近年国内外大停电事故及其简要分析
- 格式:pdf
- 大小:466.81 KB
- 文档页数:7
9_15韩国大停电事故分析第一篇:9_15韩国大停电事故分析9.15韩国大规模停电事件情况分析及启示一、大规模停电事件的基本情况1、事件概况当地时间9月15日下午15时10分左右,韩国首都首尔、仁川、釜山、大田、京畿道、江原道、忠清北道、忠清南道、庆尚南道等全国各地陆续发生大规模停电事件。
各地红绿灯熄灭,交通瘫痪;部分银行的自动操作机停止运作,手机没有信号;市中心写字楼、商场、中小企业、棒球场、电影院、大型超市和购物中心等均陷入一片混乱。
停电家庭一度多达212万户(注:2011年韩国全国人口约5000万)。
各大医院启动了自备发电机才避免大碍。
备有独立发电系统的三星电子、现代汽车、SK能源、浦项制铁等大企业也没有受到这次大规模停电事件影响。
直到当地时间晚上20时,停电近5个小时左右,全国电力供应才恢复正常。
这是韩国史上最大规模的停电事件。
2、韩国电网简介韩国电网发电装机以火电为主,其次为核电,并有少量的水电。
由于一次能源严重依赖进口,韩国注重发电能源多样化,火电构成包括煤电、气电和油电。
韩国电力系统是由多个电压等级构成的统一输电网络,没有与其他国家互联。
全国电网的输电电压等级为354kV及765kV,地方电网的电压等级为154kV和66kV,配电电压等级为22kV,如图1所示。
韩国全国电网采用统一调度模式,所有的发电机组及765kV、354kV和部分154kV输电网均由韩国国家调度中心(KPX)直接调管,KPX下设11个区域调度机构,主要负责154kV及以下配电网络的调度。
图1 韩国电网图3、事件发生经过当地时间9月15日上午11时过后,韩国全国用电量猛增,备用容量率直线下跌。
通常备用容量率超过10%才算安全,但当天11时至12时备用容量率(平均每小时)跌破了安全线。
中午时间用电负荷减少,备用容量率恢复到11.9%。
午后13时起用电量猛增,13时至14时备用容量率跌至6.7%,14时至15时进一步下降到5.1%。
十六起触电事故案例分析在日常生活中,电器和电力设施已经成为我们不可或缺的一部分。
无论是在家中还是在工作场所,我们都依赖于电力来进行生活和工作。
尽管电力技术和安全标准已经得到了相当程度的提高,但是因为各种原因,电流依然会对人类造成致命的损伤或者伤害,从而带来生命危险或者身体伤害。
今天,我们将为大家详细介绍16个触电事故案例及其分析,以此提高大家对电力安全的认识和采取相应的安全措施。
事件1:电气工人工作时触电身亡这是一个极其悲惨的事件。
2017年12月9日,在美国纽约市,一名电器维修工人在工作时触电身亡。
死者名叫彼得·佩尔蒂耶,当时他正在一个大楼的电气室工作,准备重新恢复供电。
据报道,佩尔蒂耶在较高电压下工作,并未采取必要的安全措施。
这项事件显示出了电气工人在工作中必须时刻注意安全标准。
另外,该事件也强调了地质和其他安全措施的重要性。
有足够的时间保证工人在工作前进行必要的安全检查,是非常关键的。
否则,他们会面临生命威胁。
事件2:电梯电击事故导致22人中毒在中国,电梯电击事故已经越来越常见。
2018年12月,一家万达广场就出现了一起电梯触电事故。
当时,22人进入该电梯,发现电梯已经停电,他们试图打开电梯门寻求救援。
当电梯门被推开时,22人同时触电,并且因为电击而失去意识。
接到报警后,救援人员赶到现场,将这些人送往附近的医院。
随后,消息爆出,这些人中有13人因触电而导致一氧化碳中毒,其中5人受伤较重。
事实上,许多电梯电击事件都是由于不合格的电气设备或不合规的维护而导致的。
在这个案例中,有一些问题需要得到重视,比如应该对电气设备进行定期检查和维护,确保其能够正常运行。
此外,电梯的安全标识和说明书也需要得到进一步改进,以确保用户能够正确操作电梯和进行相应的安全措施。
事件3:校园变电站触电导致一名中学生死亡2019年3月29日,在中国广西,一名中学生因触电身亡。
该学生被发现被卡在位于其所在学校的变电站中,其身体已经变形,经过检查确诊为触电身亡。
美加“8.14大停电”原因及分析北美电力可靠性委员会(NERC)对有关8.14大停电原因的报告以及有关方面的资料清晰地给出了此次事故的起因和发展过程,现简述如下。
从2003年8月14日下午美国东部时间(EDT,下述均为此时间)15时06分开始,美国俄亥俄州的主要电力公司第一能源公司(First Energy Corp.,以下简记为FE)的控制区内发生了一系列的突发事件。
这些事件的累计效应最终导致了大面积停电。
其影响范围包括美国的俄亥俄州、密执安州、宾夕法尼亚州、纽约州、佛蒙特州、马萨诸塞州、康涅狄格州、新泽西州和加拿大的安大略省、魁北克省,损失负荷达61.8 Gw,影响了近5千万人口的用电。
事故演变过程可分为如下几个阶段:(1)事故发生前的阶段。
图1中,各系统之间靠345kV和138kV线路构成一个交直流混联的巨大电网,其总体潮流为自南向北传送。
