灰熔融性(可修改).ppt
- 格式:ppt
- 大小:378.50 KB
- 文档页数:23
浅谈煤灰熔融性2007-11-27 11:47:06国际煤炭网网友评论煤灰的熔融性是指煤灰受热时由固态向液态逐渐转化的特性,煤灰的熔融性是动力用煤高温特性的重要测定项目之一。
由于煤灰不是一个纯净物,它没有严格意义的熔点,衡量其熔融过程的温度变化,通常用三个特征温度:即变形温度(DT),软化温度(ST)、流动温度(FT)。
这三个温度代表了煤灰在熔融过程中固相减少,液相渐多的三点,在工业上多用软化温度作为熔融性指标,称为灰熔点。
一、煤灰的熔融性对于煤粉固态排渣炉的炉膛结渣有密切关系:如灰熔融性温度低,在炉膛高温下熔融粘在炉膛受热面上,冷却后形成结渣。
根据运行经验,煤灰软化温度小于1350℃就有可能造成炉膛结渣。
故煤粉固态排渣炉要求灰熔融性温度高。
煤灰熔融过程中DT-ST之间的温度为软化区间温度,根据其范围把灰分为长渣和短渣,一般认为软化区温度大于200℃为长渣,小于100℃为短渣。
通常短渣的煤易于结焦,燃用长渣的煤较为安全。
二、影响煤灰熔融性的因素:影响煤灰熔融性的因素主要是煤灰的化学组成和煤灰受热时所处的环境介质的性质:一、煤灰的化学组成比较复杂,通常以各种氧化物的百分含量来表示。
其组成百分含量可按下列顺序排列:SiO2,Al2O3,(Fe2O3+FeO),CaO,MgO,(Na2O+K2O)。
这些氧化物在纯净状态时熔点大都较高(Na2O和K2O除外)。
在高温下,由于各种氧化物相互作用,生成了有较低熔点的共熔体。
熔化的共熔体还有溶解灰中其他高熔点矿物质的性能,从而改变共熔体的成分,使其熔化温度更低。
上列氧化物分为三类,此三类氧化物对煤灰的熔融性的影响如下:Al2O3 能提高灰熔点,煤灰中三氧化二铝含量自15%开始,煤灰熔融性温度随其含量增加而有规律的增加,煤灰中Al2O3含量大于40%时,ST一般都超过1500℃;大于30%时,ST也多在1300℃以上。
当三氧化二铝含量高于25%时,DT与ST 的温差,随其含量增加而变小。
硬煤和焦炭灰分熔融性的测定一、适用范围本国际标准规定了测定煤和焦炭灰分的特征熔化温度的方法注关键词:化石燃料、固体燃料、灰、灰烬、试验、高温试验、测定和熔融性。
二、引用标准以下参考文件对于本文件的应用是必不可少的。
对于标注日期的参考文献,只有引用的版本适用。
若引用文件未注明日期,则适用引用文件的最新版本(包括任何修改)。
ISO1171,固体矿物燃料灰分的测定三、术语和定义下列术语和定义适用本文档。
本国际标准规定了通过埃施卡法测定硬煤,褐煤和褐炭以及焦炭中总硫含量的参考方法。
3.1变形温度DT由于融化,试验块尖端或棱开始变圆或弯曲时(产生弧度)的温度注:如尖端或棱保持锋利,则锥体收缩和倾斜应该忽略并且不算变形温度。
然而,对于某些固体矿物燃料,试样收缩开始的温度可能是值得关注的,并应作为测定过程中注意的一个特征报告。
3.2软化温度ST在锥体和截锥试样情况下,其高等于底部的宽度时的温度,或立方或圆柱形试样情况下,试样的边缘完全弧化、高度保持不变时的温度。
3.3半球温度HT试样形成一个半球,当高度等于底座直径的一半时的温度。
