(3)求三棱锥的体积。
江苏高二高中数学期末考试班级:___________ 姓名:___________ 分数:___________一、填空题1.若集合,则▲.2.若函数的最小正周期为,则▲.3.命题“若,则”的否命题为▲.4.函数的单调递增区间为_▲__.5.,则= ▲.6.将函数的图象向左平移1个单位,所得函数的解析式为▲.7.设的内角所对的边长分别为,则“”是“为锐角三角形”成立的▲条件(填充分不必要;必要不充分;充要;既不充分也不必要).8.满足的锐角▲.9.若函数在处取得极值,则实数▲.10.已知函数在区间上单调递减,则实数的取值范围是▲.11.已知,且,则▲.12.设的内角所对的边长分别为,且则的值为__▲__.13.已知函数为奇函数,则的取值范围是▲.14.设函数,若有三个不同的根,则实数的取值范围是▲.二、解答题1.本小题满分14分)已知.(1)求的值;(2)求的值.2.(本小题满分14分)已知命题:方程有两个不相等的负实数根;命题:函数无零点.(1)若为真命题,求实数的取值范围;(2)若或为真,且为假,求实数的值的集合.3.(本小题满分15分)已知函数,.(1)求的值;(2)证明;(3)若,,求的值.4.(本小题满分15分)如图,某市拟在道路AE的一侧修建一条运动赛道,赛道的前一部分为曲线段ABC,该曲线段为函数(),的图象,且图象的最高点为;赛道的中间部分为千米的水平跑道;赛道的后一部分为以O为圆心的一段圆弧.(1)求的值和角的值;(2)若要在圆弧赛道所对应的扇形区域内建一个“矩形草坪”,如图示,矩形的一边在道路AE上,一个顶点在扇形半径OD上.记,求当“矩形草坪”的面积最大时的值.5.(本小题满分16分)已知f (x)、g(x)都是定义在R上的函数,如果存在实数m、n使得h (x) = m f(x)+ng(x),那么称h (x)为f (x)、g(x)在R上生成的一个函数.设f (x)=x2+ax,g(x)=x+b(R),=2x2+3x-1,h (x)为f (x)、g(x)在R上生成的一个二次函数. (1)设,若h (x)为偶函数,求;(2)设,若h (x)同时也是g(x)、l(x) 在R上生成的一个函数,求a+b的最小值;6.(本小题满分16分)已知函数(1)若函数在处的切线方程为,求的值;(2)任取,且,恒有,求的取值范围;(3)讨论方程的解的个数,并说明理由。
2024—2025学年第一学期高二上10月自主学习效果评估数学试卷2024.10.08一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知,直线过定点,且与线段相交,则直线的斜率的取值范围是( )A B. C. 或 D. 或2. 若圆与圆相切,则()A. 6B. 3或6C. 9D. 3或93. 已知直线,,则过和的交点且与直线垂直的直线方程为( )A. B. C. D.4. 若点在圆内,则直线与圆C 的位置关系为( )A. 相交B. 相切C. 相离D. 不能确定5. 圆心为,且与直线相切的圆的方程为( )A. B. C. D.6. 已知圆上有四个点到直线的距离等于1,则实数的取值范围为( )A. B. C. D.7. 已知圆关于直线对称,则实数( ).()()2,02,3A B 、l ()1,2P AB l k 21k -≤≤112k -≤≤12k ≤-1k ≥2k ≤-1k ≥()2221:(4)0O x y r r ++=>222:(2)9O x y -+=r =1:10l x y -+=2:210l x y --=1l 2l 3450x y +-=3410x y --=3410x y -+=4310x y --=4310x y -+=(),P a b221Cx y +=:1ax by +=(2,1)M -2+1=0x y -22(2)(1)5x y -+-=22(2)(1)5x y -++=22(2)(1)25x y -++=22(2)(1)25x y -+-=224x y +=y x b =+b ()2,2-(()1--()1,1-22:330C x y mx y +-++=:0l mx y m +-=m =A 1或 B. 1 C. 3 D. 或38. 若圆与圆交于两点,则的最大值为( )A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.9. 若直线与圆交于两点,则( )A. 圆的圆心坐标为B. 圆的半径为3C. 当时,直线倾斜角为D. 的取值范围是10. 已知点在上,点,,则( )A. 点到直线的距离最大值是B. 满足的点有2个C. 过直线上任意一点作的两条切线,切点分别为,则直线过定点D. 的最小值为11. 设直线系(其中均为参数,),则下列命题中是真命题的是()A. 当时,存在一个圆与直线系中所有直线都相切B. 当时,若存在一点,使其到直线系中所有直线的距离不小于1,则C. 存在,使直线系中所有直线恒过定点,且不过第三象限D. 当时,坐标原点到直线系中所有直线的距离最大值为1三、填空题:本题共3小题,每小题5分,共15分..的3-1-22:(cos )(sin )1(02π)M x y θθθ-+-=≤<22:240N x y x y +--=A B 、tan ANB ∠344543:2cos 0l x y θ-⋅=22:10E x y +--=,A B E ()-E 1cos 2θ=l π4AB ⎡⎢⎣P 22:4O x y +=e ()3,0A ()0,4B P AB 125AP BP ⊥P AB O e ,M N MN 4,13⎛⎫ ⎪⎝⎭2PA PB +:cos sin 1m n M x y θθ+=,,m n θ{}02π,,1,2m n θ≤≤∈1,1m n ==M 2,1m n ==(),0A a M 0a ≤,m n M m n =M12. 已知直线,圆,写出满足“对于直线上任意一点,在圆上总存在点使得”的的一个值______.13. 已知二次函数与轴交于两点,点,圆过三点,存在一条定直线被圆截得弦长为定值,则该定值为__________.14. 如图,点C 是以AB 为直径的圆O 上的一个动点,点Q 是以AB 为直径的圆O 的下半个圆(包括A ,B 两点)上的一个动点,,则的最小值为___________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知直线与直线.(1)若,求m 的值;(2)若点在直线上,直线过点P ,且在两坐标轴上的截距之和为0,求直线的方程.16. 已知:及经过点的直线.(1)当平分时,求直线的方程;(2)当与相切时,求直线的方程.17. 如图,已知,直线.(1)若直线等分的面积,求直线的一般式方程;(2)若,李老师站在点用激光笔照出一束光线,依次由(反射点为)、(反射点为)反射后,光斑落在点,求入射光线的直线方程.的:1l x my =--22:6890O x y x y ++++=l A O B π2ABO ∠=m ()()223411y x m x m m =+---∈R x ,A B ()1,3CG ,,A B C l G ,3,2PB AB AB PB ⊥==1)3AP BA QC +⋅(()1:280l m x my ++-=2:40,R l mx y m +-=∈12l l //()1,P m 2l l l C e ()()22124x y -+-=()1,1P --l l C e l l C el (()(),0,0,12,0A BC (():20l k x y k k +--=∈R l ABC Vl (2,P P BC K AC I P PK18. 已知圆与直线相切于点,圆心在轴上.(1)求圆的标准方程;(2)若直线与圆交于两点,当数的值;(3)过点且不与轴重合的直线与圆相交于两点,为坐标原点,直线分别与直线相交于两点,记的面积为,求的最大值.19. 在数学中,广义距离是泛函分析中最基本概念之一.对平面直角坐标系中两个点和,记,称为点与点之间的“距离”,其中表示中较大者.(1)计算点和点之间的“距离”;(2)设是平面中一定点,.我们把平面上到点的“距离”为的所有点构成的集合叫做以点为圆心,以为半径的“圆”.求以原点为圆心,以为半径的“圆”的面积;(3)证明:对任意点.