属于事故源头的第一能源(FE)系统因负荷高,受入大量有功,系统负荷约为12.635GW,受电约2.575GW(占总负荷的21%),导致大量消耗无功。
尽管此时系统仍然处于正常的运行状态,但无功不足导致系统电压降低。
其中FE管辖的俄亥俄州的克力夫兰-阿克伦(Cleveland-Akron)地区为故障首发地点。
在事故前,供给该地区有功及无功的重要电源:机组戴维斯-贝斯机组(Davis-Besse)和东湖4号机(Eastlake4)已经停运。
在13∶31东湖5号机(Eastlake5)的停运,进一步耗尽了克力夫兰-阿克伦地区的无功功率,使该系统电压进一步降低。
(2)短路引起的线路开断阶段。
15∶05俄亥俄州的一条345kV(Chamberlin-Harding)输电线路在触树短路后跳闸(线路开断前潮流仅为正常裕量的43.5%),致使由南部向克力夫兰-阿克伦地区送电的另外3条345kV线路(Hanna-Juniper、Star-South Canton和Sammis-Star,如图2所示)的负荷加重(其中Hanna-Juniper线路上增加的负荷最多,同时向该地区送电的138kV线路的潮流也随之增加,如图3所示。
几起全厂停电事故的分析及对策〔摘要〕介绍了几起全厂停电事故的经过,并对几起事故的原因进行分析,对暴露出的问题进行探讨,提出了预防事故相应的措施和对策,希望有关人员从中能够吸取一些有益的经验和教训,为保证枢纽的供电安全和电网的安全运行起到积极的作用。
〔关键词〕全厂停电;事故分析;对策1 电厂的主接线及运行方式1.1 主接线方式电厂4台机组采用“两机一变”扩大单元接线,出线共有两回,一回220 kV出线至清远站,一回110 kV出线经1.5 km短线路至电厂的北寮站,然后通过北寮分线送至110kV源潭站。
1.2 运行方式正常运行方式为1,2号机组通过1号主变送电至220 kV飞清线,3,4号机组通过2号主变和1号主变也送电至220 kV飞清线;即正常运行方式为4台机组均向220 kV飞清线送电,110 kV短线121 A开关处于热备用状态,同时110 kV系统电源送电至电厂厂用10 kVⅢ段进线开关处作为电厂的备用电源。
当220 kV线路故障或维修时,才从110 kV系统送电。
2 几起全厂停电事故的经过及原因(1) 2000-06-08,枢纽用电全部消失30 min。
当时为雷雨天气,飞清线线路遭雷击引起A、C 相出现瞬间短路故障,线路保护启动,跳开飞清线2387开关,1,2号机组甩负荷停机,同时备用110 kV主电源由于北寮站主变故障检修无法送到厂用10 kVⅢ段,从而导致枢纽用电全部消失。
(2) 2002-04-05,枢纽用电全部消失40 min。
当天,电厂1号主变在检修,3号机组向110 kV 系统送电。
14:08,由于110 kV系统变电站遭受冰雹袭击,造成母线保护动作,跳开清源线开关,导致3号机组仅带枢纽用电而过频跳闸停机,枢纽用电全部消失。
(3) 2004-05-28,枢纽用电全部消失15 min。
当时220 kV线路与110 kV线路环网运行,由于清源线检修,由飞北线带升平站和黎溪站负荷;相当于只有1路主电源与电厂相连。
近年来国内外大停电事故原因分析及启示近年来全球发生了多起大停电事故,2011年2月巴西发生大停电事故,2012年7月30日、31日印度相继发生大停电事故.本文介绍了这些电网大停电事故过程,分析其原因,结合中国电网实际,从网架结构、电力系统三道防线等方面提出应当吸取的经验教训。
一、巴西电网大停电事故概述2011年2月4日00:20左右,巴西发生大面积停电,始于伯南布哥州的Luiz Gonzaga变电站,由于该变电站内保护装置中电子元件的故障触发安全系统自动关闭,断开了变电站所连6条高压线路,引起了快速、连锁的大面积停电。
1.1 事故前东北部电网运行方式。
巴西电网分为6大区域电网,西北电网尚未与其他区域互联,东北部电网为本次停电事故发生区域。
事故前东北部电网通过4回500kV线路与北部电网互联,通过1回500kV线路与中西部电网互联。
事故前东北部电网负荷8 883MW,接受区外来电3 237MW,占区域负荷的36.4%.事故发生前一天下午,线路因紧急检修停运。
该线路的检修停运,消弱了Paulo Afonso区域水电北送能力。
1.2 事故发生过程。
巴西大停电事故是由继电保护装置导致的暂态功角失稳事故,整个事故过程大致可划分为以下5个阶段。
(1)起始阶段。
事故当日00:08,Luiz Gonzaga变电站Luiz Gonzaga-Sobradinho 1号线路故障,保护装置需要跳开与母线之间的2个边开关。
但由于保护装置中1块板卡异常,误认为Luiz Gonzaga-Sobradinho 1号线路与1号母线之间开关失灵,1号母线跳闸。
此时系统的结构改变不大,仍保持稳定状态,没有损失负荷。
