粉末压制成形模具设计
- 格式:ppt
- 大小:350.00 KB
- 文档页数:17
设计说明书1、工艺流程本产品属于亚共析钢合金(Fe-0.6C/60钢),其具体生产工艺流程如下:Fe矿石→还原熔化(去脉石、杂质和氧)→氧化精炼(脱C、Si、P等)→球磨→铁粉+C粉+适量硬脂酸锌2、压坯设计2.1产品零件分析该产品采用Fe-0.6C(60钢),属于铁基制品,其制品密度依靠较高的压坯密度来达到,因此,在压制成形时需要采用较高的单位压力(一般在400-500MPa)。
由于该产品零件形状比较简单,带一个外台阶,采用简单的单上双下模冲即可成形,并使其密度分布均匀。
有配合、定位、相对运动要求的零部件,产品尺寸精度和形位精度及表面粗糙度要求较高,因此,该产品的的尺寸精度定义为IT8、形位精度如图所示为7级,表面粗糙度精度要求为7级。
2.2压坯精度设计由模具设计任务书的零件成品图可得知该产品压坯同轴度需控制在0.08mm,相当于IT10级;压坯垂直度控制为0.1mm,相当于IT11级;压坯侧面平行度为0.15mm,相当于IT12级。
2.3压坯密度和单重的确定由于已知压坯密度ρ=6.6g/cm3,因此压坯单重W=ρ×V ,由成品图给数据计算其压坯体V=h×S,算的V=166.8cm3 ,所以求的压坯单重W=6.6×166.8=1100.8g。
3、压机与压制方式选择3.1压机压力选择铁基制品一般采用固相烧结,其制品密度除了依靠烧结温度、保温时间之外,在一定程度上还依靠较高的压坯密度来达到,因此该产品采用500MPa的单位压力。
根据任务书要求,截面积S=74.0cm2 ,所以F=P×S=5×74=370t脱模压力,根据实际生产经验,铁基压坯的脱模压力P脱模≈0.13P=0.13×500MPa=65MPa3.2压制类型的选择年生产量为50万件,假设每年的工作时间为300天,每天工作时间为8小时,则p=500000/300/8/60=3.47=4件/min,所以选择自动压制。
粉末冶金模具设计说明书粉末冶金模具设计说明书一、设计任务生产一批两个台阶面的钢制模坯,如图所示,数据要求:A=10mm,B=30mm,C=20mm,D=20mm,E=10 mm,F=10mm。
二、压坯设计1.产品零件分析该产品采用Fe-0.05C(50钢),属于铁基制品,其制品密度依靠其较高的压坯密度来达到,因此在压制成型时需要采用较高的单位压力(一般在300~800MPa)。
由于该产品零件形状比较简单,采用简单的上下模冲压制成型。
2.松装密度和压坯密度的确定采用水雾化铁粉压制,松装密度范围2.5~3.2,取常用值2.8,即松装密度:ρ松=2.8g/cm3压坯密度:γ压=6.6g/cm3压缩比:C=γ/ρ=2.36三、压制成形与压力机确定1.压制压力的选择采用500MPa 的单位压力,由已知可得压坯截面积22222S=(B (3010)62844mm ππ-=-A )= 则其压制力F=p×S=500MPa×628mm 2=314kN脱模压力F 脱=ƒ´p 侧余S 侧=0.2×100×1570=31.4kNƒ´——粉末对阴模壁的静摩擦系数,此处ƒ´=0.2p 侧余——残余侧压力,此处p 侧余=0.2p=0.2×500MPa=100MPa S 侧——侧面积, S 侧=πEB+πFC=3.14(10×30+10×20)=1570mm 2侧压力p 侧 =ξp=p ν/(1-ν)=0.38×500MPa=190MPa2.装粉高度确定带台阶面压坯成形模具的设计原则 1)粉末充填系数相同或相近 2)压缩比相同或相近 压缩比 C=γ/ρ=2.36装粉台阶高度 E 0=CE=2.36×10mm=23.6mm装粉总高度D 0=C(E+F)=2.36×20mm=47.2mm2.1压坯高度验算 max max 2.8(10)(18510)74.26.6H F mm ργ=-=⨯-= ——F max =185mm (设计手册表4-20TPA50/2压力机的最大装料高度)H=D 0=47.2mm<H max 可行 3.压制方式的选择c31406286628S S K S++===侧f 侧S 侧f =πD(B+C)=3140mm 2 S 侧c =πDA =628mm 2 K>单向K max =5(ƒ=0.1,表3-5),压坯有台阶面,选择双向压制。
