第三章 3 牛顿第二定律
- 格式:docx
- 大小:339.96 KB
- 文档页数:14
高一物理第三章知识点公式在高一物理的学习中,第三章是一个非常重要的章节。
这一章主要涉及到了许多物理学的基本概念和公式,对于学生来说,掌握好这些知识点和公式是十分必要的。
在本文中,我们将会介绍一些高一物理第三章涉及到的知识点和公式。
1. 基本物理量在物理学中,有一些基本的物理量是我们必须要熟悉和了解的。
其中包括质量、长度、时间和电流等等。
这些物理量是我们进行物理学计算和实验的基础。
2. 牛顿第一定律牛顿第一定律也被称为惯性定律,它是基本的力学定律之一。
它的公式可以写为: F = ma,其中F代表物体所受的力,m代表物体的质量,a代表物体的加速度。
根据牛顿第一定律,物体的速度只有在存在外力的情况下才会发生变化。
3. 牛顿第二定律牛顿第二定律是牛顿力学的核心原理之一。
它的公式可以写为: F = ma,其中F代表物体所受的力,m代表物体的质量,a代表物体的加速度。
根据牛顿第二定律,当物体受到合力时,它将发生加速度。
4. 牛顿第三定律牛顿第三定律也被称为作用与反作用定律。
它的公式可以写为: F1= -F2,其中F1和F2分别代表两个物体之间的力。
根据牛顿第三定律,任何一个物体所受的力都有一个相等大小但方向相反的力作用在其他物体上。
5. 功功是描述物体之间能量传递和变化的物理量。
它的公式可以写为:W = Fs cosθ,其中W代表功、F代表力、s代表位移、θ代表力的方向与位移方向之间的夹角。
根据功的定义,当力与物体的运动方向相同时,功为正;当力与物体的运动方向相反时,功为负。
6. 功率功率是描述能量转化的快慢的物理量。
它的公式可以写为: P = W/t,其中P代表功率、W代表功、t代表时间。
根据功率的定义,功率越大,表示能量转化越快。
7. 动能动能是描述物体运动状态的物理量。
它的公式可以写为: KE = 1/2mv²,其中KE代表动能、m代表物体的质量、v代表物体的速度。
根据动能的定义,当物体的质量增大或者速度增大时,动能也会增大。
第2讲牛顿第二定律的基本应用学习目标 1.会用牛顿第二定律分析计算物体的瞬时加速度。
2.掌握动力学两类基本问题的求解方法。
3.知道超重和失重现象,并会对相关的实际问题进行分析。
1.2.3.4.1.思考判断(1)已知物体受力情况,求解运动学物理量时,应先根据牛顿第二定律求解加速度。
(√)(2)运动物体的加速度可根据运动速度、位移、时间等信息求解,所以加速度由运动情况决定。
(×)(3)加速度大小等于g的物体一定处于完全失重状态。
(×)(4)减速上升的升降机内的物体,物体对地板的压力大于物体的重力。
(×)(5)加速上升的物体处于超重状态。
(√)(6)物体处于超重或失重状态时其重力并没有发生变化。
(√)(7)根据物体处于超重或失重状态,可以判断物体运动的速度方向。
(×)2.(2023·江苏卷,1)电梯上升过程中,某同学用智能手机记录了电梯速度随时间变化的关系,如图所示。
电梯加速上升的时段是()A.从20.0 s到30.0 sB.从30.0 s到40.0 sC.从40.0 s到50.0 sD.从50.0 s到60.0 s答案A考点一瞬时问题的两类模型两类模型例1 (多选)(2024·湖南邵阳模拟)如图1所示,两小球1和2之间用轻弹簧B相连,弹簧B与水平方向的夹角为30°,小球1的左上方用轻绳A悬挂在天花板上,绳A与竖直方向的夹角为30°,小球2的右边用轻绳C沿水平方向固定在竖直墙壁上。
两小球均处于静止状态。
已知重力加速度为g,则()图1A.球1和球2的质量之比为1∶2B.球1和球2的质量之比为2∶1C.在轻绳A突然断裂的瞬间,球1的加速度大小为3gD.在轻绳A突然断裂的瞬间,球2的加速度大小为2g答案BC解析对小球1、2受力分析如图甲、乙所示,根据平衡条件可得F B=m1g,F B sin30°=m2g,所以m1m2=21,故A错误,B正确;在轻绳A突然断裂的瞬间,弹簧弹力未来得及变化,球2的加速度大小为0,弹簧弹力F B=m1g,对球1,由牛顿第二定律有F合=2m1g cos 30°=m1a,解得a=3g,故C正确,D错误。