00:20:40之前,Luiz Gonzaga变电站运行人员进行Luiz Gonzaga-Sobradinho1号线路合闸操作,在合Luiz Gonzaga-Sobradinho 1号线与2号母线之间开关时,同样因保护板卡异常,失灵保护动作使2号母线跳闸。
8.14美加大停电事故原因分析及启示8.14美加大停电事故原因分析及启示美加大停电事故原因作初步分析(1)电网结构方面北美电网包括三个独立电网①东部互联电网,包括美国东部的地区和加拿大从萨斯喀彻温省向东延伸至沿海省份的地区②西部互联电网,包括美国西部的地区不含阿拉斯加州和加拿大阿尔伯达省、不列颠哥伦比亚省以及墨西哥的一小部分③相对较小的德克萨斯州电网。
这三个互联系统在电气上相互独立,通过少数几条输送容量较小的直流联络线相连。
这次发生大面积停电事故在东部地区。
被认为造成大停电的主要导火线是包括底特律、多伦多和克利夫兰地区的Erie 湖大环网,沿该环网流动的潮流经常无任何预警地发生转向,造成下方城市负荷加重。
此次系统潮流突然发生转向时,控制室的调度员面对这一情况束手无策。
(2)电网设备方面美国高压主干电网至少已有四五十年的历史,一些早期建设的线路及设备比较陈旧,而更新设备又需要大量资金投入。
投资电网建设的资金回报周期长、回报率低。
例如在20世纪90年代,投资发电厂资金回报率常常在12%~15%,而投资输电线路只有8%左右。
因此,只有当供电可靠性问题非常严重,或是供电要求迫切时,电力公司才会考虑投资修建输电线路。
另外,环保方面的限制也增加了输电线路建设的难度。
(3)电网调度方面由于没有统一调度的机制,各地区电网之间缺乏及时有效的信息交换,因此在事故发展过程中,无法做到对事故处理的统一指挥,导致了事故蔓延扩大。
国际电网公司(ITC)追踪到大停电以前1h 5min 的数据,认为如果能够早一点得到系统发生事故的一些异常信号,就可能及时采取应急措施,制止大停电事故的发生。
(4)保护控制技术方面美国电网结构复杂,容易造成运行潮流相互窜动,增加了电网保护、控制以及解列的难度。
这次停电事件中,在事故发生初期FE与AEP公司的多条联络线跳闸(有些在紧急额定容量以下),对事故扩大起到推波助澜的作用。
NERC在对事故记录的调查中发现许多“时标”不准确,原因是记录信息的计算机发生信息积压,或者是时钟没有与国家标准时间校准。
近年来国内外大停电事故原因分析及启示【摘要】近年来,国内外大停电事故频发,给社会经济带来重大影响。
停电事故的原因主要包括设备老化和维护不及时、天气因素导致停电、人为操作失误以及缺乏有效的应急预案和响应能力。
为了避免类似事故的发生,我们应该加强设备的维护和更新,强化天气预警和防范意识,加强人员培训和操作规范。
这些启示将有助于提高停电事故的预防和处理能力,保障社会的正常运转和经济稳定发展。
【关键词】停电事故、设备老化、维护不及时、天气因素、人为操作失误、应急预案、应急响应能力、社会经济影响、设备维护更新、天气预警、防范意识、人员培训、操作规范、启示。
1. 引言1.1 近年来国内外大停电事故的频发近年来,国内外大停电事故频发,给社会经济造成了严重影响。
停电不仅会造成生产停摆、交通瘫痪等直接损失,还会引发连锁反应,影响整个社会秩序和生活节奏。
据统计,全球每年因停电造成的经济损失高达数十亿美元,而且停电事件的频率和范围也在逐渐扩大。
从国内看,近年来中国各地频繁发生大规模停电事件,严重影响社会正常运转。
而国外,像是美国、印度等国家也不时发生大范围停电事故,给当地民众带来极大的困扰和损失。
大停电事故的频发不仅暴露了电力系统存在的问题,也提醒我们加强电力安全管理,防范和减少停电事故的发生。
1.2 停电事故对社会经济造成的影响停电事故对社会经济造成的影响是非常严重的。
停电会导致各行业生产活动受到影响,工厂无法正常运作,商店无法正常营业,影响经济发展和市场稳定。
停电会影响人们的生活质量,影响交通、医疗、通讯等基础设施的正常运行,给人们的生活带来诸多不便。
更甚者,停电还会导致数据丢失、设备损坏等后果,给企业和个人带来经济损失。
停电事故对社会经济的影响不容忽视,必须引起我们高度重视和警惕。
为了减少停电事故对社会经济的影响,我们需要深入分析停电事故的原因,并采取有效的预防和救济措施,保障社会经济的稳定发展。
2. 正文2.1 停电事故原因分析停电事故是由于多种因素共同作用而导致的突发事件,在近年来国内外频频发生。
2024年对一起意外停电暴露的安全隐患解析引言:2024年,某国某地区发生了一起突发性停电事件,导致当地一系列安全隐患暴露出来。
这起事件引起了广泛的关注和讨论,人们开始探讨如何避免类似事件的再次发生,以及如何加强电力系统的安全性。
为了解析这起事件暴露出的安全隐患,我将从以下几个方面进行分析。
一、停电事件的背景在深入分析安全隐患之前,我们首先需要了解和梳理这起停电事件的背景。
2024年某国某地区发生了一场突发性黑out停电事件,停电时间长达数天之久。
这场停电事件的起因是一座发电厂发生了故障,导致电网系统瘫痪,整个地区的供电无法正常进行。
二、电网系统的脆弱性这场停电事件暴露了电网系统的脆弱性。