的M 340x -+=(M x M ()()():21174l m x m y m m +++=+∈R M ,P Q PQ =m M x M ,A B O ,OA OB 8x =,C D ,OAB OCD V V 12,S S 12S S ()111,P x y ()222,P x y 1212121212max ,11tx x y y PP x x y y ⎧⎫--⎪⎪=⎨⎬+-+-⎪⎪⎩⎭12t PP 1P 2P t -{}max ,p q ,p q ()1,2P ()2,4Q t -()000,P x y 0r >0P t -r 0P r t -O 12t -()()()111222333131223,,,,,,t t t P x y P x y P x y PP PP P P ≤+2024—2025学年第一学期高二上10月自主学习效果评估数学试卷2024.10.08一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】A【2题答案】【答案】D【3题答案】【答案】D【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】B【7题答案】【答案】C【8题答案】【答案】D二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.【9题答案】【答案】BC【10题答案】【答案】BCD【11题答案】【答案】ABC三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】1(答案不唯一)【13题答案】【14题答案】【答案】四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1) (2)或【16题答案】【答案】(1) (2)或.【17题答案】【答案】(1; (2).【18题答案】【答案】(1) (2). (3).【19题答案】【答案】(1); (2)4;(3)证明见解析.3--1m =-10x y -+=20x y -=3210x y -+=1x =-51270x y --=170y +-=2100x -=22(4)16x y -+=23m =-1423。
一、单选题1.若直线经过,两点,则直线的倾斜角为( ) (1,0)A B AB A . B . C . D .30︒45︒60︒135︒【答案】A【分析】利用两点坐标求出直线的斜率,再求对应的倾斜角即可. AB【详解】由直线经过,, (1,0)A B设直线的倾斜角为,则有, θtan θ=又,所以. 0180θ︒≤<︒30θ=︒故选:A.2.若直线与直线互相平行,则实数( ) 1:20l x y +=2:10l mx y ++=m =A . B .C .D .2122-12-【答案】A【分析】判断不合题意,再根据直线的平行列出相应的比例式,即可求得答案. 0m =【详解】当时,直线,直线与不平行, 0m =2:10l y +=1l 2l 当时,,0m ≠12//l l ,解得, ∴21011m =≠2m =故选:A.3.若等差数列的前项和为,且,则的值为( ) {}n a n n S 21012a a +=11S A . B . C . D .334466132【答案】C【分析】根据结合即可求解. 110211a a a a +=+1111111()2a a S +=【详解】等差数列的前项和为,且, {}n a n n S 21012a a +=由等差数列的基本性质,得,21101112a a a a +=+=. ∴1111111()11126622a a S +⨯===故选:C.4.若直线与圆交于,两点,且,关于直线对1y kx =+2240x y kx my +++-=M N M N 20x y +=称,则实数的值为( )k m -A .3B .2C .1D .0【答案】A【分析】先对圆的方程配方,求出圆心,再根据两直线以及圆之间的关系求解. 【详解】由圆的方程: 得: , 2240x y kx my +++-=222242244k m k m x y ⎛⎫⎛⎫+++=++⎪ ⎪⎝⎭⎝⎭圆心坐标为 ,,22k m ⎛⎫-- ⎪⎝⎭直线与圆交于,两点,且,关于直线对称, 1y kx =+2240x y kx my +++-=M N M N 20x y +=则直线必定经过圆心,,,20x y +=(2k -2m -20k m --=又根据垂径定理:直线与直线垂直,可得,即,1y kx =+20x y +=1()12k ⋅-=-2k =所以,故; 1m =-213k m -=+=故选:A.5.数列满足,,,则数列的前10项和为( ){}n a 10a =21a =222,3,2,3,n n n a n n a a n n --+≥⎧=⎨≥⎩为奇数为偶数{}n a A .51 B .56C .83D .88【答案】A【分析】按照已知条件可以发现奇、偶项分别成等差和等比数列,一一列举前10项求和即可.【详解】数列满足,,,{}n a 10a =21a =222,3,2,3,n n n a n n a a n n --+≥⎧=⎨≥⎩为奇数为偶数不难发现,奇数项是等差数列,公差为2,偶数项是等比数列,公比为2, 所以数列的前10项和为:. {}n a (02468)(124816)51+++++++++=故选:.A 6.已知为双曲线的右焦点,为的左顶点,过点且斜率为的直线F 2222:1(0,0)x y C a b a b-=>>A C A 1l与交于另一点,且垂直于轴.则的离心率为( ) C B BF x C AB .2C D .3【答案】B【分析】根据题意先求出,,再根据可得到关于,的关系式,进而即可得到|BF |AF 1BF AF=a c 双曲线的离心率.C【详解】联立,解得,所以, 22222221x cx y a b c b a=⎧⎪⎪-=⎨⎪=+⎪⎩2x c b y a =⎧⎪⎨=±⎪⎩2||b BF a =依题可得,,即, 1BFAF=AF c a =+()2221b c a a c a a c a -==++整理得,所以双曲线的离心率为. 2c a =C 2ce a==故选:B .7.已知等差数列前项和为,公差是与的等比中项,则下列选项不正确{}n a n n S 670,90,d S a ≠=3a 9a 的是( ) A .B .120a =2d =-C .当,时,取得最大值 D .当时,的最大值为2110n =11n S 0n S >n 【答案】D【分析】根据等差数列的通项公式,结合等比中项的定义、等差数列的前项进行求解即可. n 【详解】因为是与的等比中项,7a 3a 9a 所以,()()()22739111162810a a a a d a d a d a d =⋅⇒+=++⇒=-由,有,611906659060159022S a d d d d =⇒+⨯⨯=⇒-+=⇒=-120a =,()221121441121224n S na n n d n n n ⎛⎫=+⋅-=-+=--+ ⎪⎝⎭当,时,取得最大值,10n =11n S ,的最大值为,2210021n S n n n =-+>⇒<<n 20故选:D8.已知函数满足:,,则不等式的解集为()f x ()01f =()()'f x f x <()x f x e <A . B . C .D .()0,∞+(),0∞-()1,+∞(),1∞-【答案】A【详解】是减函数,由得: ()()()0,x xf x f x f x e e ''-⎛⎫=< ⎪⎝⎭()x f x e ()x f x e <0()(0)1,0x f x f x e e <=∴>故选A.点睛:用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造.构造辅助函数常根据导数法则进行:如构造;如()()f x f x '<()()x f x g x e=构造;如构造;如构()()0f x f x '+<()()x g x e f x =()()xf x f x '<()()f xg x x=()()0xf x f x '+<造等.()()g x xf x =二、多选题9.下列求导运算正确的是( ) A . 211()1x xx +'=-B .(cos )sin x x x ⋅'=-C .222(e )e x xx x x -'=D .,则 ()sin(21)f x x =-)cos ()221(f x x '=-【答案】ACD【分析】利用导数计算公式分析各选项可得答案.【详解】A 选项,,故A 正确;()2111()1x x x x x ⎛⎫ ⎪⎝⎭''+'=+=-B 选项,,故B 错误;()()(cos )cos cos cos sin x x x x x x x x x ''⋅'=+=-C 选项,,故C 正确; ()()()2222222e e 2e e 2(ee e e xx x x xx xx x x xx x x x ''---'===D 选项,,则,D 正确. ()sin(21)f x x =-)cos ()221(f x x '=-故选:.ACD 10.在平面直角坐标系中,已知双曲线,则( )xOy 221412x y -=A .离心率为2B .渐近线方程为 y =C .实轴长为2D .