第3课时专题强化:牛顿第二定律的综合应用目标要求 1.知道连接体的类型以及运动特点,会用整体法、隔离法解决连接体问题。
2.理解几种常见的临界极值条件,会用极限法、假设法、数学方法解决临界极值问题。
考点一动力学中的连接体问题多个相互关联的物体连接(叠放、并排或由绳子、细杆、弹簧等联系)在一起构成的物体系统称为连接体。
系统稳定时连接体一般具有相同的速度、加速度(或速度、加速度大小相等)。
1.共速连接体两物体通过弹力、摩擦力作用,具有相同的速度和相同的加速度。
(1)绳的拉力(或物体间的弹力)相关类连接体(2)叠加类连接体(一般与摩擦力相关)例1如图所示,水平面上有两个质量分别为m1和m2的木块1和2,中间用一条轻绳连接,两木块的材料相同,现用力F向右拉木块2,当两木块一起向右做匀加速直线运动时,已知重力加速度为g,下列说法正确的是()A.若水平面是光滑的,则m2越大,绳的拉力越大B.若木块和地面间的动摩擦因数为μ,则绳的拉力为m1Fgm1+m2+μm1C.绳的拉力大小与水平面是否粗糙无关D.绳的拉力大小与水平面是否粗糙有关答案C 解析若设木块和地面间的动摩擦因数为μ,以两木块整体为研究对象,根据牛顿第二定律有F -μ(m 1+m 2)g =(m 1+m 2)a ,得a =F -μ(m 1+m 2)g m 1+m 2,以木块1为研究对象,根据牛顿第二定律有F T -μm 1g =m 1a ,得a =F T -μm 1g m 1,系统加速度与木块1加速度相同,联立解得F T =m 1m 1+m 2F ,可知绳子拉力大小与动摩擦因数μ无关,与两木块质量大小有关,无论水平面是光滑的还是粗糙的,绳的拉力大小均为F T =m 1m 1+m 2F ,且m 2越大,绳的拉力越小,故选C 。
拓展(1)两个质量分别为m 1和m 2的木块1和2,中间用一条轻绳连接。
①如图甲所示,用力F 竖直向上拉木块时,绳的拉力F T =__________;②如图乙所示,用力F 沿光滑斜面向上拉木块时,绳的拉力为__________;斜面不光滑时绳的拉力F T =__________。
第三章 牛顿运动定律第二单元 牛顿第二定律[知识梳理]:1.牛顿第二定律的表述:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合力的方向相同,即F =ma (其中的F 和m 、a 必须相对应)2.对定律的理解:(1)矢量性:牛顿第二定律公式是矢量式。
公式mFa =只表示加速度与合外力的大小关系。
矢量式的含义在于加速度的方向与合外力的方向始终一致。
(2)瞬时性:加速度与合外力在每个瞬时都有大小、方向上的对应关系,这种对应关系表现为:合外力恒定不变时,加速度也保持不变。
合外力变化时加速度也随之变化。
合外力为零时,加速度也为零。
(3)独立性:当物体受到几个力的作用时,各力将独立的产生与其对应的加速度,而物体表现出来的实际加速度是各力产生的加速度的矢量和。
3.牛顿第二定律确立了力和运动的关系牛顿第二定律明确了物体的受力情况和运动情况之间的定量关系。
联系物体的受力情况和运动情况的桥梁或纽带就是加速度。
[典型例题](一)牛顿第二定律的矢量性、瞬时性、独立性 (1)牛顿第二定律的矢量性、瞬时性 牛顿第二定律公式mFa =是矢量式。
加速度的方向与合外力的方向始终一致。
加速度的大小和方向与合外力是瞬时对应的,当力发生变化时,加速度瞬时变化。
【例1】如图(1)所示,一质量为m 的物体系于长度分别为L 1 、L 2的两根细线上,L 1的一端悬挂在天花板上,与竖直方向夹角为θ,L 2水平拉直,物体处于平衡状态。
现将L 2线剪断,求剪断瞬时物体的加速度。
(1)下面是某同学对该题的某种解法:解:设L 1线上拉力为T 1,L 2线上拉力为T 2,重力为mg ,物体在三力作用下处于平衡。
=θcos 1T mg ,21sin T T =θ,解得2T =mg tan θ,剪断线的瞬间,T 2突然消失,物体却在T 2反方向获得加速度,因为mg tanθ=ma 所以加速度a =g tan θ,方向在T 2反方向。