一旦出现发电厂故障或其他电力设备故障,整个电网系统就会面临较大的风险。
这表明了电网系统在应对突发事件方面的不足,相关安全保障机制的完善亟待加强。
1. 缺乏冗余系统在这场停电事件中,发电厂的故障直接导致了电网系统的瘫痪。
这说明该地区电网系统的冗余设计不足,缺乏备用发电设备和备用电源。
一旦出现故障,整个电网系统的电力供应就无法得到及时恢复,给当地居民和企业带来了严重的影响。
2. 电网系统的自动监测与恢复能力薄弱这场停电事件中,电网系统的故障无法及时被监测到和修复。
这表明了该地区电网系统的自动监测与恢复能力存在问题。
在未来的发展中,需要加强对电网系统的监测与控制手段,提高发电设备的自动化程度,及时发现故障并进行修复,最大程度地减少停电事件对当地居民和企业的影响。
3. 缺乏备用电源和能源互联互通停电事件中,当地缺乏备用电源和能源互联互通的能力。
缺乏备用电源意味着一旦主要发电设备故障,电力供应就会中断。
而缺乏能源互联互通的能力,意味着无法通过其他地区的电力系统进行相互支援。
这使得停电事件的影响范围扩大,并且难以及时得到恢复。
三、电力设备的老化和脆弱性这起停电事件也暴露了电力设备的老化和脆弱性。
电力设备的老化意味着其运行稳定性和可靠性下降,故障风险增加。
8.14美加大停电事故原因分析及启示第一篇:8.14美加大停电事故原因分析及启示8.14美加大停电事故原因分析及启示美加大停电事故原因作初步分析(1)电网结构方面北美电网包括三个独立电网①东部互联电网,包括美国东部的地区和加拿大从萨斯喀彻温省向东延伸至沿海省份的地区②西部互联电网,包括美国西部的地区不含阿拉斯加州和加拿大阿尔伯达省、不列颠哥伦比亚省以及墨西哥的一小部分③相对较小的德克萨斯州电网。
这三个互联系统在电气上相互独立,通过少数几条输送容量较小的直流联络线相连。
这次发生大面积停电事故在东部地区。
被认为造成大停电的主要导火线是包括底特律、多伦多和克利夫兰地区的Erie 湖大环网,沿该环网流动的潮流经常无任何预警地发生转向,造成下方城市负荷加重。
此次系统潮流突然发生转向时,控制室的调度员面对这一情况束手无策。
(2)电网设备方面美国高压主干电网至少已有四五十年的历史,一些早期建设的线路及设备比较陈旧,而更新设备又需要大量资金投入。
投资电网建设的资金回报周期长、回报率低。
例如在20世纪90年代,投资发电厂资金回报率常常在12%~15%,而投资输电线路只有8%左右。
因此,只有当供电可靠性问题非常严重,或是供电要求迫切时,电力公司才会考虑投资修建输电线路。
另外,环保方面的限制也增加了输电线路建设的难度。
(3)电网调度方面由于没有统一调度的机制,各地区电网之间缺乏及时有效的信息交换,因此在事故发展过程中,无法做到对事故处理的统一指挥,导致了事故蔓延扩大。
国际电网公司(ITC)追踪到大停电以前1h 5min 的数据,认为如果能够早一点得到系统发生事故的一些异常信号,就可能及时采取应急措施,制止大停电事故的发生。
(4)保护控制技术方面美国电网结构复杂,容易造成运行潮流相互窜动,增加了电网保护、控制以及解列的难度。
这次停电事件中,在事故发生初期FE与AEP公司的多条联络线跳闸(有些在紧急额定容量以下),对事故扩大起到推波助澜的作用。
9.12停电事故分析报告安环字[2010]17号安技环保部关于“9.12”停电事故调查报告张总:2010年9月12日晚20:50分,动力公司供电车间降压站院内,2#主变失电,造成全厂停电。
接到事故报告后,21:05分,武保部陆立贵、苏昆甫,安技环保部黄国平、许锋等同志相继赶到事故现场,集团孟书记闻讯后也赶到现场,并对事故原因查找及抢修等工作中的安全问题做了重要指示,动力公司组织专业技术人员,按现场制定的方案进行抢修,2010年9月13日凌晨4:00恢复供电。
事后,安技环保部组织相关科室人员对事故经过进行了调查,召开了“9.12”停电事故专题会,现将调查情况汇报如下:一、事故经过经调查,2010年9月12日晚20:50分,供电车间运行人员董玉梅、顾文彬发现在降压站院内所用变所处位置出现一团火光,降压站停电。
停电后两名员工马上检查主控室、6KV 配电室内高压设备状态,发现1102、602开关跳闸,2#主变失电,造成全厂停电。
董玉梅立刻打电话将该情况汇报给供电车间副主任王丹,王丹及时向动力公司领导以及调度汇报停电情况,通知车间相关人员赶往现场。
21:10分供电车间工作人员全部到达现场,王丹组织车间相关人员进入现场寻找故障点。
经过逐一排查后,发现6KV配电室Ⅰ段PT柜(电压互感器柜)有弧光灼烧痕迹,其它高压开关柜、变压器等设备外观完好。
将PT柜柜门打开后,发现在该柜避雷器B、C相间横躺着一只猫的尸体,电击致死,该柜A相避雷器、B、C相母排烧断。
发现故障点后,在场有关领导立即组织车间相关人员展开了现场分析会,安排人员进入现场进行事故处理,隔离故障点。
经过检修、调试和倒闸操作,于2010年9月13日凌晨4:00恢复全厂供电。
