大学物理练习题 毕奥—萨伐尔定律(续) 磁场的高斯定理
- 格式:pdf
- 大小:334.35 KB
- 文档页数:5
第六章 稳恒磁场思考题6-1 为什么不能把磁场作用于运动电荷的力的方向,定义为磁感强度的方向?答:对于给定的电流分布来说,它所激发的磁场分布是一定的,场中任一点的B 有确定的方向和确定的大小,与该点有无运动电荷通过无关。
而运动电荷在给定的磁场中某点 P 所受的磁力F ,无论就大小或方向而言,都与运动电荷有关。
当电荷以速度v 沿不同方向通过P 点时,v 的大小一般不等,方向一般说也要改变。
可见,如果用v 的方向来定义B 的方向,则B 的方向不确定,所以我们不能把作用于运动电荷的磁力方向定义为磁感应强度B 的方向。
6-2 从毕奥-萨伐尔定律能导出无限长直电流的磁场公式aIB πμ2=。
当考察点无限接近导线(0→a )时,则∞→B ,这是没有物理意义的,如何解释?答:毕奥-萨伐尔定律是关于部分电流(电流元)产生部分电场(dB )的公式,在考察点无限接近导线(0→a )时,电流元的假设不再成立了,所以也不能应用由毕奥-萨伐尔定律推导得到的无限长直电流的磁场公式aIB πμ2=。
6-3 试比较点电荷的电场强度公式与毕奥-萨伐尔定律的类似与差别。
根据这两个公式加上场叠加原理就能解决任意的静电场和磁场的空间分布。
从这里,你能否体会到物理学中解决某些问题的基本思想与方法?答:库仑场强公式0204dqr dE rπε=,毕奥一萨伐定律0024Idl r dB r μπ⨯= 类似之处:(1)都是元场源产生场的公式。
一个是电荷元(或点电荷)的场强公式,一个是电流元的磁感应强度的公式。
(2)dE 和dB 大小都是与场源到场点的距离平方成反比。
(3)都是计算E 和B 的基本公式,与场强叠加原理联合使用,原则上可以求解任意分布的电荷的静电场与任意形状的稳恒电流的磁场。
不同之处: (1)库仑场强公式是直接从实验总结出来的。
毕奥一萨伐尔定律是从概括闭合电流磁场的实验数据间接得到的。
(2)电荷元的电场强度dE 的方向与r 方向一致或相反,而电流元的磁感应强度dB 的方向既不是Idl 方向,也不是r 的方向,而是垂直于dl 与r 组成的平面,由右手螺旋法则确定。
第一单元 毕奥—萨伐尔定律[知识点精要]1. 毕奥—萨伐尔定律:电流元Idl 在P 点产生的磁感应强度为: 304r r l Id B d ⨯=πμ 2.运动电荷产生的磁场:304r r v q B ⨯=πμ 3.磁场的叠加原理 导线L 中的电流在P 点产生的磁感应强度等于每个电流元单独存在时,在P 点产生的磁感应强度的矢量和,即⎰⎰⨯==304r r l Id B d B πμ 或 ∑=ii B B4.三种特殊形状载流导线产生的磁场:(1)“无限长”直线电流周围的磁场 aI B πμ20= (2)载流线圈圆心处的磁场 a IB 20μ=(3)均匀密绕“无限长”直载流螺线管内的磁场 nI B 0μ=5.磁矩: n IS P m =[典型例题]:例1-1.有一折成如图所示的无限长导线,已知电流I=10A ,半圆半径R=0.5cm ,试求圆心O 点的磁感应强度。
解:O 点的磁场可看成是半无限长载流导线AB 、CD 和半圆弧BC 电流产生的磁场的叠加。
AB 、BC 产生的磁场方向相同,均垂直纸面向里;CD 产生的磁场为零。
故 )11(40440000+=++=πμμπμR I R I R I B例1-2 图示为两条穿过Y 轴垂直于X-Y 平面的平行长直导线的俯视图,两条导线皆通有电流I ,但方向相反,它们到X 轴的距离皆为a 。
(1)推导出X 轴上P 点处的磁感应强度B(X)的表达式。
(2)求P 点在X 轴上何处时,该点的B 取得最大值。
解:0122I B B rμπ== 由对称性,X 轴上任一点P 的磁感应强度 B 一定沿X 轴方向。
设B 与X 轴夹角为φ,那么1222cos 2()Ia B B a x μϕπ===+ 显然x=0处,B 最大,为:0I B a μπ=例1-3 圆盘半径R ,表面电荷面密度是σ,圆盘绕轴线以匀角速度ω旋转时,求圆盘中心的磁感应强度。