第三章运动和力的关系第2课时 牛顿第二定律学习目标1.掌握牛顿第二定律的内容及公式,能够应用牛顿第二定律解决问题。
2.会利用牛顿第二定律对超重、失重、瞬时加速度问题进行分析计算.3.会应用牛顿第二定律解决简单的动力学问题.考点01 牛顿第二定律一、牛顿第二定律的表达式1.内容:物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比,加速度的方向跟作用力的方向相同.2.表达式F=kma,其中力F指的是物体所受的合力.3.牛顿第二定律的四个性质(1)因果性:力是产生加速度的原因,只要物体所受的合力不为0,物体就具有加速度.(2)矢量性:F=ma是一个矢量式.物体的加速度方向由它所受的合力方向决定,且总与合力的方向相同.(3)瞬时性:加速度与合力是瞬时对应关系,同时产生,同时变化,同时消失.(4)独立性:作用在物体上的每一个力都产生加速度,物体的实际加速度是这些加速度的矢量和.二、力的单位1.力的国际单位:牛顿,简称牛,符号为N.2.“牛顿”的定义:使质量为1 kg的物体产生1 m/s2的加速度的力叫作1 N,即1 N=1 kg·m/s2.3.在质量的单位取kg,加速度的单位取m/s2,力的单位取N时,F=kma中的k=1,此时牛顿第二定律可表示为F=ma.[典例1·对牛顿第二定律的理解的考查](多选)下列对牛顿第二定律的表达式F=ma及其变形公式的理解,正确的是( )A.由F=ma可知,物体所受的合外力与物体的质量和加速度成正比B.由m=Fa可知,物体的质量与其所受的合外力成正比,与其运动的加速度成反比C.由a=Fm可知,物体的加速度与其所受的合外力成正比,与其质量成反比D.由m=Fa可知,物体的质量可以通过测量它的加速度和它所受到的合外力而求得答案 CD解析 牛顿第二定律的表达式F=ma表明了各物理量之间的数量关系,即已知两个量,可求第三个量,作用在物体上的合外力,可由物体的质量和加速度计算,并不由它们决定,A错误;质量是物体本身的属性,由物体本身决定,与物体是否受力无关,B错误;由牛顿第二定律知加速度与其所受的合外力成正比,与其质量成反比,m可由其他两量求得,C、D正确.[拓展训练]关于牛顿第二定律,以下说法正确的是( )A.由牛顿第二定律可知,加速度大的物体所受的合力一定大B.牛顿第二定律说明了质量大的物体的加速度一定小C.由F=ma可知,物体所受到的合力与物体的质量成正比D.对同一物体而言,物体的加速度与物体所受到的合力成正比,而且在任何情况下,加速度的方向始终与物体所受的合力方向一致答案 D解析 加速度是由合力和质量共同决定的,故加速度大的物体所受的合力不一定大,质量大的物体的加速度不一定小,选项A、B错误;物体所受到的合力与物体的质量无关,选项C 错误;由牛顿第二定律可知,同一物体的加速度与物体所受的合力成正比,并且加速度的方向与合力方向一致,选项D正确.考点02 牛顿第二定律的简单应用1.应用牛顿第二定律解题的一般步骤(1)确定研究对象.(2)进行受力分析和运动状态分析,画出受力分析图,明确运动性质和运动过程.(3)求出合力或加速度.(4)根据牛顿第二定律列方程求解.2.应用牛顿第二定律解题的方法(1)矢量合成法:若物体只受两个力作用,应用平行四边形定则求这两个力的合力,物体所受合力的方向即加速度的方向.(2)正交分解法:当物体受多个力作用时,常用正交分解法求物体所受的合力.①建立直角坐标系时,通常选取加速度的方向作为某一坐标轴的正方向(也就是不分解加速度),将物体所受的力正交分解后,列出方程F x=ma,F y=0(或F x=0,F y=ma).②特殊情况下,若物体的受力都在两个互相垂直的方向上,也可将坐标轴建立在力的方向上,正交分解加速度a .根据牛顿第二定律{F x =ma x F y =ma y列方程求解.[典例2·对牛顿第二定律的简单应用的考查](2022·全国乙卷·15)如图,一不可伸长轻绳两端各连接一质量为m 的小球,初始时整个系统静置于光滑水平桌面上,两球间的距离等于绳长L 。