二、事故原因分析经动力公司供电车间、动力公司及集团安技部相继组织的三次事故调查分析认为,本次事故属意外停电事故。
造成本次事故的直接原因是:猫通过电缆地沟进入6KVⅠ段PT 柜导致相间短路,瞬间大电流引起1102、602开关继电保护动作,2#主变失电,造成全厂停电。
大面积停电故障的剖析与对策当前,应对电力系统突发事件在我国引起普遍重视的时间还不长,是一个新的领域。
它不仅仅是电力企业、电力行业面临的重大现实课题,还涉及政府、用电企业、公共安全部门等诸多方面,是一项需要全社会高度关注和积极参与的工作。
一、电力系统突发事件的类型和危害通常所说电力系统突发事件,主要是指对经济社会造成重大影响的大面积停电事故或事件。
停电给经济发展、人民生活、社会秩序以及国家安全都带来严重影响。
1. 电力系统突发事件的类型电力系统突发事件大致可以分为以下几类:一是自然灾害损毁电力设备、引发故障导致的电力系统突发事件;二是电力系统设备故障、人员失误引发生产事故导致的电力系统突发事件;三是电力系统受到战争、恐怖活动或人为外力破坏导致的电力系统突发事件。
其中,自然灾害、战争、恐怖活动或人为破坏导致的电力突发事件都属于外因型;而电力生产事故导致的电力突发事件则属于内因型。
从目前掌握的国内外大停电事件来看,自然灾害、电力设施事故和人为破坏是导致电力系统突发事件的主要因素。
而根据海湾战争的经验,未来战争和恐怖活动极可能将电力系统作为攻击目标,破坏敌方电力供应,制造混乱,为夺取战争胜利创造条件。
2. 电力系统突发事件的危害截至2009年底,我国全社会用电量为36430亿千瓦时,人均年用电量已达到 2373 千瓦时。
人们的生产、生活电气化水平日益提高,对于电力的依赖度不断增强。
如果发生电力突发事件――尤其是在人口密集的大城市,将导致人们生活失序、经济瘫痪、社会动乱,甚至危及国家政权。
如果是在战争环境下发生电力突发事件,给所在国家带来的将不仅仅是人员安全、社会秩序和经济损失,更会直接影响战争的结局。
1999 年科索沃战争中,北约使用石墨炸弹轰炸前南斯拉夫电力系统,使电力系统瘫痪,成功破坏了前南地区的政治、经济和社会秩序,加速了前南抵抗力量的瓦解。
事实表明,电力突发事件导致的不单单是事故灾难,其引发的次生事件往往成为社会安全事件,或者加重自然灾害。
近年国内外大停电事故及其简要分析摘要:对电力系统近10年发生的数10起主要大停电事故分别进行简要回顾,并分析其中部分的经过和造成停电事故的原因。
根据罗列总结这些大停电事故,进一步总结将造成大停电的主要直接原因和共性原因,并结合中国电网结构特点,提出了为防止大停电事故发生而应当作出的改进措施建议,以及其他相关预防性措施建议。
关键词:大面积停电;电网安全;电力系统;1、引言近年来,全世界范围内的电网发生了许多大停电事故。
2003年8月14日,美国东北部、中西部和加拿大东部联合电网发生大停电,引起了全世界的震惊。
随后,英国、马来西亚、丹麦、瑞典、意大利、中国和俄罗斯等国又相继发生了较大面积的停电事故。
这些大停电事故给社会和经济带来了巨大的损失。
在认真回顾今年来这些大停电事件的时候,可以看到各种原因的大停电将造成的后果,能中汲取经验和教训,进一步反思我国电网目前存在的一些问题,这对构建我国大电网安全防御体系,保障电网的安全稳定运行具有极其重要的意义。
2、主要大停电事故回顾以下将分述近年来主要大停电事故的事故概况,以及官方给出的造成事故的原因分析。
2.1. 美加8. 14 大面积停电事件(1)美国东部时间(EDT)2003 年8 月14 日下午16 点11 分,以北美五大湖为中心的地区发生大面积停电事故,包括美国东部的纽约、密歇根、俄亥俄、马萨诸塞、康涅狄格、新泽西州北部和新英格兰部分地区以及加拿大的安大略等地区。
这是北美有史以来最大规模的停电事故。
停电涉及美国整个东部电网,事故中至少有21 座电厂停运,停电持续时间为29h,损失负荷61800MW。
约5000 万人受到影响,地域约24000平方千米,其中纽约州80% 供电中断。
(2)简要经过和原因分析a) 第一能源公司(FE) 的3 条输电线路由于离树枝太近,短路跳闸,这是大停电的最初原因;b) 当时FE 公司控制室的报警系统未正常工作,而控制室内的运行人员也未注意到这一点,即他们没有发现输电线路跳闸;c) 由于FE 公司的监控设备没有报警,控制人员就未采取相应的措施,如减负荷等,致使故障扩大化,最终失去控制;d) 正是由于FE 公司根本未意识到出现问题,也就没有通告相邻的电力公司和可靠性协调机构,否则也可协助解决问题;e) 此时,MISO 作为该地区(包括FE) 的输电协调机构,也出现问题;f) MISO 的系统分析工具在8 月14 日下午未能有效地工作,导致MISO 没有及早注意到FE 公司的问题并采取措施;g) MISO 用过时的数据支持系统的实时监测,结果未能检测出FE公司的事态发展,也未采取缓解措施;h) MISO 缺乏有效的工具确定是哪条输电线路断路器动作及其严重性,否则MISO 的运行人员可以根据这些信息更早地意识到事故的严重性;i) MISO 和PJM互联机构(控制宾夕法尼亚、马里兰和新泽西等地) 在其交界处对突发事件各自采取的对策缺乏联合协调措施;j) 总体而言,这次大停电是诸多因素所致,包括通信设施差、人为错误、机械故障、运行人员培训不够及软件误差等。