解:当带电圆盘旋转时,其上电荷做圆周运动形成电流,在空间产生磁场圆盘上的电流可以看成是半径连续变化的圆形电流的叠加。
第24 讲毕奥—萨伐尔定律的应用(续)解:[Q6.24.1]半径为R 的薄圆盘上均匀带电,总电荷量为q 。
若此圆盘绕通过盘心且垂直于盘面的轴线以角速度匀速转动,求轴线上距盘心x 处的磁感应强度。
ω圆盘上电荷面密度为2πq /Rσ=以圆盘盘心O 为圆心,取半径为r 、宽为d r 的圆环,其所带电荷量为其电流为圆电流d I 在轴线上P 点处产生的磁感应强度大小为d 2πd q r rσ=d d 2πd d 2π2πI qr rr rωωσσω===220022322232d d d 2()2()//r I rB r r r x r x μμσω==++所有圆电流在P 点产生的磁场方向都相同,沿着x 轴正向。
因此整个圆盘在轴线上P 点处产生的磁感应强度大小为302232d 2()/rr r x μσω=+3022320d 2()R /r B r r x μσω=+⎰2202212222()/R xx R x μσω⎡⎤+=-⎢⎥+⎣⎦当时,的方向与的方向相同;0q >B ω0q <B ω当时,的方向与的方向相反;在盘心处,x = 0,2202212222()/R xB x ωR x μσ⎡⎤+=-⎢⎥+⎣⎦02RB ωμσ=I 2IOI 1I b a [Q6.24.2]如图所示,两根长直导线沿铜环的半径方向与环上的a ,b 两点相接,并与很远的电源相连,直导线中的电流为I 。
设圆环由均匀导线弯曲而成,求各段载流导线在环心O 点产生的磁感应强度以及O 点的总磁感应强度。
解:O 点在长直导线的延长线上,故载流直导线在O 点产生的磁感应强度为零。
电流I 1在O 点产生的磁感应强度大小为电流I 2在O 点产生的磁感应强度大小为⊗101111220d 4π4πl I l I l B r rμμ==⎰2002222220d 4π4πl I l I l B r rμμ==⎰由于,122211I R l I R l ==则,B 1=B 2,1122I l I l =故B = 0。
毕奥—萨伐尔定律一. 选择题1. 关于试验线圈,以下说法正确的是(A) 试验线圈是电流极小的线圈.(B) 试验线圈是线圈所围面积极小的线圈.(C) 试验线圈是电流足够小,以至于它不影响产生原磁场的电流分布,从而不影响原磁场;同时线圈所围面积足够小,以至于它所处的位置真正代表一点的线圈.(D) 试验线圈是电流极小,线圈所围面积极小的线圈.2. 关于平面线圈的磁矩,以下说法错误的是 (A) 平面线圈的磁矩是一标量,其大小为P m =IS ;(B) 平面线圈的磁矩P m =Is n . 其中I 为线圈的电流, S 为线圈的所围面积, n .为线圈平面的法向单位矢量,它与电流I 成右手螺旋;(C) 平面线圈的磁矩P m 是一个矢量, 其大小为P m =IS , 其方向与电流I 成右手螺旋; (D) 单匝平面线圈的磁矩为P m =Is n ,N 匝面积相同且紧缠在一起的平面线圈的磁矩为P m =NIS n ;3. 用试验线圈在磁场中所受磁力矩定义磁感应强度B 时, 得空间某处磁感应强度大小的定义式为B=M max /p m ,其中p m 为试验线圈的磁矩, M max 为试验线圈在该处所受的最大磁力矩.故可以说(A) 空间某处磁感应强度的大小只与试验线圈在该处所受最大磁力矩M max 成正比. M max 越大,该处磁感应强度B 越大.(B) 空间某处磁感应强度的大小只与试验线圈的磁矩p m 成反比. p m 越大,该处磁感应强度B 越小.(C) 空间某处磁感应强度的大小既与试验线圈在该处所受的最大磁力矩M max 成正比,又与试验线圈的磁矩p m 成反比.(D) 空间某处磁感应强度时磁场本身所固有的,不以试验线圈的磁矩p m 和试验线圈在该处所受最大磁力矩M max 为转移.4. 