右焦点到渐近线的距离为【答案】ABD【分析】根据双曲线方程确定的值,即可一一判断各选项,即得答案. ,,a b c 【详解】由双曲线的方程可得,,,,24a =212b =22216c a b =+=所以,,实轴长,离心率,所以A 正确,C 不正确, 2a =b =4c =24a =2ca=所以,渐近线方程为,所以B 正确, by x a=±=因为右焦点为,不妨取渐近线, (4,0)y =0y -=则到渐近线距离为D 正确.(4,0)y =d =故选:ABD.11.设数列的前项和为,且,则( ) {}n a n n S 2121,log +=-=n n n n S a b a A .数列是等比数列B .{}n a 1(2)n n a -=-C .D .的前项和为22221232213n n a a a a -++++= {}n n a b +n 2n212n n n T +=-+【答案】ACD【分析】由已知可得数列是,2为公比的等比数列,从而可得通项公式,可判断A 、B ,{}n a 11a =进而可以求的值判断C ,也易求得的前项和判断D.2222123n a a a a ++++ {}n n a b +n 【详解】由已知,当时,可得21n n S a =-1n =11a =选项A ,,可得数列是,2为公比的等比数列,故A 正11122,2-----===n n n n n n n S S a a a a a {}n a 11a =确;选项B ,由选项A 可得解得,故B 错误;1121-==,n n a a a 1n 2n a -=选项 C ,数列是以1为首项,4为公比的等比数列,所以2{}n a ,故C 正确; 222212321441211433n n n n a a a a ---++++===- 选项D ,因为,故D 正确.212n+1n (12)(1)log ,2211222n n nn n n n n n n b a n a b n T --++==+=+=+=-+-,故选:ACD.12.已知函数的图象在处切线的斜率为9,则下列说法正确的是( ) 3()1f x x ax =-+2x =A .3a =B .在上单调递减 ()f x [1,1]-C .(1)(1)lim0x f x f x∆→+∆-=∆D .的图象关于原点中心对称 ()f x 【答案】ABC【分析】根据导数的几何意义求得的值,即可判断A ;根据函数单调性与导数的关系,即可判断aB ;由导数的定义可判断C ;由函数的对称性即可判断D. 【详解】,则, 3()1f x x ax =-+2()3f x x a '=-因为函数的图象在处切线的斜率为9, ()f x 2x =所以,解得,故A 正确;()2129f a ='-=3a =,则,3()31,R f x x x x =-+∈2()333(1)(1)f x x x x '=-=-+令,可得,所以在上单调递减,故B 正确; ()0f x '≤11x -≤≤[1,1]-由于,故C 正确;20(1)(1)lim(1)3130x f x f f x'∆→+∆-==⨯-=∆函数,则,3()31,R f x x x x =-+∈3()31f x x x -=-++所以,则的图象关于点中心对称,故D 不正确. ()()2f x f x +-=()f x ()0,1故选:ABC.三、填空题13.等比数列中,则__. {}n a 59740,a a a -=7a =【答案】4【分析】利用等比数列性质可得,结合条件即可得答案.2597a a a =【详解】由题可得,, 259774a a a a ==70a ≠所以. 74a =故答案为:4.14.已知,则__.()2()e 0xf x xf '=-()1f '=【答案】22e 1-【分析】根据导数运算求得正确答案.【详解】,则,()2()e 0xf x xf '=-2()2e (0)x f x f ''=-将代入可得,,解得,0x =()()()002e 020f f f '''=-=-()01f '=故,,2()e x f x x =-()22e 1xf x '=-所以.()2122e 12e 11f ⨯=-=-'故答案为:.22e 1-15.已知为坐标原点,抛物线的焦点为,为上一点,与轴垂直,O ()2:20C y px p =>F P C PF x 为轴上一点,且,若,则的准线方程为______.Q x PQ OP ⊥4FQ =C 【答案】=1x -【分析】设点,求得点,由已知条件得出,求出正数的值,即,2p P p ⎛⎫⎪⎝⎭4,02p Q ⎛⎫+ ⎪⎝⎭0PQ OP ⋅= p 可得出抛物线的准线方程.C 【详解】抛物线的焦点,()2:20C y px p =>,02p F ⎛⎫ ⎪⎝⎭为上一点,轴,所以,将代入抛物线的方程可得,P C PF x ⊥2P p x =2P px =P y p =±不妨设,因为为轴上一点,且,所以在的右侧.,2p P p ⎛⎫⎪⎝⎭Q x PQ OP ⊥Q F 又,得,即点,所以,, 42Qp FQ x =-= 42Q p x =+4,02p Q ⎛⎫+ ⎪⎝⎭()4,PQ p =- 因为,所以,,,PQ OP ⊥2402p PQ OP p ⋅=⨯-= 0p > 2p ∴=所以抛物线的准线方程为. C =1x -故答案为:. =1x -16.函数有两个零点,则的取值范围是 __. ln ()2x kf x x =-k 【答案】20,e ⎛⎫⎪⎝⎭【分析】函数有两个零点,即方程有两个根,构造函数,利ln ()2x kf x x =-ln 2x k x =ln ()(0)x g x x x=>用导数求出函数的单调区间,从而可画出函数的大致图像,根据图象即可得解. ()g x 【详解】函数有两个零点,方程有两个根, ln ()2x k f x x =-∴ln 02x kx -=即方程有两个根, ln 2x kx =设,则函数与的图像有两个交点, ln ()(0)xg x x x =>()g x 2k y =, 21ln ()xg x x -'=当时,,单调递增; (0,e)x ∈()0g x '>()g x 当时,,单调递减,(e,)x ∈+∞()0g x '<()g x 函数在时,取得最大值,∴()g x e x =()1e eg =又当时,;当时,且,0x →()g x →-∞x →+∞()0g x >()0g x →函数的大致图像,如图所示,∴()g x由图像可知,,102ek <<的取值范围是.k ∴20,e⎛⎫⎪⎝⎭故答案为:.20,e ⎛⎫⎪⎝⎭四、解答题17.已知圆圆心为原点,且与直线相切,直线l 过点. 1C 34100x y +-=(1,2)M (1)求圆的标准方程;1C(2)若直线l 被圆所截得的弦长为l 的方程. 1C 【答案】(1); 224x y +=(2)或 1x =3450x y -+=【分析】(1)直接由圆心到直线的距离求出半径,即可求出圆的方程;(2)先由弦长公式求出,斜率不存在时符合题意,斜率存在时,设出直线方程,由解出1d =1d =直线斜率,即可求解.【详解】(1)设圆的半径为,则,故圆的标准方程为;r 2r ==1C 224x y +=(2)设圆心到直线到的距离为,则;当直线l 斜率不存在时,易得l d =1d =,此时圆心到的距离,符合题意;:1l x =l 1d =当直线l 斜率存在时,设,即,则,解得,即:2(1)l y k x -=-20kx y k -+-=1d 34k =,:3450l x y -+=故直线l 的方程为或.1x =3450x y -+=18.已知等差数列满足. {}n a 13424,2a a a a +=-=(1)求数列的通项公式及前项和; {}n a n n S (2)记数列的前项和为,若,求的最小值. 1{}n S n n T 9950n T >n 【答案】(1) ()1,2n n n n a n S +==(2) 100【分析】(1)利用等差数列的通项公式及前项和公式即可求解;n (2)利用(1)的结论及裂项相消法求数列的前项和,结合不等式的解法即可求解. n 【详解】(1)设等差数列的公差为,则 {}n a d 因为,13424,2a a a a +=-=所以,即,解得. ()11112432a a d a d a d ++=⎧⎨+-+=⎩1222a d d +=⎧⎨=⎩111a d =⎧⎨=⎩所以数列的通项公式为, {}n a ()111n a n n =+-⨯=所以数列的通项公式及前项和为.{}n a n ()()1122n S n n n n ++==(2)由(1)知,, ()12n n n S +=所以, ()1211211n S n n n n ⎛⎫==- ⎪++⎝⎭所以数列的前项和为 1{}n S n 1231111n nT S S S S =++++ 111111224122223113n n ⎛⎫⎛⎫⎛⎫=+-+⎪⎛⎫- ⎪-++- ⎪ ⎪ +⎝⎭⎝⎝⎝⎭⎭⎭ 111111*********n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ . 1211n ⎛⎫=- ⎪+⎝⎭因为, 9950n T >所以,即,于是有,解得, 19921150n ⎛⎫->⎪+⎝⎭19911100n ->+111100n <+99n >因为, *N n ∈所以的最小值为.n 10019.已知:函数. 32()3f x x ax x =--(1)若,求的单调性;(3)0f '=()f x(2)若在上是增函数,求实数的取值范围. ()f x [)1x ∈+∞,a 【答案】(1)答案见解析;(2). (]0-∞,【分析】(1)求出导函数,利用,求出的值,解不等式,即可求出(3)0f '=a ()()''>0<0,f x f x ()f x 的单调性;(2)利用函数在区间上是单调增函数,导数大于等于0恒成立,推出关系式,求出实数的取值范围.a 【详解】(1),,32()3f x x ax x =-- 2()323'∴=--f x x ax ,,.(3)0'= f 27630∴--=a 4a ∴=将代入得,令得或. 4a =()2383'=--f x x x ()0f x '=13x =-3x =x1()3-∞-,13-1(3)3-, 3(3)+∞, ()f x ' +0 -0 +()f x↑↓↑在上单调递减,在上单调递增. ()f x ∴1(3)3∈-,x 1()(3)3∈-∞-+∞,,,x (2)方法1:在上是增函数, ()f x [)1x ∈+∞,在上恒成立, 2()3230f x x ax ∴--'=≥[)1+∞,, 31()2a x x∴≤-当时,是增函数,其最小值为,1x ≥31(2x x-3(11)02-=.实数的取值范围是. 0a ∴≤a (]0-∞,方法2:在上是增函数, ()f x [)1x ∈+∞,在上恒成立, 2()3230f x x ax ∴--'=≥[)1+∞,,. (1)2013f a a=-≥⎧⎪⎨≤'⎪⎩0a ∴≤实数的取值范围是. a (]0-∞,20.已知数列是公比为2的等比数列,,,成等差数列.{}n a 2a 3a 44a -(1)求数列的通项公式;{}n a (2)若,设数列的前n 项和,求证:. 21log n n na b a +={}n b n T 13n T ≤<【答案】(1)2n n a =(2)证明见解析【分析】(1)根据等差中项的性质和等比数列定义求解;(2)利用错位相减法求和即可证明.【详解】(1)因为,,成等差数列,所以,2a 3a 44a -32442a a a =+-又因为数列的公比为2,所以,{}n a 2311122242a a a ⨯=+⨯-即,解得,所以.1118284a a a =+-12a =1222n n n a -=⨯=(2)由(1)知,则, 2nn a =221log 1log 2122n n n n n n a n b a +++===所以, ① 2323412222n n n T +=++++L , ② 231123122222n n n n n T ++=++++ ①②得 -23111111122222n n n n T ++⎛⎫=++++- ⎪⎝⎭L 212111111111122221111221122n n n n n n -+++⎛⎫-- ⎪++⎝⎭=+-=+---. 11112133122222n n n n n +++++=+--=-所以. 3332n n n T +=-<又因为, 102n nn b +=>所以是递增数列,所以,所以.{}n T 11n T T =≥13n T ≤<21.已知函数,其中. 211()()ln 2=-++f x x a x x a0a >(1)当时,求曲线在点处切线的方程;1a =()y f x =()()1,1f (2)试讨论函数的单调区间.()f x 【答案】(1); 32y =-(2)答案见解析.【分析】(1)利用导数几何意义结合条件即得;(2)求函数的导函数,得到导函数的零点,讨论的范围,由导函数的零点对函数定义域分段,利()f x a 用导函数在各区间段内的符号判断原函数的单调性.【详解】(1)当时,,则, 1a =21()2ln 2f x x x x =-+1()2f x x x'=-+,又, ()10f '∴=()312f =-在点处切线的方程为; ∴()y f x =()()1,1f 32y =-(2)由题可得, 1()()11()(0)x a x a f x x a x a x x --⎛⎫'=-++=> ⎪⎝⎭令,解得或, ()0f x '=x a =1x a =若,,当变化时,,的变化情况如表: 01a <<1a a <x ()f x '()f x x (0,)a a 1(,)a a 1a ,1(a )∞+ ()f x ' +0-0 + ()f x 增函数减函数增函数的单调增区间为和,,单调减区间为; ()f x ∴(0,)a 1(a )∞+1(,)a a②若,,当变化时,,的变化情况如表: 1a >1a a <x ()f x '()f x x1(0,)a 1a , 1(a )a a (,)a +∞ ()f x ' +0-0 + ()f x 增函数减函数增函数的单调增区间为和,单调减区间为; ()f x ∴1(0,)a(,)a +∞1(,)a a③若,则,函数的单调增区间为;1a =()0f x '≥()f x ()0,∞+综上,当时,的单调增区间为和,,单调减区间为;当时,01a <<()f x (0,)a 1(a )∞+1(,a a1a >()f x 的单调增区间为和,单调减区间为;当时,函数的单调增区间为1(0,a(,)a +∞1(,)a a 1a =()f x .()0,∞+22.已知椭圆过点,且焦距为2222:1(0)x y C a b a b+=>>(2,1)P --(1)求椭圆的方程;C (2)过直线(不经过点交椭圆于点,,试问直线与直线的斜率之和为,求证:l )P C A B PA PB 1-l 过定点.【答案】(1) 22182x y +=(2)证明见解析【分析】(1)根据已知条件求得,从而求得椭圆的方程.,,a b c C (2)根据直线的斜率是否存在进行分类讨论,根据化简求得定点坐标.AB 1PA PB k k +=-【详解】(1)由题意可得,解得,22222411c aba b c ⎧=⎪⎪+=⎨⎪=+⎪⎩a b c ⎧=⎪⎪=⎨⎪=⎪⎩椭圆的方程:.∴C 22182x y +=(2)当直线的斜率不存在时,设其方程为,AB,x t x =-<<2x ≠-则, ,,A t Bt ⎛⎛⎝⎝所以, 212PA PB k k t +===-+解得(舍去),4t =-所以直线的斜率存在.AB 设直线的方程为,其中,AB y kx m =+21m k ≠-联立方程,消去得:, 22182y kx m x y =+⎧⎪⎨+=⎪⎩y 22(4)8801k x kmx -+=+设,()()1122,,,A x y B x y 则,, 122841km x x k -+=+21224841m x x k -⋅=+所以 12121122PA PB m kx m k k x k x x +++++=+++ 1212(2)21(2)2122k x m k k x m k x x ++-+++-+=+++ 122121()22m k m k k k x x -+-+=+++++ 12112(21)()22k m k x x =+-++++ 12121242(21)2()4x x k m k x x x x ++=+-++++ 2222841842(21)482()44141k m k m km k k k m k +-+-+=+-+-+++ 222221684412(21)16441641k km k k m k k m kmk -++=+-+⋅+--+ 224212(21)(2)1k km k m k k m -+=+-+⋅--, 24212121k km k k m -+-=+=--+整理得,直线的方程为,4m k =AB ()4y k x =+所以直线恒过定点.l ()4,0-【点睛】根据已知条件求解椭圆的方程,关键点在于列方程组来求得,要注意“隐藏条件”,,a b c .求解直线过定点问题,可先设出直线方程,然后根据已知条件列方程,求得直线方程中222a b c =+参数的关系,从而求得定点的坐标.。