近年来国内外大停电事故原因分析及启示【摘要】近年来,国内外大停电事故频发,给人们的生产生活带来巨大影响。
本文通过对国内外大停电事故原因进行分析,发现主要原因包括基础设施建设不完善、应急响应能力不足等。
国内停电事故常见原因为设备老化、用电过载等,而外国停电事故则多与天灾人祸、恐怖袭击等因素有关。
共同原因则是基础设施建设和维护不到位。
为此,文章提出了加强基础设施建设和维护、提高应急响应能力等启示,以期减少大停电事故的发生。
在总结了研究意义和目的,展望未来的发展方向,并提出了加强监管、加强预防措施等建议措施,希望能为防范大停电事故提供参考。
【关键词】大停电事故、原因分析、启示、基础设施、应急响应、国内外、建议措施、展望未来1. 引言1.1 背景介绍近年来,国内外大停电事故频发,给人们的生活和生产带来了极大的困扰和损失。
大停电事故一旦发生,不仅会造成电力供应中断,还可能引发交通拥堵、通讯中断、医疗应急等一系列连锁反应,对社会稳定和经济发展造成严重影响。
对大停电事故的原因进行深入分析,以便更好地预防和处理类似事件的发生,具有重要的现实意义和应用价值。
在当今社会,电力已成为人类生产生活不可或缺的重要资源。
随着经济的快速发展和城市化进程的加快,电力需求大幅增加,电力系统的负荷和运行压力也在逐年增加。
国内外大停电事故的发生,不仅暴露了电力系统的薄弱环节和隐患,也提醒我们必须加强对电力系统的监管和管理,着力提高电力系统的安全稳定性和韧性。
开展对近年来国内外大停电事故原因的深入研究,可以为提升电力系统的安全性和可靠性提供有益的借鉴和启示。
1.2 研究意义停电事故一直是社会关注的焦点,近年来国内外发生的大停电事故频频发生,对经济、社会和民生造成了严重影响。
对大停电事故的原因进行深入分析具有重要的研究意义。
通过对国内外大停电事故原因的分析,可以帮助我们深刻了解造成停电的主要因素,为避免类似事故的再次发生提供重要参考。
针对大停电事故的共同原因进行分析,有助于揭示基础设施建设和维护的薄弱环节,促进全面完善能源供应系统,提高抗灾能力和应急响应水平。
事故案例分析:某电站停电事故某年5月18日,某省某市220 kV甲变电站因人员违章作业,造成主变跳闸,事发后未向中调如实汇报;随后雷击线路发生接地故障,因甲变电站主变退出,该地区电网的零序阻抗和零序电流的分布和大小发生了极大的变化。
继电保护装置不能正常动作,导致7个110 kV变电站停电,该省南部电网瓦解,该市全市停电48min,波及庚市、己县停电,某电厂甩负荷解列。
一、事故经过事故发生前两日,甲变电站主变瓦斯继电器渗油,轻瓦斯发信号。
事发当日副站长陈某向变电工区汇报,工区主任张某、副主任李某和电修班班长韩某在该站副站长陈某的配合下,没有办理第二种工作票,就在主变瓦斯继电器处检查和处理渗油。
09:32,220 kV甲主变三侧开关跳闸,副站长向中调汇报:“没有任何保护动作信号”;09:37:21,110 kV戊丙线遭雷击发生A相接地短路,110 kV乙变电站乙甲线开关跳闸(零序I段保护);电厂至甲变电站线路开关跳闸(零序不灵敏I段),110 kV戊站戊丙线开关跳闸(零序不灵敏II 段);主变两侧开关跳闸(零序电流II段);110 kV庚站通三线开关跳闸(零序电流II段),随后电厂机组因线路故障跳闸后负荷过少(约1MW),造成超速高频保护动作跳闸。
由于甲、乙、丙、丁、戊、己、庚等7个变电站全部停电,从而导致南部电网大面积停电的重大事故。
09:40,中调令合上220kV甲主变220 kV侧开关;09:59,合上主变110 kV侧开关;10:20合上110 kV 甲丙线开关,恢复对该市供电。
这次事故造成全市停电48 min,事故损失电量5.48万kWh。
二、事故原因分析1 .220 kV甲变电站主变三侧跳闸原因(1) 电修班班长韩某,在变电工区主任张某、副主任李某和变电站副站长陈某的带领及监护下,处理瓦斯继电器漏油。
没有办理第2种工作票,也没有做好安全措施,未退出重瓦斯保护压板,违章作业,监护人李某没有起到监护作业,韩某在处理重瓦斯手动探针胶垫渗油时,因保护帽挡住,扳手不能操作,拧开重瓦斯探针保护帽时误碰该探针而跳闸,造成事故。
近年国内外大停电事故及其简要分析摘要:对电力系统近10年发生的数10起主要大停电事故分别进行简要回顾,并分析其中部分的经过和造成停电事故的原因。
根据罗列总结这些大停电事故,进一步总结将造成大停电的主要直接原因和共性原因,并结合中国电网结构特点,提出了为防止大停电事故发生而应当作出的改进措施建议,以及其他相关预防性措施建议。
关键词:大面积停电;电网安全;电力系统;1、引言近年来,全世界范围内的电网发生了许多大停电事故。
