3.某商场将进货单价为18元的商品, 按每件20元销售时,每日可销售100 件.若每件提价1元,日销售量就要减 少10件,那么把商品的售出价定为多 少时,才能使每天获得的利润最大? 每天的最大利润是多少?
4.某公司试销一种成本单价为500元 /件的新产品,规定试销时的销售单 价不低于成本单价,又不高于800元/ 件.经试销调查,发现销售y(件)与销 售单价x(元/件)可近似看作一次函 数y=kx+b的关系(如图) y ⑴根据图 400 象,求一 300 200 次函数的 100 x o 10 解析式; 607080
复习十二
二次函数应用(二)
复习目标:
通过复习进一步理解并掌握 二次函数有关性质,提高对二 次函数综合题的分析和解答 的能力.
1.某学生推铅球,铅球飞 行时的高度y(m)与水平距 离x(m)之间的函数关系式 3 1 2 1 是y=- 15 x + 30 x+ 2 ,则铅球 落地的水平距离为 m.
2 1.设二次函数y=ax +bx+c的图象
与y轴交于点C(如图),若
AC=20,BC=15, 0 ∠ACB=90 ,求这个 二次函数的解析式.
A
y C
o
Bx
2.抛物线y x px q与x轴
2
交于A, B两点, 交y轴负半 轴交于C点, ACB 90 ,
0
1 1 2 且 , 求P, q及 OA OB OC ABC的外接圆的面积。
5、已知二次函数y=ax2+bx+c的图象与x 轴交于A、B两点(A在原点左侧,B在 原点右侧),与y轴交于C点,若AB=4, OB>OA,且OA、OB是方程x2+kx+3=0 的两根. 1)求A、B两点的坐标;2)若点O 3 2 到BC的的距离为 , 求此二次函 2 数的解析式. 3)若点P的横坐标为2,且⊿PAB的 外心为M(1,1),试判断点P是否在2) 中所求的二次函数图象上.