两无限长载流导线,如图9.1放置,则坐标原点的磁感应强度的大小和方向分别为: (A)2μ0 I / (2 π a ) ,在yz 面内,与y 成45︒角.(B)2μ0 I / (2 π a ) ,在yz 面内,与y 成135︒角. (C)2μ0 I / (2 π a ) ,在xy 面内,与x 成45︒角. (D)2μ0 I / (2 π a ) ,在zx 面内,与z 成45︒角.5. 用试验线圈在磁场中所受磁力矩定义磁感应强度B 时, 空间某处磁感应强度的方向为(A) 试验线圈磁矩P m 的方向.(B) 试验线圈在该处所受最大磁力矩M max 时,磁力矩M 的方向.(A) 试验线圈在该处所受最大磁力矩M max 时,试验线圈磁矩P m 的方向. (D) 试验线圈在该处所受磁力矩为零时,试验线圈磁矩P m 的方向.(E) 试验线圈在该处所受磁力矩为零且处于稳定平衡时,试验线圈磁矩P m 的方向.二.填空题1. 对于位于坐标原点,方向沿x 轴正向的电流元Idl ,它图9.2图9.1在x 轴上a 点, y 轴上b 点, z 轴上c 点(a ,b ,c 距原点O 均为r )产生磁感应强度的大小分别为B a , B b , B c2. 宽为a ,厚度可以忽略不计的无限长扁平载流金属片,如图9.2所示,中心轴线上方一点P 的磁感应强度的方向沿 (填x ,或y ,或z )轴 (填正,或负)方向.3. 氢原子中的电子,以速度v 在半径r 的圆周上作匀速圆周运动,它等效于一圆电流,其电流I 用v 、r 、e (电子电量)表示的关系式为I = ,此圆电流在中心产生的磁场为B= ,它的磁矩为p m = .三.计算题1. 如图9.3,真空中稳恒电流2I 从正无穷远沿z 轴流入直导线,再沿z 轴负向沿另一直导线流向无穷远,中间流过两个半径分别为R 1 、R 2,且相互垂直的同心半圆形导线,两半圆导线间由沿直径的直导线连接.两支路电流均为I .求圆心O 的磁感应强度B 的大小和方向.2. 如图9.4, 将一导线由内向外密绕成内半径为R 1 ,外半径为R 2 的园形平面线圈,共有N 匝,设电流为I ,求此园形平面载流线圈在中心O 处产生的磁感应强度的大小.毕奥—萨伐尔定律一.选择题 C A D B E 二.填空题1 0, μ0I d l /(4πr 2), μ0I d l /(4πr 2).2 x , 正.3 ev /(2πr ),μ0ev /(4πr 2), evr /2.三.计算题1. 流进、流出的两直线电流的延长线过O 点,在O 点产生的磁场为 B 1=B 2=0 大、小半圆电流在O 点产生的磁场为B 3=μ0I /4R 1 B 4=μ0I /4R 2故O 点磁场为 B =( B 32+ B 32)1/2=(μ0I /4)( 1/R 22+1/R 12)1/2与x 轴的夹角为 ϕ=π/2+arctan(R 1/R 2),2. 在距圆心r (R 1≤r ≤R 2)处取细圆环,宽d r 匝数为 d N =n d r =N d r /(R 2-R 1)d B =μ0I d N /(2r )=N μ0I d r /[2(R 2-R 1)r ]()[]{}⎰-=211202R R r R R NIdr B μ= μ0NI ln(R 2/R 1)/[2(R 2-R 1)]图9.4毕奥—萨伐尔定律(续) 磁通量 磁场中的高斯定理一.选择题1. 电流元I d l 位于直角坐标系原点,电流沿z 轴正方向,空间点P ( x , y , z )磁感应强度d B 沿x 轴的分量是:(A) 0.(B) -(μ0 / 4π)I y d l / ( x 2 + y 2 +z 2 )3/2 .(C) -(μ0 / 4π)I x d l / ( x 2 + y 2 +z 2 )3/2 . (D) -(μ0 / 4π)I y d l / ( x 2 + y 2 +z 2 ) .2. 