2003年8月14日,美国东北部、中西部和加拿大东部联合电网发生大停电,引起了全世界的震惊。
随后,英国、马来西亚、丹麦、瑞典、意大利、中国和俄罗斯等国又相继发生了较大面积的停电事故。
这些大停电事故给社会和经济带来了巨大的损失。
在认真回顾今年来这些大停电事件的时候,可以看到各种原因的大停电将造成的后果,能中汲取经验和教训,进一步反思我国电网目前存在的一些问题,这对构建我国大电网安全防御体系,保障电网的安全稳定运行具有极其重要的意义。
2、主要大停电事故回顾以下将分述近年来主要大停电事故的事故概况,以及官方给出的造成事故的原因分析。
2.1. 美加8. 14 大面积停电事件(1)美国东部时间(EDT)2003 年8 月14 日下午16 点11 分,以北美五大湖为中心的地区发生大面积停电事故,包括美国东部的纽约、密歇根、俄亥俄、马萨诸塞、康涅狄格、新泽西州北部和新英格兰部分地区以及加拿大的安大略等地区。
这是北美有史以来最大规模的停电事故。
停电涉及美国整个东部电网,事故中至少有21 座电厂停运,停电持续时间为29h,损失负荷61800MW。
约5000 万人受到影响,地域约24000平方千米,其中纽约州80% 供电中断。
(2)简要经过和原因分析a) 第一能源公司(FE) 的3 条输电线路由于离树枝太近,短路跳闸,这是大停电的最初原因;b) 当时FE 公司控制室的报警系统未正常工作,而控制室内的运行人员也未注意到这一点,即他们没有发现输电线路跳闸;c) 由于FE 公司的监控设备没有报警,控制人员就未采取相应的措施,如减负荷等,致使故障扩大化,最终失去控制;d) 正是由于FE 公司根本未意识到出现问题,也就没有通告相邻的电力公司和可靠性协调机构,否则也可协助解决问题;e) 此时,MISO 作为该地区(包括FE) 的输电协调机构,也出现问题;f) MISO 的系统分析工具在8 月14 日下午未能有效地工作,导致MISO 没有及早注意到FE 公司的问题并采取措施;g) MISO 用过时的数据支持系统的实时监测,结果未能检测出FE公司的事态发展,也未采取缓解措施;h) MISO 缺乏有效的工具确定是哪条输电线路断路器动作及其严重性,否则MISO 的运行人员可以根据这些信息更早地意识到事故的严重性;i) MISO 和PJM互联机构(控制宾夕法尼亚、马里兰和新泽西等地) 在其交界处对突发事件各自采取的对策缺乏联合协调措施;j) 总体而言,这次大停电是诸多因素所致,包括通信设施差、人为错误、机械故障、运行人员培训不够及软件误差等。
从复杂的计算机模拟系统到简单的输电走廊树枝修剪,都未予以足够的重视。
2.2.伦敦大停电事件(1)2003 年8 月28 日下午英国伦敦经历了16 年来第1 次大停电。
英国国家电网公司所属的伦敦南部电力传输系统出现故障,导致该系统从18:20 至18:57 电力供应中断。
停电影响了EDF 能源公司的410000 个用户,事故主要发生在伦敦南部地区,东至Bexley,西至Kingston,北至Bankside,南至Beckenham,停电共损失负荷724MW,约为当时整个伦敦负荷的20%。
(2)英国国家电网公司在事故后迅速进行了调查,故障出现的原因是在2001年更换老设备时安装了一个不正确的保护继电器,致使自动保护设备被误启动,而切除Hurst变电所的变压器不是造成本次事件的直接原因,它使伦敦电力供应量瞬间减少了五分之一。
由于电力缺额过大造成了这次大停电。
2.3.北欧大停电事件(1)2003 年9月23 日北欧电网中的瑞典中部和南部电网及丹麦的东部电网发生大面积停电,停电区包括瑞典首都斯德哥尔摩,重要城市马尔及丹麦首都哥本哈根。
瑞典东部奥斯卡斯汉姆核电厂3号机(1 135 MW)及西部林哈尔斯核电厂3 号机(920 MW)及4 号机(885 MW)停运。
(2)瑞典方面报道,停电的主要原因是被暴风雪压倒刮断的树木破坏了供电线路,随之进一步引起跳闸停电事件的发生。
2.4.意大利全国大停电事件(1)2003 年9 月28 日凌晨3∶30 意大利发生全国大停电,受停电影响的居民达5 400 万人(约占全国人口的93%)。
停电数小时后北部城市米兰等首先恢复供电,继之首都罗马在当天中午开始有电。
南部地区到29 日才恢复供电。
(2)这次事故的直接原因是从法国通往意大利的两条400kv高压电线因暴雨中断。
但是在短暂的电力中断之后,意大利方面未能及时连通法、意之间的电力电缆法国,引起这2条400 kV 线路相继跳闸,导致意大利有功出力不足,引起一连串的停电事件。
2.5. 莫斯科大停电事件(1)2005年5月23 13晚19:57起,俄罗斯莫斯科地区电网发生一系列故障,到5月25 13 11:00左右,莫斯科市大部分地区及附近25个城市发生大面积停电事故,莫斯科电网共断开了321座变电站,除最先停电的500 kV恰吉诺变电站外,还包括16座220 kV变电站,201座110 kV变电站,104座35 kV变电站。