粉末模压成型工艺粉末模压成型工艺是一种常见的制造工艺,主要用于生产各种形状复杂、尺寸精确的金属零部件。
该工艺通常适用于需要大批量生产的零部件,例如汽车零部件、机械零部件等。
粉末模压成型工艺通过将金属粉末与特定的添加剂混合,并在高压下压制成型,最终经过烧结工艺得到成型零件。
粉末模压成型工艺的优点之一是能够生产形状复杂、密度均匀的零部件,且具有高度的精度和表面质量。
通过粉末模压成型,可以实现对零件的几乎完全成型,减少后续的加工工序,提高生产效率并降低成本。
此外,粉末模压成型还可以实现对材料的节约利用,减少浪费,具有较好的环保效应。
在粉末模压成型工艺中,首先需要选择适合的金属粉末作为原料。
金属粉末的选择直接影响到成型零件的性能和质量,因此需要根据零件的要求选择粒度、形状、成分等合适的金属粉末。
接下来将金属粉末与添加剂混合均匀,添加的添加剂可以改善粉末的流动性、成型性和烧结性能。
混合后的金属粉末经过模压成型工艺,即将混合好的金属粉末放入模具中,在一定的压力下进行成型。
模具的设计需要考虑到零件的形状、尺寸以及成型后的收缩率,以确保最终成型零件的精度和质量。
在模压成型的过程中,通过控制成型压力、温度等工艺参数,可以实现零件的精确成型。
最后,经过模压成型的零件需要进行烧结处理。
烧结是利用高温将金属粉末颗粒粘合在一起的过程,使得零件的密度得到进一步提高,表面质量也得到改善。
烧结过程中需要控制好温度和时长,以确保零件具有良好的力学性能和表面质量。
在粉末模压成型工艺中,需要综合考虑材料选择、工艺参数控制、模具设计等方面因素,以实现对零部件的精确成型。
粉末模压成型工艺的发展使得生产过程更加高效、节约成本,同时也为制造业的发展带来了新的机遇和挑战。
随着技术的不断进步,粉末模压成型工艺将会在未来得到更广泛的应用,促进制造业的转型升级和可持续发展。
1。
粉体成形模具设计课件1. 引言粉体成形工艺是一种使用粉末材料通过压力、温度等外力条件将粉末材料塑造成所需形状的工艺。
在粉体成形过程中,模具的设计起到关键作用,直接影响成品的质量和制造效率。
本课件将介绍粉体成形模具设计的基本原理和注意事项。
2. 粉体成形模具的分类根据粉体成形工艺的特点和要求,粉体成形模具可以分为压制模具、注射模具、挤压模具等。
各种模具在设计上有一些共性,但也有一些独特的要求。
2.1 压制模具设计要点压制模具用于将粉末材料在一定温度和压力下压制成形。
其设计要点包括: - 模具结构设计:模具应具有足够的刚性和稳定性,以承受高压下的冲击力和变形力,并保证成品的形状和尺寸精度。
- 凸模和凹模设计:凸模应具有充分的刚性和耐磨性,凹模则需考虑排料和顶出等因素。
- 压头设计:压头应根据成品形状的复杂程度和压制力的大小进行合理设计。
2.2 注射模具设计要点注射模具用于将粉末材料注入到模腔中,通过压力和温度使其固化成形。
其设计要点包括: - 模具结构设计:注射模具应具有较高的刚性和耐磨性,以承受注射时的压力和冲击力。
- 模腔设计:模腔应根据产品的形状和尺寸合理设计,以确保成品的几何形状和尺寸精度。
- 引导系统设计:引导系统用于将粉末材料引导到模腔中,其设计要考虑粉末流动性和材料浇注的均匀性等因素。
2.3 挤压模具设计要点挤压模具用于将粉末材料在挤压机内通过挤压头挤出,并在模具中固化成形。
其设计要点包括:- 模具结构设计:挤压模具要求具有足够的刚性和稳定性,以承受挤压时的冲击力和变形力。
- 模腔设计:模腔应根据挤压头和产品的形状合理设计,以确保挤压成品的形状和尺寸精度。
- 冷却系统设计:冷却系统用于快速降低模具温度,以便加快成品的固化速度和提高生产效率。
3. 粉体成形模具设计步骤粉体成形模具设计一般包括以下几个步骤:3.1 确定产品形状和尺寸根据产品的要求和实际应用,确定所需的形状和尺寸。