无限长载流导线,弯成如图10.1所示的形状,其中ABCD 段在xOy 平面内,BCD 弧是半径为R 的半圆弧,DE 段平行于Oz 轴,则圆心处的磁感应强度为(A) j μ0 I / (4 π R ) + k [μ0 I / (4 π R )-μ0 I / (4R )] . (B) j μ0 I / (4 π R ) -k [μ0 I / (4 π R ) + μ0 I / (4R )] . (C) j μ0 I / (4 π R ) + k [μ0 I / (4 π R )+μ0 I / (4R )] . (D) j μ0 I / (4 π R ) -k [μ0 I / (4 π R )-μ0 I / (4R )] .3. 长直导线1 沿垂直bc 边方向经a 点流入一电阻均匀分布的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2 返回电源 (如图10.2),若载流直导线1、2和三角形框在框中心O 点产生的磁感应强度分别用B 1 、B 2和B 3 表示,则O 点的磁感应强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0 .(B) B = 0,因为虽然B 1 ≠0,B 2 ≠0,但 B 1 +B 2 = 0 ,B 3 = 0. (C) B ≠ 0,因为虽然B 3 =0,但B 1 +B 2 ≠ 0. (D) B ≠ 0,因为虽然B 1 +B 2 = 0,但B 3 ≠0 .4. 在磁感应强度为B 的匀强磁场中, 有一如图10.3所示的三棱柱, 取表面的法线均向外,设过面AA 'CO , 面B 'BOC ,面AA 'B 'B 的磁通量为Φm1,Φ m 2,Φ m 3,则(A) Φ m1=0, Φ m2=Ebc , Φ m3=-Ebc . (B) Φ m1=-Eac , Φ m2=0, Φ m3=Eac .(C) Φ m1=-Eac , Φ m2=-Ec 22b a +, Φ m3=-Ebc . (D) Φ m1=Eac , Φ m2=Ec 22b a +, Φ m3=Ebc . 5. 如图10.4所示,xy 平面内有两相距为L 的无限长直载流导线,电流的大小相等,方向相同且平行于x 轴,距坐标原点均为a ,Z 轴上有一点P 距两电流均为2a ,则P 点的磁感应强度B(A) 大小为3μ0I /(4πa ),方向沿z 轴正向. (B) 大小为μ0I /(4πa ),方向沿z 轴正向. (C) 大小为3μ0I /(4πa ),方向沿y 轴正向. (D) 大小为3μ0I /(4πa ),方向沿y 轴负向.二.填空题图10.1图10.2图10.4图10.31. 一带正电荷q 的粒子以速率v 从x 负方向飞过来向x 正方向飞去,当它经过坐标原点时, 在x 轴上的x 0点处的磁感应强度矢量表达式为B = ,在y 轴上的y 0处的磁感应强度矢量表达式为 .2. 如图10.5真空中稳恒电流I 流过两个半径分别为R 1 、R 2的共面同心半圆形导线,两半圆导线间由沿直径的直导线连接,电流沿直导线流入流出,则圆心O 点磁感应强度B 0 的大小为 ,方向为 ;3. 在真空中,电流由长直导线1沿半径方向经a 点流入一电阻均匀分布的圆环,再由 b 点沿切向流出,经长直导线2 返回电源(如图10.6),已知直导线上的电流强度为I ,90︒,则圆心O 点处的磁感应强度的大小B =.三.计算题1. 一半径R = 1.0cm 的无限长1/4I = 10.0A 的电流,设电流在金属片上均匀分布,试求圆柱轴线上任意一点P 的磁感应强度.2. 如图10.7,无限长直导线载有电流I , 旁边有一与之共面的长方形平面,长为a ,宽为b ,近边距电流I 为c ,求过此面的磁通量.毕奥—萨伐尔定律(续) 磁通量 磁场中的高斯定理一.选择题 B C A B D 二.填空题1. 0,[μ0qv /(4πy 02)]k2. (μ0I /4)( 1/R 2-1/R 1),垂直纸面向外,3. μ0I /(4πR ) 三.