直接损失负荷达3 539.5 MW,近400万人的生活受到影响,造成了15~20亿美元的直接经济损失。
(2)事故的直接原因是气温高,用电负荷大幅增长,线路过负荷跳闸引起连锁反应,线路相继跳闸,导致大面积停电。
前一天运行40多年的变电站电流互感器爆炸起火,造成220 kV线路停运,负荷改110 kV线路带是过载的直接原因。
而设备运行维护不当造成电流互感器爆炸是事故发生的导火索。
引起事故的恰吉诺变电站建于1963年,设备均已老化。
且电网处于超负荷运行状态,运行人员也未引起注意,缺乏严格的操作规程约束及协调手段。
2.6.印尼大停电事件(1)2005 年8 月18 日上午,印尼发生了包括首都雅加达在内的大面积停电事故印度尼西亚境内8 月18 日发生大面积停电,首都雅加达也彻底断电,总共波及近1 亿人口,接近总人口的一半。
城市交通、铁路及航班也受到严重影响。
(2)造成大停电的原因,主要是爪哇岛和巴厘岛的电力输电网发生故障,连带影响到雅加达等地区的供电,导致供电系统出现问题。
2.7.中国海南大停电事件(1)2005年9月26日清晨1时左右,第18号台风“达维”对海南电力设施造成了严重破坏,引发了部分电厂连续跳机解列,最终系统全部瓦解,导致了罕见的全省范围大停电。
海南“9. 26”大停电“有两个明显的特点,一是停电波及面广,电厂全部解列,停电范围涉及全岛;二是从正常状态到全同崩溃时间较短,仅4min左右电网全黑。
(2)分析认为,电网设计水平偏低、孤立运行、设备老化严重、大机小网和弱联系的电网结构是海南“9. 26”大停电的主要原因。
2.8.西欧大停电事件(1)欧洲当地时间2006 年11 月4 日22:10(北京时间2006 年11 月5 日5:10),欧洲电网发生一起大面积停电事故,事故中欧洲UCTE 电网解列为3 个区域,各个区域发供电严重不平衡,相继出现频率低周或高周情况。
事故影响范围广泛,波及法国和德国人口最密集的地区以及比利时、意大利、西班牙、奥地利的多个重要城市,大多数地区在半小时内恢复供电,最严重的地区停电达1.5 h。
整个事故损失负荷高达16.72 GW,约1500万用户受到影响。
(2)事件的起因是: 德国最大的能源公司———E. ON电网公司为了让迈尔(Meyerwerft ) 造船厂新的“挪威珍珠”号轮船通过埃姆斯( Ems) 河驶入北海,断开了河上从Conneforde 到Diele 的380 kV 双回线路。
经协商,于11 月4 日21 : 38 进行开断操作,22 :10 :13 ,Landesbergen 到Wehrendorf 的线路由于过负荷保护跳闸。
随之发生的一系列连锁跳闸,导致欧洲输电协调联盟(UCTE) 电网解列为3 块,并大量切机切负荷。
2.9.中国南方冰冻灾害大停电(1)2008 年1 月10 日至2 月2 日,我国南方地区先后出现4 次大范围低温雨雪冰冻天气,遭遇了50年一遇的冰雪灾害,使电网安全运行经历前所未有的严峻考验。
由于暴雪、冻雨导致河南、湖南、湖北、江西、安徽、浙江、福建等地输变电线路出现大范围的断线倒塔事故,造成大范围大面积停电限电,包括重要交通枢纽及设施等的供电中断,严重影响了电网安全运行。
甚至部分地区电网瓦解,江西赣州电网进入了孤网运行、湖南郴州断电断水十多天。
随即引发交通运输、物资调运、市场供应等方面的连锁反应,人民生活一度陷入了困境。
据报道,全国范围电网此次因灾停运电力线路共37 606 条,因灾停运的变电站共2 027 座,110~500 kV 线路因灾倒塔共8 165 基。
(2)电力设施对极端气候灾害防范的设计标准不够,在冰冻严重灾害到来的时候,重电源、轻电网的弊端暴露是造成这次南方冰冻灾害大停电的主要原因。
2.10.巴西大停电事件(1)2009-11-10T22:13,巴西全国范围内发生大面积停电,损失负荷24.436GW,约占巴西全部负荷的40%,受影响人口约5000 万,约占巴西总人口的26%,是近年来世界上影响较大的大停电事故之一(2)巴西电网大停电属于故障连锁反应造成的大面积停电:雷电和暴风雨使依泰普水电站输电系统的圣保罗受端变电站变压器短路接地,使2条输电线同时断开,在几秒钟内第三条输电线跳开,形成故障连锁反应,造成南部—东南部互联电网15条输电线路跳闸断开,引起依泰普水电站全部运行机组与电网解列,造成主要是南部—东南部互联电网大面积停电。
依泰普水电站运行机组解列,同时造成巴拉圭电网大停电。
2.11.智利大停电事件(1)2011年9月25日晚8点30分左右,智利发生2个多小时的大停电,包括首都圣地亚哥在内的大多数地区漆黑一片,全国1600万人口中有近千万人受到2个多小时的影响。
由于通讯信号系统中断,在外的人们无法使用手机同家人取得联系。
断电期间,首都圣地亚哥一家商场发生骚乱事件,警方为此加强了街头巡逻。
(2)根据已掌握的情况,大面积停电或因一个变电站故障引起,中央电力互联系统出现的问题很可能由“输电线路振动”导致碰线引起的。
政府正在就断电事件的确切原因展开调查,以确定出现问题的具体发电或送电环节。