3牛顿第二定律一、牛顿第二定律1.内容:物体的加速度跟所受的合力成正比,跟物体的质量成反比,加速度的方向跟合力方向相同.2.公式表示为F=ma,式中的F与a都是矢量,且它们在任何时刻方向都相同.3.力的单位N:如果一个力作用在1 kg的物体上,使物体产生的加速度为1_m/s2,则这个力的大小为1 N.二、力学单位制1.基本单位:物理公式在确定物理量的数量关系的同时,也确定了物理量的单位关系.在物理学中,先选定几个物理量的单位作为基本单位.2.导出单位:根据物理公式中其他物理量和这几个物理量的关系,推导出来的单位叫导出单位.3.单位制:基本单位和导出单位一起组成了单位制.4.在力学中,选定长度、质量和时间这三个物理量的单位作为基本单位.在国际单位制中,它们的单位分别是米、千克、秒.[即学即用]判断下列说法的正误.(1)由F=ma可知,物体所受的合外力与物体的质量成正比,与物体的加速度成反比.()(2)公式F=ma中,各量的单位可以任意选取.()(3)公式F=ma中,a实际上是作用于物体上每一个力所产生的加速度的矢量和.()(4)物体的运动方向一定与它所受合外力的方向一致.()(5)国际单位制中的基本单位是m、kg、N.()一、对牛顿第二定律的理解[导学探究] (1)从牛顿第二定律可知,无论多么小的力都可以使物体产生加速度,可是,我们用力提一个很重的箱子,却提不动它,这跟牛顿第二定律有无矛盾?为什么?(2)从匀速上升的气球上掉下一个物体(不计空气阻力),物体离开气球的瞬间,物体的加速度和速度情况如何?答案 (1)不矛盾.因为牛顿第二定律中的力是指合外力.我们用力提一个放在地面上很重的箱子,没有提动,箱子受到的合力F =0,故箱子的加速度为零,箱子仍保持不动,所以上述现象与牛顿第二定律并没有矛盾.(2)物体离开气球瞬间物体只受重力,加速度大小为g ,方向竖直向下;速度方向向上,大小与气球速度相同.[知识深化] 牛顿第二定律的四个性质1.矢量性:合外力的方向决定了加速度的方向,合外力方向改变,加速度方向改变,加速度方向与合外力方向一致.2.瞬时性:加速度与合外力是瞬时对应关系,它们同生、同灭、同变化.3.同体性:a =Fm 中各物理量均对应同一个研究对象.因此应用牛顿第二定律解题时,首先要处理好的问题是研究对象的选取.4.独立性:当物体同时受到几个力作用时,各个力都满足F =ma ,每个力都会产生一个加速度,这些加速度的矢量和即为物体具有的合加速度,故牛顿第二定律可表示为⎩⎪⎨⎪⎧F x =ma xF y =ma y .例1(多选)下列对牛顿第二定律的理解正确的是()A.由F=ma可知,m与a成反比B.牛顿第二定律说明当物体有加速度时,物体才受到外力的作用C.加速度的方向总跟合外力的方向一致D.当外力停止作用时,加速度随之消失(多选)例2初始时静止在光滑水平面上的物体,受到一个逐渐减小的水平力的作用,则这个物体运动情况为()A.速度不断增大,但增大得越来越慢B.加速度不断增大,速度不断减小C.加速度不断减小,速度不断增大D.加速度不变,速度先减小后增大合外力、加速度、速度的关系1.力与加速度为因果关系:力是因,加速度是果.只要物体所受的合外力不为零,就会产生加速度.加速度与合外力方向是相同的,大小与合外力成正比.2.力与速度无因果关系:合外力方向与速度方向可以同向,可以反向,还可以是夹角.合外力方向与速度方向同向时,物体做加速运动,反向时物体做减速运动.3.两个加速度公式的区别a =Δv Δt 是加速度的定义式,是比值定义法定义的物理量,a 与v 、Δv 、Δt 均无关;a =Fm 是加速度的决定式,加速度由其受到的合外力和质量决定. 二、力学单位制及应用1.力学中选长度、质量、时间为基本物理量,对应的国际单位制中的单位分别为米(m)、千克(kg)、秒(s). 2.单位制的应用(1)利用单位制可以简化计算过程计算时首先将各物理量的单位统一到国际单位制中,用国际单位制中的基本单位和导出单位表示,这样就可以省去计算过程中单位的代入,只在数字后面写上相应待求量的单位即可,从而使计算更简便.