3.4流动温度FT试样在托板上熔化展开成层,高度为HT情况下1/3时的温度。
四、原理用煤灰制成的试样在标准条件下加热并持续观察。
形状发生特征变化的温度被记录下来。
特性温度的定义见第3章。
(请参见图2、图3和图4)。
图2锥形试样的形变特征图3立方或圆柱试样的形变特征图4截锥试样的形变特征虽然测定通常是在还原性气氛中进行的,但有时在氧化气氛中进行进一步测定可以获得更多的信息。
一般而言,7.1的还原气氛给出了最低的特征温度。
五、试剂5.1糊精溶液,100g/I将10克糊精溶解于100ml水中。
5.2凡士林。
5.3金丝,直径0.5mm或以上,或金片,厚度0.5mm至1.0mm。
纯度99.99%,熔点为1064℃。
5.4镍丝,直径0.5mm或以上,或镍片,厚度0.5mm至1.0mm,纯度99.9%,熔点1455℃。
煤灰熔融性的因素煤的灰熔融性俗称灰熔点(由三个温度点 DT:变形温度; ST:软化温度; FT:流动温度)是液态排渣⽓化炉和锅炉操作的⼀个重要⼯艺指标,也是德⼠古⽓化炉操作的⼀个重要⼯艺参数。
德⼠古⽓化炉的操作温度⼀般⽐FT⾼50℃,因此,准确分析煤灰熔融性的影响因素,有利于德⼠古⽓化进⾏煤种选择和多煤种复配,改善靠添加助熔剂来调节灰熔点的做法,使煤种应⽤更加⼴泛。
影响煤灰熔融性的因素主要是煤灰的化学组成和煤灰受热时所处的环境介质的性质。
前者是内因,后者是外因。
由于德⼠古⽓化炉是弱还原⽓氛,即煤灰受热时所处还原性环境介质的性质是稳定的,因此本⽂将重点讨论煤灰化学组成对煤灰熔融性的影响。
1. 煤灰化学成分对灰熔点的影响煤灰的化学组成是复杂的,且不同煤种煤灰成分相差很⼤,通常以各种氧化物在煤灰中的百分含量来表⽰化学组成。
按其组成的百分含量各组分的排列顺序为:SiO2,Al2O3,(Fe2O3+FeO),CaO,MgO,Na2O+K2O,其中〔CaO+MgO+(Fe2O3+FeO)+K2O+Na2O〕⼜称为b类氧化物,即碱性氧化物。
这些物质纯净状态时,其熔点都较⾼(Na2O和K2O除外)。
在⾼温条件下,由于各种物质相互作⽤,⽣成了有较低熔点的共熔体,熔化的共熔体还有溶解灰中其它⾼熔点矿物质的性能,从⽽改变共熔体的成分,使熔化温度更低。
由于煤灰化学组成的变化,煤灰熔点的变化也极为显著。
鲁南化肥⼚德⼠古⽓化炉由于采⽤多煤种,煤灰化学成分各不相同,各煤种的灰熔点也相差很⼤,最低的FT温度点不⾜1100℃,⽽最⾼的超过1400℃,⽽德⼠古⽓化炉要求的操作温度为1200~1250℃,因此准确了解煤灰化学成分对灰熔点的影响,将有助于今后⽓化煤种的选择和⽣产的管理。
1.1 SiO2的影响SiO2在煤灰中含量最多,⼀般约为30%~70%,鲁南煤灰中SiO2含量在25%~50%之间,其对灰熔点的影响较为复杂。
⼀般认为,SiO2在煤灰中起熔剂的作⽤,SiO2和其它矿物共熔。
浅谈煤灰熔融性(煤灰熔点)(1.煤灰熔融性(煤的灰熔点)-- 煤灰的熔融性是指煤灰受热时由固态向液态逐渐转化的特性,煤的灰熔融性是动力用煤高温特性的重要测定项目之一。
由于煤灰不是一个纯净物,它没有严格意义的熔点,衡量其熔融过程的温度变化,通常用三个特征温度:即变形温度(DT),软化温度(ST)、流动温度(FT)。