计算题1、解:电流截面如图,电流垂直纸面向内,取窄无限长电流元d I =j d l =jR d θ j =I /(2πR/4)=2I /(πR )d I =2I d θ/π d B =μ0d I /(2πR )=μ0I d θ/(π2R ) d B x =d B cos(θ+π/2)=-μ0I sin θd θ/(π2R )d B y =d B sin(θ+π/2)=μ0I cos θd θ/(π2R )()[]⎰-=πππθθμ20sin R d I B x =-μ0I /(π2R ) ()[]⎰=πππθθμ2cos R d I B y=-μ0I /(π2R )B =( B x 2+B y 2)1/2=2μ0I /(π2R )与x 轴夹角 =α225°图10.7。
恒定磁场的高斯定理和安培环路定理1.选择题1.磁场中高斯定理: ,以下说法正确的是:( )⎰=∙ss d B 0A .高斯定理只适用于封闭曲面中没有永磁体和电流的情况B .高斯定理只适用于封闭曲面中没有电流的情况C .高斯定理只适用于稳恒磁场D .高斯定理也适用于交变磁场答案:D2.在地球北半球的某区域,磁感应强度的大小为T ,方向与铅直线成60度角。
则5104-⨯穿过面积为1平方米的水平平面的磁通量 ( ) A .0 B .WbC .WbD .Wb5104-⨯5102-⨯51046.3-⨯答案:C3.一边长为l =2m 的立方体在坐标系的正方向放置,其中一个顶点与坐标系的原点重合。
有一均匀磁场通过立方体所在区域,通过立方体的总的磁通量有()3610(k j i B++=)A .0B .40 WbC .24 WbD .12Wb答案:A4.无限长直导线通有电流I ,右侧有两个相连的矩形回路,分别是和,则通过两个1S 2S 矩形回路、的磁通量之比为:( )。
1S 2S A .1:2 B .1:1C .1:4D .2:1答案:B5.均匀磁场的磁感应强度垂直于半径为R 的圆面,今以圆周为边线,作一半球面S ,B则通过S 面的磁通量的大小为()A .B .C .0D .无法确定B R 22πB R 2π答案:B6.在磁感强度为的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单B位矢量与的夹角为,则通过半球面S 的磁通量为( )n BαA . B . C .D .B r2πB r22παπsin 2B r-απcos 2B r -答案:D7.若空间存在两根无限长直载流导线,空间的磁场分布就不具有简单的对称性,则该磁场分布( )A .不能用安培环路定理来计算B .可以直接用安培环路定理求出C .只能用毕奥-萨伐尔定律求出D .可以用安培环路定理和磁感应强度的叠加原理求出答案:D8.在图(a)和(b)中各有一半径相同的圆形回路L 1和L 2,圆周内有电流I 1和I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 2、P 1为两圆形回路上的对应点,则:()A .B .2121,P P L L B B l d B l d B =⋅=⋅⎰⎰ 2121,P P L L B B l d B l d B ≠⋅≠⋅⎰⎰C .D .2121,P P L L B B l d B l d B ≠⋅=⋅⎰⎰ 2121,P P L L B B l d B l d B =⋅≠⋅⎰⎰答案:C9.一载有电流I 的导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管(R=2r ),两螺线管单位长度上的匝数相等,两螺线管中的磁感应强度大小B R 和B r 应满足()A .B R =2B r B .B R =B rC .2B R =B rD .B R =4B r 答案:B10.无限长载流空心圆柱导体的内外半径分别为a,b,电流在导体截面上均匀分布,则空间各处的的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示。