2023-2024学年江苏省南通市高二(上)期末数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.数列1,53,52,…的通项公式可能是a n =( )A. n 2+1n +1B. n +1n 2+1C. n 22n−1D. n 2+12n−12.圆(x +1)2+y 2=1和圆(x−2)2+(y−4)2=16的位置关系为( )A. 相离B. 相交C. 外切D. 内切3.某校文艺部有7名同学,其中高一年级3名,高二年级4名.从这7名同学中随机选3名组织校文艺汇演,则两个年级都至少有1名同学入选的选法种数为( )A. 12B. 30C. 34D. 604.已知F 是抛物线C :x 2=2py(p >0)的焦点,点A(1,14)在C 上,则|AF|=( )A. 38B. 58C. 54D. 945.设S n 是等比数列{a n }的前n 项和,若S 4=6,S 8=18,则S 16=( )A. 48B. 90C. 96D. 1626.已知椭圆C :x 24+y 23=1,直线l 经过点T(1,12)与C 交于A ,B 两点.若T 是线段AB 的中点,则l 的方程为( )A. 4x−6y−1=0 B. 3x−2y−1=0 C. 4x +6y−7=0 D. 3x +2y−4=07.已知平行六面体ABCD−A 1B 1C 1D 1中,AA 1=3,BD =4,AD 1⋅DC−AB 1⋅BC =5,则cos <AA 1,BD >=( )A. 512B. −512C. 415D. −4158.已知F 是双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的右焦点,直线y = 52b 与C 交于A ,B 两点.若△ABF 的周长为7a ,则C 的离心率为( )A. 43 B. 65 C. 2 105二、多选题:本题共4小题,共20分。
2023-2024学年江苏省南京市高二上册期末数学质量检测试题一、单选题1.设正项等比数列{}n a 满足4336a a -=,26a =,则1a =()A .3B .12C .2D .13【正确答案】C【分析】本题可设公比为q ,然后根据4336a a -=得出26q q -=,通过计算求出3q =,最后通过21aa q=即可得出结果.【详解】设等比数列{}n a 的公比为q ,因为4336a a -=,26a =,所以22236a q a q -=,即26636q q -=,26q q -=,解得3q =或2-(舍去),3q =,则21623a a q ===,故选:C.2.“k =是“直线2y kx =+与圆221x y +=相切”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】A【分析】结合直线和圆相切的等价条件,利用充分条件和必要条件的定义进行判断即可.【详解】解:若直线2y kx =+与圆221x y +=相切,则圆心(0,0)到直线20kx y -+=的距离1d =,即214k +=,23k ∴=,即k =,∴“k 是“直线2y kx =+与圆221x y +=相切”的充分不必要条件,故选:A .本题主要考查充分条件和必要条件的判断,利用直线与圆相切的等价条件是解决本题的关键,比较基础.3.如果抛物线2y ax =的准线是直线1x =,那么它的焦点坐标为()A .(1,0)B .(2,0)C .(3,0)D .()1,0-【正确答案】D【分析】结合抛物线的知识确定正确答案.【详解】由于抛物线的准线是直线1x =,所以它的焦点为()1,0-.故选:D4.过抛物线24y x =焦点F 的直线l 交抛物线于,A B 两点(点A 在第一象限),若直线l 的倾斜角为60,则||||AF BF 的值为()A .2B .3C .32D .52【正确答案】B【分析】求出直线方程,联立直线和抛物线方程,解得A ,B 坐标,即可由抛物线定义求得,AF BF ,得出所求.【详解】由题可得()1,0F ,设()()1122,,,A x y B x y ,(12x x >),直线l 的倾斜角为60 ,∴则直线l 的方程为)1y x =-,联立)241y x y x ⎧=⎪⎨=-⎪⎩可得231030x x -+=,解得1213,3x x ==,由抛物线的定义可得12414,13AF x BF x =+==+=,则||3||AF BF =.故选:B.5.已知函数()sin 2f x x x π⎛⎫=+ ⎪⎝⎭,则2f π⎛⎫'= ⎪⎝⎭()A .2π-B .0C .1D .2π【正确答案】A【分析】先利用诱导公式把()f x 化简为()cos f x x x =,再利用常见函数的导数公式和函数乘积的导数的运算法则求出()f x ',代入2π可得所求的导数值.【详解】()sin cos 2f x x x x x π⎛⎫=+= ⎪⎝⎭,故()cos sin f x x x x '=-,所以22f ππ⎛⎫'=- ⎪⎝⎭.故选:A.本题考查诱导公式及导数的运算,注意函数乘积的导数的运算法则的正确应用,本题属于基础题.6.若2()24ln f x x x x =--,则()0f x ¢>的解集为()A .(0,)B .(-1,0)(2,)C .(2,)D .(-1,0)【正确答案】C【详解】()242220,0,x x f x x x x --'=-->()()0,210,2x x x x >∴-+>∴> 7.已知函数()322f x x ax bx a =+++在1x =处取得极值为10,则=a ()A .4或-3B .4或-11C .4D .-3【正确答案】C【分析】根据函数322()f x x ax bx a =+++在1x =处有极值10,可知f '(1)0=和f (1)10=,可求出a .【详解】由322()f x x ax bx a =+++,得2()32f x x ax b '=++,函数322()f x x ax bx a =+++在1x =处取得极值10,f ∴'(1)0=,f (1)10=,∴2230110a b a a b ++=⎧⎨+++=⎩,∴411a b =⎧⎨=-⎩或33a b =-⎧⎨=⎩,当33a b =-⎧⎨=⎩时,2()3(1)0f x x '=-,∴在1x =处不存在极值;当411a b =⎧⎨=-⎩时,2()3811(311)(1)f x x x x x '=+-=+-11(3x ∴∈-,1),()0f x '<,(1,)x ∈+∞,()0f x '>,∴符合题意.故选:C本题主要考查利用导数研究函数的极值,意在考查学生对这些知识的理解掌握水平.8.过抛物线2:8C y x =的焦点F 的直线交抛物线C 于A 、B 两点,若6AF =,则BF =()A .9或6B .6或3C .9D .3【正确答案】D设点A 为第一象限内的点,设点()11,A x y 、()22,B x y ,利用抛物线的定义可求得点A 的坐标,进而可求得直线AB 的方程,将直线AB 的方程与抛物线C 的方程联立,由韦达定理可求得点B 的横坐标,进而可求得BF .【详解】设点A 为第一象限内的点,设点()11,A x y 、()22,B x y ,则1>0x ,10y >,则由题意可得:点()2,0F ,126AF x =+=,则14x =,由2118y x =,得1y =,所以42AB k ==-AB 方程为)2y x =-,将直线AB 的方程代入28y x =化简得2540x x -+=,所以21x =,所以223F x B =+=,故选:D .结论点睛:过抛物线()220y px p =>焦点F 的弦AB ,点A 在第一象限,直线AB 的倾斜角为θ.(1)1cos p AF θ=-,1cos pBF θ=+;(2)22sin pAB θ=;(3)112AF BF p+=.二、多选题9.已知()0,πα∈,关于曲线C :22sin cos 1x y αα+=,下列说法正确的是()A .曲线C 不可能是圆B .曲线C 可能是焦点在x 轴上的椭圆C .曲线C 不可能是焦点在y 轴上的椭圆D .曲线C 可能是双曲线【正确答案】BD【分析】根据α的不同取值,结合椭圆和双曲线标准方程的形式,即可判断选项.【详解】A.当π4α=时,ππsin cos 44=22x y +=,即为圆的方程,故A 错误;B.曲线方程整理为22111sin cos x y αα+=,当π0,4α⎛⎫∈ ⎪⎝⎭时,110sin cos αα>>,曲线C 是焦点在x 轴上的椭圆,故B 正确;C.当ππ,42α⎛⎫∈ ⎪⎝⎭时,110cos sin αα>>,曲线C 是焦点在y 轴上的椭圆,故C 错误;D.当π,π2α⎛⎫∈ ⎪⎝⎭时,110,0cos sin αα<>,曲线C 表示双曲线,故D 正确.故选:BD10.已知数列{}n a 和{}n b 满足12a =,11b =,1251n n n a a b +=-+,1251n n n b b a +=-+.则下列结论不正确的是()A .数列{}n n a b -为等比数列B .数列{}n n a b +为等差数列C .6695a b +=D .()11132312n n n a --=⨯+-【正确答案】BCD【分析】对A ,条件两等式相减,根据定义判断等比数列;对B ,条件两等式相加,根据定义判断等差数列;对C ,由B 的结论求出通项,再求第6项;对D ,由AB 的结论求出通项公式,再两式相加.