这三个温度代表了煤灰在熔融过程中固相减少,液相渐多的三点,在工业上多用软化温度作为熔融性指标,称为灰熔点。
因此煤灰熔融性和煤灰粘度是动力用煤的重重要指标,煤灰熔融性习惯上称作煤灰熔点,但严格来讲,这是不确切的。
因为煤灰是多种矿物质组成的混合物,这种混合物并没有一个固定的溶点,而仅有一个熔化温度的范围。
开始熔化的温度远比其中任一组分纯净矿物质熔点为低。
这些组分在一定温度下还会形成一种共熔体,这种共熔体在熔化状态时,有熔解煤灰中其他高熔点物质的性能,从而改变了熔体的成及其熔化温度。
煤灰的熔融性和煤灰的利用取决于煤灰的组成。
煤灰成分十分复杂,主要有:SiO2,A12O3,Fe2,CaO,MgO,SO3等,如下表所示:我国煤灰成分的分析灰分成分含量(%)SiO2 15-60Al2O3 15-40Fe2O3 1-35CaO 1-20MgO 1-5K20+Na20 1-5煤灰成分及其含量与层聚积环境有关。
我国很多煤层的矿物质以粘土为主,煤灰成分则为SiO2,Al2O3为主,两者总和一般可达50─80%。
在滨海沼泽中形成的煤层,如华北晚石纪煤层黄铁矿含量高,煤灰中Fe2O3及SO3含量亦较高;在内陆湖盆地中形成的某些第三纪褐煤的煤灰中CaO含量较高。
大量试验资料表明,SiO2含量在45─60%时,煤质灰熔点随SiO2含量增加而降低;SiO2在其含量〈45%或〉60%时,与灰熔点的关系不够明显。
Al2O3在煤灰中始终起增高灰熔点的作用。
煤灰中Al2O3的含量超过期30%时,灰熔点1500灰成分中Fe2O3,CaO,MaO均为较易熔组分,这些组分含量越高,煤炭灰熔点就越低。
煤灰熔融性的研究煤灰熔融性是评价工业用煤的重要指标之一, 主要用于锅炉和气化炉的设计、选型,并指导实际操作。
一般认为,煤灰的变形温度与气化炉及锅炉轻微结渣和其受热面轻微积灰的温度相对应;软化温度与气化炉及锅炉内大量结渣和大量积灰的温度相对应;而流动温度则与炉中灰渣呈液态流动或从受热面滴下和在炉栅上严重结渣的温度相对应。
在4个特征温度中,软化温度应用较广, 一般都是根据转化温度来选择合适的燃烧或气化设备, 或根据燃烧和气化设备类型来选择合适原料煤。
1 研究的意义煤灰熔融性是煤灰在高温下达到熔融状态的温度 , 习惯上称作灰熔点。
由于 煤灰是1个多组分的混合物 , 没有1个固定的熔点 , 而只有一个熔融的温度范围。
因此,它不是用1个温度点所能表示,而一般用4个温度(变形温度DT 、软化温度 ST 、半球温度HT 、流动温度FT )才能比较确切地表示。
煤灰软化温度是衡量动 力用煤的一个重要煤质特性指标 , 对煤灰软化温度已有较多的研究 , 譬如, 有些 文献探讨了煤灰成份和煤灰软化温度关系 , 并提出了一些提高或降低煤灰软化 温度的方法。
气流床煤气化技术要求液态排渣。
为了保证气化炉内渣的流动性及 顺利排渣,一般要求气化炉操作温度高于煤灰的流动温度。
影响煤灰的熔融温度 的因素很多,研究表明,它不仅与煤灰的化学组成、煤灰的矿物形态有关,还与 相平衡性质、气氛条件等因素有关。
煤灰是一种极为复杂的无机混合物, 其熔融温度与煤灰化学组成有一定的关 系。