(2)利用单位制可检查物理量关系式的正误根据物理量的单位,如果发现某公式在单位上有问题,或者所求结果的单位与采用的单位制中该量的单位不一致,那么该公式或计算结果肯定是错误的.(3)利用单位制可导出物理量的单位:根据物理公式中物理量之间的关系可推导出物理量的单位.例3 在解一道计算题时(由字母表达结果的计算题)一个同学解得位移x =F2m (t 1+t 2),用单位制的方法检查,这个结果( )A .可能是正确的B .一定是错误的C .如果用国际单位制,结果可能正确D .用国际单位制,结果错误,如果用其他单位制,结果可能正确 三、牛顿第二定律的简单应用 1.解题步骤 (1)确定研究对象.(2)进行受力分析和运动情况分析,作出受力和运动的示意图. (3)求合力F 或加速度a . (4)根据F =ma 列方程求解. 2.解题方法(1)矢量合成法:若物体只受两个力作用时,应用平行四边形定则求这两个力的合外力,加速度的方向即是物体所受合外力的方向.(2)正交分解法:当物体受多个力作用时,常用正交分解法求物体的合外力.①建立坐标系时,通常选取加速度的方向作为某一坐标轴的正方向(也就是不分解加速度),将物体所受的力正交分解后,列出方程F x =ma ,F y =0.②特殊情况下,若物体的受力都在两个互相垂直的方向上,也可将坐标轴建立在力的方向上,正交分解加速度a .根据牛顿第二定律⎩⎪⎨⎪⎧F x =ma x F y =ma y 列方程求解.例4如图1所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向37°角,小球和车厢相对静止,小球的质量为1 kg.(g 取10 m/s2,sin 37°=0.6,cos 37°=0.8)(1)求车厢运动的加速度并说明车厢的运动情况;(2)求悬线对小球的拉力大小.例5如图2所示,质量为4 kg的物体静止于水平面上.现用大小为40 N、与水平方向夹角为37°的斜向上的力拉物体,使物体沿水平面做匀加速运动(g取10 m/s2,sin 37°=0.6,cos 37°=0.8).(1)若水平面光滑,物体的加速度是多大?2 s末的速度多大?(2)若物体与水平面间的动摩擦因数为0.5,物体的加速度大小是多大?5 s内的位移多大?1.(对牛顿第二定律的理解)关于牛顿第二定律,以下说法中正确的是()A.由牛顿第二定律可知,加速度大的物体,所受的合外力一定大B.牛顿第二定律说明了,质量大的物体,其加速度一定小C.由F=ma可知,物体所受到的合外力与物体的质量成正比D.对同一物体而言,物体的加速度与物体所受到的合外力成正比,而且在任何情况下,加速度的方向始终与物体所受的合外力方向一致2.(合外力、加速度、速度的关系)物体在与其初速度方向相同的合外力作用下运动,取v0方向为正时,合外力F随时间t的变化情况如图3所示,则在0~t1这段时间内()图3A.物体的加速度先减小后增大,速度也是先减小后增大B.物体的加速度先增大后减小,速度也是先增大后减小C.物体的加速度先减小后增大,速度一直在增大D.物体的加速度先减小后增大,速度一直在减小3.(力学单位制的理解和应用)雨滴在空气中下落,当速度比较大的时候,它受到的空气阻力与其速度的二次方成正比,与其横截面积成正比,即f=kS v2,则比例系数k的单位是() A.kg/m4B.kg/m3C.kg/m2D.kg/m4.(水平面上加速度的求解)如图4所示,质量为1 kg的物体静止在水平面上,物体与水平面间的动摩擦因数μ=0.5,物体受到大小为20 N、与水平方向成37°角斜向下的推力F作用时,沿水平方向做匀加速直线运动,求物体加速度的大小.(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)5.(斜面上加速度的求解) (1)如图5所示,一个物体从光滑斜面的顶端由静止开始下滑,倾角θ=30°,斜面静止不动,重力加速度g=10 m/s2.求物体下滑过程的加速度有多大?(2)若斜面不光滑,物体与斜面间的动摩擦因数μ=36,物体下滑过程的加速度又是多大?