【详解】对A ,()()()11251516n n n n n n n n a b a b b a a b ++-=-+--+=-,即()113n n n n a b a b ++-=-,1110a b -=≠,故数列{}n n a b -为首项为1,公比为3的等比数列,A 对;对BC ,()()112515142n n n n n n n n a b a b b a a b +++=-++-+=++,即()1121n n n n a b a b +++=++,即()11121n n n n a b a b ++++=++,故数列{}1n n a b ++为首项为1114a b ++=,公比为2的等比数列,故111422n n n n a b -+++=⨯=,故121n n n a b ++=-,故数列{}n n a b +不为等差数列,76621127a b +=-=,BC 错;对D ,由A 得13n n n a b --=,又121n n n a b ++=-,两式相加得112231n n n a +-=+-,即()11142312n n n a --=⨯+-,D 错.故选:BCD11.如图,点P 在正方体1111ABCD A B C D -的面对角线1BC 上运动,则下列结论中正确的是()A .三棱锥11A PB D -的体积不变B .DP 平面11AB D C .11A P BD ⊥D .平面1ACP ⊥平面PBD 【正确答案】ABD【分析】利用等体积法判断体积不变,A 正确;证明平面11//AB D 平面1BDC ,即知//DP 平面11AB D ,B 正确;建立空间直角坐标系,通过空间向量的数量积运算证明C 错误D 正确即可.【详解】对于A ,11AB D 的面积是定值,11//AD BC ,1AD ⊂平面11AB D ,1BC ⊄平面11AB D ,∴1//BC 平面11AB D ,故P 到平面11AB D 的距离为定值,∴三棱锥11P AB D -的体积是定值,即三棱锥11A PB D -的体积不变,故A 正确;对于B ,由选项A 知,1//BC 平面11AB D ,同理//DB 平面11AB D ,而1BC BD B = ,1,BC BD ⊂平面1BDC ,∴平面11//AB D 平面1BDC ,DP ⊂ 平面1BDC ,//DP ∴平面11AB D ,故B正确;对于C ,以1D为原点,建立空间直角坐标系,设正方体1111ABCD A B C D -的棱长为2,P 在1BC 上,故可设(,2,),02P a a a ,则11(2,0,0),(2,2,2),(0,0,0)A B D ,1(2,2,)A P a a =- ,1(2,2,2)BD =---,则()1122424A P BD a a a ⋅=----=-不一定为0,1A P ∴和1BD 不垂直,故C 错误;对于D ,设(,2,),02P a a a,则11(2,0,0),(0,2,2),(2,2,2),(0,0,0),(0,0,2)A C B D D ,1(2,2,)A P a a =- ,1(2,2,2)A C =- ,(,2,2)DP a a =- ,(2,2,0)DB =,设平面1ACP 的法向量(,,)n x y z =,则11(2)202220n A P a x y az n A C x y z ⎧⋅=-++=⎪⎨⋅=-++=⎪⎩,取1x =,得221,,22a a n a a -⎛⎫= --⎝⎭ ,设平面PBD 的法向量(,,)m a b c =,则20220m DP ax y az m DB x y ⎧⋅=+-=⎪⎨⋅=+=⎪⎩ ,取1x =,得()1,1,1m =-- ,221022a a m n a a-⋅=--=-- .∴平面1ACP 和平面PBD 垂直,故D 正确.故选:ABD.12.已知函数()f x 的定义域为R ,其导函数()f x '满足()()f x f x '<,则()A .()()1e 0f f <B .()()1e 0f f >C .()()e ln 221f f <D .()()e ln 221f f >【正确答案】BC 【分析】构造函数()()xf xg x =e,利用导数分析函数()g x 的单调性,利用函数()g x 的单调性逐项判断,可得出合适的选项.【详解】构造函数()()x f x g x =e ,其中x ∈R ,则()()()0e xf x f xg x '-'=>,所以,函数()g x 为R 上的增函数,则()()10g g >,即()()10ef f >,所以,()()1e 0f f >,A 错B 对;因为ln 2ln e 1<=,则()()ln 21g g <,即()()ln 212ef f <,所以,()()e ln 221f f <,C 对D 错.故选:BC.三、填空题13.已知定义在区间()0,π上的函数()2sin f x x =-,则()f x 的单调递增区间为______.【正确答案】π,π4⎛⎫⎪⎝⎭【分析】对()f x 求导,求出()0f x ¢>的解即可求出答案.【详解】因为()2sin f x x =-,则()2cos f x x '=令()2cos 0f x x '=>,即cos x <且()0,πx ∈所以π,π4x ⎛⎫∈ ⎪⎝⎭,所以()f x 的单调递增区间为π,π4⎛⎫⎪⎝⎭故π,π4⎛⎫ ⎪⎝⎭14.如图,在棱长为1的正方体1111ABCD A B C D -中,E 为BC 的中点,点P 在线段1D E 上,点P 到直线1CC 的距离的最小值为___________.【分析】取11B C 的中点F ,连接EF ,1ED ,证得1//CC 平面1D EF ,把1C C 上任一点到平面1D EF 的距离即为两条异面直线1D E 与1CC 的距离,过点1C 作11C M D F ⊥,利用面面垂直的性质定理,证得1C M ⊥平面1D EF ,过点M 作//MP EF 交1D E 于点P ,得到1//MP C C ,取1C N MP =,连接PN ,证得NP ⊥平面1D EF ,在直角11D C F 中,求得1C M 的值,即可求解.【详解】解:如图所示,取11B C 的中点F ,连接EF ,1ED ,所以1//CC EF ,又EF ⊂平面1D EF ,1CC ⊄平面1D EF ,所以1//CC 平面1D EF ,所以直线1C C 上任一点到平面1D EF 的距离即为两条异面直线1D E 与1CC 的距离,过点1C 作11C M D F ⊥,因为平面1D EF ⊥平面1111D C B A ,且1C M ⊂平面1111D C B A ,所以1C M ⊥平面1D EF .过点M 作//MP EF 交1D E 于点P ,则1//MP C C ,取1C N MP =,连接PN ,则四边形1MPNC 是矩形,可得NP ⊥平面1D EF ,在直角11D C F 中,由11111C MD F D C C F ⋅=⋅,所以1111111·2D C C F C M D F ⨯===故点P 到直线1CC15.已知数列{}n a 满足*111,()2(1)(1)n n n na a a n N n na +==∈++,若不等式2410n ta n n++≥恒成立,则实数t 的取值范围是__________【正确答案】[9,)-+∞【分析】根据题意化简得到1111(1)n n n a na +-=+,利用等差数列的通项公式化简得1(1)n a n n =+,把不等式2410nta n n++≥,转化(4)(1)n n t n ++≥-恒成立,结合基本不等式,即可求解.【详解】由数列{}n a 满足*111,()2(1)(1)n n n na a a n N n na +==∈++,可得1111(1)n n n a na +-=+,且112a =,所以数列1n na ⎧⎫⎨⎬⎩⎭表示首项为2,公差为1的等差数列,所以111=+(1)1n n n na a -=+,所以1(1)n a n n =+,又由2410n ta n n++≥恒成立,即(4)(1)n n t n ++≥-对n N *∈恒成立,因为(4)(1)44(5)(25)9n n n n n n n++-=-++≤-⋅+=-,当且仅当2n =时取等号,所以9t ≥-,即实数t 的取值范围是[9,)-+∞.16.已知正项数列{}n a 满足递推关系11(2)21n n n a a n a --=+,且114a =,数列{}n b 满足21n n b a ⎛⎫= ⎪⎝⎭,则12231n b b bn ++⋅⋅⋅+=+________.【正确答案】226n n +【分析】将1121n n n a a a --=+两边取倒数得1112n n a a --=,可得1n a ⎧⎫⎨⎬⎩⎭是一个首项114a =,公差为2的等差数列,可求14(1)222n n n a =+-⨯=+,继而求出4(1)1n b n n =++,所以数列1n b n ⎧⎫⎨⎬+⎩⎭是以8为首项,4为公差的等差数列,利用等差数列求和公式即可求解.