长期以来, 国内外学者作了大量研究工作, 提出了几种根据煤灰化学组成预 测煤灰熔融温度的方法。
一般认为,煤中碱金属矿物质特别是含Ca 和Fe 等矿物质 对煤灰的熔融特性影响较大,其中CaO 、Fe 2O 3和AI 2O 3对煤灰熔点影响的研究较 多。
姚星一等主要考虑灰组成的影响,直接回归灰熔融性温度的流动温度 (FT ) 与灰分。
SiO 2、A12O 3、Fe 2O 3、CaO 、MgO 、K 2O 、Na 2O 含量的关系,结合灰 组成根据其提供的双温度坐标图解,定量算出王泉清、何孝军认为碱金属氧化物以游离形式存在能显著降低煤灰熔融温 度,但大多数煤灰中的K 20是作为伊利石的组成部分而存在的,而伊利石受热直 到熔化仍无K 20析出,故对煤灰助熔作用大大减小,这也说明元素的矿物形态对 煤灰的熔融性有重要影响,此外,他还认为煤灰中碱性氧化物含量(即b 指数)在 40%〜50%时,由于低熔点共熔体的形成,使熔融温度最低; bv 40%时,煤灰熔 融温度随着酸性氧化物含量的增加而提高;当 b > 50%时,灰熔融温度随着碱性氧化物的含量增加而提高,但对应关系较差。
煤灰熔融性及煤灰的成分分析灰熔点是煤燃烧或气化时的一项重要指标。
煤的灰渣是由多种金属和非金属氧化物组成,没有确定的熔点,工业上指的灰熔点,实际上是灰渣在高温下的三个变形特征温度。
DT1=变形温度;ST2=软化温度;FT3=流动温度。
影响煤灰熔融性的主要因素煤灰的熔融性主要取决于煤灰化学组成。
煤灰中Al2O3含量高,其灰熔点就高。
三氧化二铁含量高的煤灰,其灰熔点一般均较低。
氧化钙、氧化镁、氧化钾、氧化钠等碱性氧化物均起降低煤灰熔融性温度的作用,含量越高,则灰熔点愈低。
煤灰的黏度是指煤灰在熔融状态下的内摩擦系数,表征煤灰在高温熔融状态下流动时的物理特性。
煤灰的黏度大小主要取决于煤灰的组成及各成分间的相互作用。
不同的煤灰其流动性不同。
此外,煤灰的黏度大小和温度的高低有着极其密切的关系。
煤灰的黏度对于液态排渣的气化炉来说是很重要的参数。
根据煤灰黏度的大小以及煤灰的化学组成,就可以选择合适的煤源;或者采用添加助熔剂,甚至采用配煤的方法来改善煤灰的流动性,使其符合液态排渣炉的使用要求。
煤灰的熔融性在一定程度上可以用以粗略地判断煤灰的流动性。
对于大多数煤灰来说,熔融性温度高的煤灰,其流动性也差。
在煤灰化学组分中,SiO2和A12O3能增大灰的黏度;Fe2O3、CaO、MgO等能降低煤灰黏度。
但是若煤灰中Fe2O3含量较高而SiO2较少,在一定范围内SiO2含量增加反而能降低黏度。
Na2O、K2O都只会降低黏度。
利用煤灰渣的化学组分可以预测其流动性。
通过煤灰成分分析可了解灰中酸性氧化物与碱性氧化物的比值,对预测管道结垢和腐蚀有重要作用,还有助于判断和防止灰渣对锅炉设备的侵蚀,以及锅炉结渣和积灰。
公司现用褐煤作为气化用煤,煤的灰分含量在10~30%之间。
在必须保证灰分波动在6%之间时,煤灰的流动温度(FT)大多在1200~1300℃之间,煤灰的硅:铝达到2.0以上,三氧化二铁含量远小于15%。
从煤灰特性分析,非常适应气化炉的稳定操作。