课时作业一、选择题(1~7为单选题,8~10为多选题)1.关于力学单位制,下列说法正确的是()A.kg、m/s、N是基本单位B.kg、m、s是导出单位C.在国际单位制中,质量的单位可以是kg,也可以是gD.只有在国际单位制中,牛顿第二定律的表达式才是F=ma2.如图1为第八届珠海航展上中国空军“八一”飞行表演队驾驶“歼-10”战机大仰角沿直线加速爬升的情景.则战机在爬升过程中所受合力方向()A.竖直向上B.与速度方向相同C.与速度方向相反D.与速度方向垂直3.一物块静止在粗糙的水平桌面上.从某时刻开始,物块受到一方向不变的水平拉力作用.假设物块与桌面间的最大静摩擦力等于滑动摩擦力.以a表示物块的加速度大小,F表示水平拉力的大小.能正确描述F与a之间关系的图像是()4.如图2所示,质量m =10 kg 的物体,在水平地面上向左运动,物体与水平地面间的动摩擦因数μ=0.2,与此同时,物体受到一个水平向右的推力F =20 N 的作用,则物体的加速度为(取g =10 m/s 2)( )A .0B .4 m/s 2,水平向右C .2 m/s 2,水平向右D .2 m/s 2,水平向左5.声音在空气中的传播速度v 与空气的密度ρ、压强p 有关.下列速度的表达式(k 为比例系数,无单位)中正确的是( )A .v =k p ρB .v = kp ρC .v =kρpD .v =kpρ6.在静止的车厢内,用细绳a 和b 系住一个小球,绳a 斜向上拉,绳b 水平拉,如图3所示,现让车从静止开始向右做匀加速运动,小球相对于车厢的位置不变,与小车静止时相比,绳a 、b 的拉力F a 、F b 的变化情况是( )A .F a 变大,F b 不变B .F a 变大,F b 变小C .F a 不变,F b 变小D .F a 不变,F b 变大7.三个完全相同的物块1、2、3放在水平桌面上,它们与桌面间的动摩擦因数均相同.现用大小相同的外力F 沿图4所示方向分别作用在1和2上,用12F 的外力沿水平方向作用在3上,使三者都做加速运动,用a 1、a 2、a 3分别代表物块1、2、3的加速度,则( )图4A .a 1=a 2=a 3B .a 1=a 2,a 2>a 3C .a 1>a 2,a 2<a 3D .a 1>a 2,a 2>a 38.在研究匀变速直线运动的实验中,取计数时间间隔为0.1 s ,测得相邻相等时间间隔的位移差的平均值Δx =1.2 cm ,若还测出小车的质量为500 g ,则关于加速度、合外力大小及单位,既正确又符合一般运算要求的是( )A .a =Δx t 2=1.20.12 m /s 2=120 m/s 2 B .a =Δx t 2=1.2×10-20.12 m /s 2=1.2 m/s 2 C .F =ma =500×1.2 N =600 ND .F =ma =0.5×1.2 N =0.6 N9.物体在力F 作用下运动,F 的方向与物体运动方向一致,其F -t 图像如图5所示,则物体( )A .在t 1时刻加速度最大B .在0~t 1时间内做匀加速运动C .从t 1时刻后便开始返回运动D .在0~t 2时间内,速度一直在增大10.如图6所示,当小车向右加速运动时,物块M 相对车厢静止于竖直车厢壁上,当车的加速度增大时( )A .M 受静摩擦力增大B .M 对车厢壁的压力不变C .M 仍相对于车厢静止D .M 受静摩擦力不变二、非选择题11.将质量为0.5 kg的小球,以30 m/s的速度竖直上抛,经过2.5 s小球到达最高点(取g=10 m/s2).求:(1)小球在上升过程中受到的空气的平均阻力;(2)小球在最高点时的加速度大小;(3)若空气阻力不变,小球下落时的加速度为多大?12.如图7所示,自动扶梯与水平面夹角为θ,上面站着质量为m的人,当自动扶梯以加速度a加速向上运动时,求扶梯对人的弹力N和扶梯对人的摩擦力f的大小.13.如图8所示,质量m=1 kg的球穿在斜杆上,斜杆与水平方向成30°角,球与杆之间的动摩擦因数μ=36,球受到竖直向上的拉力F=20 N,则球的加速度为多大?(取g=10 m/s2)。