【详解】将1121n n n a a a --=+两边取倒数得1112n n a a --=,这说明1n a ⎧⎫⎨⎬⎩⎭是一个等差数列,又首项114a =,公差为2,所以14(1)222nn n a =+-⨯=+,于是2214(1)n n b n a ⎛⎫==+ ⎪⎝⎭,于是4(1)1n b n n =++,所以数列1n b n ⎧⎫⎨⎬+⎩⎭是以8为首项,4为公差的等差数列,故212(1)84262312n b b b n n n n n n -++⋅⋅⋅+=+⨯=++.故答案为.226n n+本题考查等差数列的推导证明以及等差数列的求和问题,意在考查学生的转化能力和计算求解能力,属于中等题.四、解答题17.在①71a =,②848S =,③894a a +=-这三个条件中任选一个,补充在下面问题中,并作答.设等差数列{}n a 的前n 项和为n S ,440S =,(1)求数列{}n a 的通项公式;(2)求n S 的最大值.【正确答案】(1)215n a n =-+(2)49【分析】(1)分别选①②③,根据等差数列的通项公式和求和公式,列出方程组,求得1,a d 的值,进而求得数列的通项公式;(2)由113a =,2d =-,利用等差数列的求和公式,化简得到2(7)49n S n =--+,结合二次函数的性质,即可得到答案.【详解】(1)解:选①,设等差数列{}n a 的首项为1a ,公差为d ,由题意得7141614640a a d S a d =+=⎧⎨=+=⎩,解得113a =,2d =-,所以数列{}n a 的通项公式为13(1)(2)215n a n n =+-⋅-=-+.选②,设等差数列{}n a 的首项为1a ,公差为d ,由题意得8141828484640S a d S a d =+=⎧⎨=+=⎩,解得113a =,2d =-,所以数列{}n a 的通项公式为13(1)(2)215n a n n =+-⋅-=-+.选③,设等差数列{}n a 的首项为1a ,公差为d ,由题意得8914121544640a a a d S a d +=+=-⎧⎨=+=⎩,解得113a =,2d =-,所以数列{}n a 的通项公式为13(1)(2)215n a n n =+-⋅-=-+.(2)解:由113a =,2d =-,所以2213(215)14(7)492n n S n n n n +-+=⨯=-+=--+,所以当7n =时,n S 取得最大值为49.18.已知圆C 过两点()3,5A -,()1,7B ,且圆心在直线230x y -+=上.(1)求圆C 的方程;(2)过点()4,4P -作直线l 与圆C 交于M ,N 两点,若8MN =,求直线l 的方程.【正确答案】(1)()()221225x y -+-=;(2)4x =或3440x y ++=.【分析】(1)设出圆的标准方程,利用待定系数法求解;(2)根据弦长及圆的半径求出弦心距,据此分直线斜率存在与不存在两种情况求解即可.【详解】(1)设圆C 的方程为()()222x a y b r -+-=,则222222(3)(5)(1)(7)230a b r a b r a b ⎧--+-=⎪-+-=⎨⎪-+=⎩,解得125a b r =⎧⎪=⎨⎪=⎩,所以圆C 的方程为()()221225x y -+-=.(2)设圆心()1,2C 到直线l 的距离为d ,则8M N ===,则3d =.当直线l 的斜率不存在时,直线l :4x =,满足题意;当直线l 的斜率存在时,设直线l 的方程为()44y k x +=-,即440kx y k ---=,所以3d =,解得34k =-,此时,直线l 的方程为()3444y x +=--,即3440x y ++=.综上所述,直线l 的方程为4x =或3440x y ++=.19.已知数列{}n a 的前n 项和为n S ,且232-=n n n S ,*N n ∈,等比数列{}n b 中,1212b b +=,且1b ,26b +,3b 成等差数列.(1)求数列{}n a 和{}n b 的通项公式;(2)记n c 为区间(]()*,N n n a b n ∈中的整数个数,求数列{}n c 的前n 项和n T .【正确答案】(1)32n a n =-,3n n b =(2)123332n n n n T +-+-=【分析】(1)根据,n n a S 关系,结合应用等差等比数列基本量运算即可得出通项公式;(2)计算n c 后再应用等差数列前n 项和公式,等比数列前n 项和公式分组求和即可.【详解】(1)因为232-=n n n S ,所以当1n =时,111a S ==;当2n ≥时,()()22131133222n n n n n n n a S S n -----=-=-=-,1n =时也成立,所以32n a n =-.设等比数列{}n b 公比q ,因为1b ,26b +,3b 成等差数列,且1212b b +=,所以()122131226b b b b b +=⎧⎨+=+⎩,则21111121212b q b b q b b q ⎧+=+⎨+=⎩,所以133b q =⎧⎨=⎩,所以3n n b =.(2)因为nc 为在区间(32,3n n ⎤-⎦中的整数个数,所以()332n n c n =--,则()()()122313132333333143213222n n n n n n n n T n +-+---=++⋅⋅⋅+-++⋅⋅⋅+-=-=--所以123332n n n n T +-+-=.20.如图,由直三棱柱111ABC A B C -和四棱锥11D BB C C -构成的几何体中,1190,1,2,5BAC AB BC BB C D CD ∠====== ,平面1CC D ⊥平面11ACC A (1)求证:1AC DC ⊥;(2)若M 为1DC 中点,求证://AM 平面1DBB ;【正确答案】(1)证明见解析;(2)证明见解析.【分析】(1)在直三棱柱111ABC A B C -中,易得1CC AC ⊥,又平面1CC D ⊥平面11ACC A ,利用面面垂直的性质定理证明即可;(2)由1AA ⊥平面111A B C ,且90BAC ∠= ,建立空间直角坐标系,求得平面1DBB 的一个法向量为(),,n x y z = ,证明AM n ⊥ 即可;【详解】(1) 在直三棱柱111ABC A B C -中,∴1CC ⊥平面ABC ,又AC ⊂平面ABC ,∴1CC AC ⊥,∵平面1CC D ⊥平面11ACC A ,且平面1CC D ⋂平面111ACC A CC =,又AC ⊂ 平面11ACC A ,∴AC ⊥平面1CC D ,又1DC ⊂平面1CC D ,∴1AC DC ⊥(2)直三棱柱111ABC A B C -中,∵1AA ⊥平面111A B C ,而1111,A B A C ⊂平面111A B C ∴111111,AA A B AA AC ⊥⊥,又90BAC ∠= ,建立如图所示的空间直角坐标系,则()()()()()()112,0,0,,,2,0,1,0,0,1,2A C C B B D ,所以()()12,0,0,1,1BB BD =-=- ,设平面1DBB 的一个法向量为(),,n x y z = ,则100n BB n BD ⎧⋅=⎨⋅=⎩,即200x x z -=⎧⎪⎨-=⎪⎩,令1y =,则(0,1,n = ,∵M 为1DC的中点,则12M ⎛⎫ ⎪⎝⎭,所以32AM ⎛⎫=- ⎪⎝⎭,因为0AM n ⋅= ,所以AM n ⊥ ,又AM ⊄平面1DBB ,∴//AM 平面1DBB .方法点睛:证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.21.已知函数32()f x x ax x b =-++在1x =处取得极值.(1)当2b =-时,求曲线()y f x =在0x =处的切线方程;(2)若函数()f x 有三个零点,求实数b 的取值范围.【正确答案】(1)20x y --=(2)4027b b ⎧⎫-<<⎨⎬⎩⎭【分析】先对函数()f x 求导,根据函数()f x 在1x =处取得极值,求出a ;(1)将2b =-代入()f x 解析式,再由导数的方法求出其在0x =处的切线斜率,进而可求出结果;(2)函数()f x 有三个零点,等价于方程322x x x b -+=-有三个不等实根,也即是函数()322g x x x x =-+与直线y b =-有三个不同的交点,由导数的方法研究函数()322g x x x x =-+的极值,即可得出结果.【详解】解:()2'321f x x ax =-+,由题意知()'10f =,所以3210a -+=,即2a =.所以()322f x x x x b =-++.(1)当2b =-时,()3222f x x x x =-+-,()2'341f x x x =-+,所以()'01f =,()02f =-,所以()f x 在0x =处的切线方程为()20y x --=-,即20x y --=.(2)令()0f x =,则322x x x b -+=-.设()322g x x x x =-+,则()y g x =与y b =-的图象有三个交点.()()()2'341311g x x x x x =-+=--,所以当x 变化时,()g x ,()'g x 的变化情况为x 1,3⎛⎫-∞ ⎪⎝⎭131,13⎛⎫ ⎪⎝⎭1()1,+∞()'g x +0-0+()g x 增函数极大值减函数极小值增函数所以14327g ⎛⎫= ⎪⎝⎭,()10g =.又当x →-∞时,y →-∞;当x →+∞时,y →+∞,所以4027b <-<,即4027b -<<.所以b 的取值范围是4027b b ⎧⎫-<<⎨⎬⎩⎭.本题主要考查导数在函数中的应用,以及导数的几何意义;对于求函数在某点的切线方程,只需对函数求导,求出切线斜率,再由点斜式求出切线方程即可;对于函数零点问题,可转化为两个函数图像交点的问题,由导数的方法研究函数的极值,进而可求出结果.22.如图,在六面体PABCD 中,PAB 是等边三角形,二面角P AB D --的平面角为30°,4PC AB ====.(1)证明:AB PD ⊥;(2)若点E 为线段BD 上一动点,求直线CE 与平面PAB 所成角的正切的最大值.【正确答案】(1)证明见解析(2)2【分析】(1)利用线面垂直的判定定理及性质定理即可证得;(2)建立空间直角坐标系,利用空间向量求得线面θ,满足sin θ=利用换元法结合二次函数的最值即可求解.【详解】(1)证明:取AB 中点M ,连接,PM DM ,因为,PA PB DA DB ==,所以,PM AB DM AB ⊥⊥,且PM DM M = ,所以AB ⊥平面PMD ,又PD ⊂平面PMD ,所以AB PD ⊥.(2)连接CM ,则CM AB ⊥,由4AC BC AB ===,可得2CM =,于是22216CM PM PC +==,所以PM CM ⊥,又,PM AB AB CM M ⊥⋂=,所以PM ⊥平面ABC ,以M 为原点,,,MC MB MP 分别为,,x y z 轴建立空间直角坐标系,则()()()(0,0,0,2,0,0,0,2,0,0,0,M C B P ,由120CMD ∠= ,可得(D -,平面PAB 的法向量为()1,0,0n = ,设([]1,,0,1BE BD λλλ==--∈,则()2,22,CE CB BE λλ=+=--- ,设CE 与平面PAB 所成角为θ,则sin cos ,n CE θ=令[]2,2,3t t λ+=∈,则sin θ令()[]248368,2,3f t t t t=-+∈,由对称轴138t =知,当138t =,即23λ=时,min 5()4f t =,max (sin )5θ==,于是max (tan ) 2.θ=直线CE 与平面PAB 所成角的正切的最大值为2.。
1.已知3sin()5
πα+=-,且α是第二象限角,则sin 2α= . 2.已知函数()cos26cos()2
f x x x π
=+-,则函数()f x 的最大值为 . 3.已知一个圆锥的母线长为2,侧面展开图是半圆面,则该圆锥的体积为 .
4.一个正六棱锥的体积为23,其底面是边长为2的正六边形,则该六棱锥的侧面积
为 .
5.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,ABC ∆的面积为S ,若22a b +
2c -=.(1)求角C 的大小;(2)若c =,S =a b +的值.
6. 已知函数()4tan cos()cos()3
f x x x x π
π=-⋅-⋅- (1)求()f x 的定义域与最小正周期;
(2)讨论()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦
上的单调性; (3)若6()5f α=,且ππ63<<a ,求π()6f +a 的值.
7.如图,在四棱锥E —ABCD 中,底面ABCD 为矩形,平面ABCD
⊥平面ABE ,∠AEB =90°,BE =BC ,F 为CE 的中点,求证:
(1)AE ∥平面BDF ;
(2)平面BDF ⊥平面ACE .
1.已知3sin()5
πα+=-,且α是第二象限角,则sin 2α= . 【答案】24
25-
2.已知函数()cos26cos()2
f x x x π
=+-,则函数()f x 的最大值为 . 【答案】5
3.已知一个圆锥的母线长为2,侧面展开图是半圆面,则该圆锥的体积为 .
4.一个正六棱锥的体积为23,其底面是边长为2的正六边形,则该六棱锥的侧面积
为 .
【答案】12
5.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,ABC ∆的面积为S ,若22a b +
2c -=.(1)求角C 的大小;(2)若c =,S =a b +的值.
【答案】(1)因为222a b c +-=,所以12cos sin 2ab C ab C =⨯
化简得: tan C 0C π<<,3C π=
∴.
(2)3C π=,c =,223a b ab +-=∴,()233a b ab +-=∴①
又ABC S ∆=,1sin 23ab π=∴2ab =② 联立①②可得()29a b +=,又0a b +>,3a b +=∴.
6. 已知函数()4tan cos()cos()3
f x x x x π
π=-⋅-⋅- (1)求()f x 的定义域与最小正周期;
(2)讨论()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦
上的单调性; (3)若6()5f α=,且ππ63<<a ,求π()6f +a 的值. 【答案】(1)f (x )的定义域为{x |x ≠π2
+k π,k ∈Z } f (x )=4tan x cos x cos ⎝⎛⎭⎫x -π3-3=4sin x cos ⎝⎛⎭⎫x -π3-3=4sin x ⎝⎛⎭
⎫12cos x +32sin x - 3 =2sin x cos x +23sin 2x -3=sin2x +3(1-cos2x )-3=sin2x -3cos2x =
2sin ⎝⎛⎭
⎫2x -π3. 所以f (x )的最小正周期T =2π2
=π. (2)令z =2x -π3
,则函数y =2sin z 的单调递增区间是⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z. 由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,得-π12+k π≤x ≤5π12
+k π,k ∈Z. 设A =⎣⎡⎦⎤-π4,π4,B ={x |-π12+k π≤x ≤5π12
+k π,k ∈Z}, 易知A ∩B =⎣⎡⎦⎤-π12,π4.所以当x ∈⎣⎡⎦⎤-π4,π4时,f (x )在区间⎣⎡⎦
⎤-π12,π4上单调递增, 在区间⎣⎡⎦⎤-π4
,-π12上单调递减. (3)由题意得: π62sin(2)35-=a ,即π3sin(2)35
-=a ,
∵ππ63<<a , ∴ππ0233
<-<a ,∴π4cos(2)35-=a , π()6f +=a ππππ2sin[2()]2sin[(2)]6333
+-=-+a a
ππππ2[sin(2)cos cos(2)sin ]3333=-+-=a a
∴π()6f +=a 7.如图,在四棱锥E —ABCD 中,底面ABCD 为矩形,平面ABCD
⊥平面ABE ,∠AEB =90°,BE =BC ,F 为CE 的中点,求证:
(1)AE ∥平面BDF ;
(2)平面BDF ⊥平面ACE .
【答案】证明:(1)设AC ∩BD =G ,连结FG ,易知G 是AC 的中点,
∵ F 是EC 中点,∴ 在△ACE 中,FG ∥AE .
∵ AE ⊄平面BFD ,FG ⊂平面BFD ,
∴ AE ∥平面BFD .(6分)
(2)∵ 平面ABCD ⊥平面ABE ,BC ⊥AB ,
平面ABCD ∩平面ABE =AB ,∴ BC ⊥平面ABE .∵ AE ⊂平面ABE ,∴ BC ⊥AE .
又AE ⊥BE ,BC ∩BE =B ,∴ AE ⊥平面BCE ,∴ AE ⊥BF .(10分)
在△BCE 中,BE =CB ,F 为CE 的中点,∴ BF ⊥CE ,AE ∩CE =E ,∴ BF ⊥平面
ACE .
又BF⊂平面BDF,∴平面BDF⊥平面ACE.(14分)。