用Midas做悬索桥分析-典尚设计
- 格式:pdf
- 大小:1.55 MB
- 文档页数:39
一、活载1、活载基本输入在定义车道中定义桥梁跨度的意义在于,一个是程序根据输入的值按JTG D60-2004的4.3.1条自动选择公路-I级荷载Pk值、按4.3.5自动选择人群荷载标准值;二是用于计算冲击系数,当用户在分析>移动荷载分析控制中选择按输入的跨度计算冲击系数时,将按在定义车道时输入的跨度计算冲击,选择跨度实始点的用途: 当用户在分析>移动荷载分析控制中选择按影响线加载长度计算冲击时,程序将根据跨度始点间的距离计算冲击。
程序不能自动考虑汽车荷载的纵向折减,当跨径大于150m时,用户应在定义移动荷载分析子荷载工况时,在系数中自行输入纵向折减系数。
连续梁桥的各跨跨度不同时,程序自动按在定义车道时输入的各跨跨度中最大值选用Pk值(偏于安全)。
选择的公路工程技术标准(JTG B01-2003)的荷载,程序默认为公路-I级荷载,当为公路-II 级荷载时,应在分析>移动荷载分析控制中选择公路-II级,程序会自动将公路-I级荷载乘0.75的系数。
汽车离心力:可按下列步骤加载: 首先进行一般的移动荷载分析,在后处理利用移动荷载追踪器功能获得某项结果的最不利加载位置和荷载,然后通过按JTG D60-2004的4.3.3条计算离心力系数,将其与最不利荷载相乘,用梁单元荷载中集中荷载方式(局部坐标系)加载到最不利加载位置。
因为离心力不考虑冲击的影响,而程序中提供的最不利荷载中包括了冲击系数,所以在将离心力与最不利荷载相乘时应除以(1+μ)。
人群荷载:在荷载>移动荷载分析数据>车辆中选择公路工程技术标准(JTG B01-2003)的荷注意:a. 人群荷载也要单独定义一个车道b. 当在移动荷载工况中分别将汽车荷载和人群荷载定义为子荷载工况,并在移动荷载工况中将其定义为组合时,人群荷载的加载车道也将被认为是一个车道参与横向车道折减,定义人群荷载子荷载工况时,系数取0.8(根据通用规范4.1.6条第1项)。
北京迈达斯技术有限公司2007年8月目录1.概要 (1)2. 设置操作环境 (4)3. 定义材料和截面 (5)4. 建立结构模型 (14)5. 非预应力钢筋输入 (30)6. 输入荷载 (30)7. 定义施工阶段 (42)8. 输入移动荷载数据 (48)9. 运行结构分析 (52)10. 查看分析结果 (52)11. PSC设计 (62)12. RC设计 (70)附录:关于温度荷载和支座沉降的模拟 (79)1. 概要本桥为30+50+30三跨混凝土悬臂梁桥,其中中跨为挂孔结构,挂孔梁为普通钢筋混凝土梁,梁长16m。
墩为钢筋混凝土双柱桥墩,墩高15m。
(注:本例题并非实际工程,仅作为软件功能介绍的参考例题。
)在简化过程中省略了边跨合龙段模拟、成桥温度荷载模拟。
通过本例题重点介绍MIDAS/Civil软件的施工阶段分析功能、普通钢筋的输入方法、钢束预应力荷载的输入方法、移动荷载的输入方法和查看分析结果的方法、PSC设计及RC设计数据的输入方法和查看设计结果的方法等。
图1. 分析模型桥梁概况及一般截面桥梁形式:三跨混凝土悬臂梁桥梁长度:L = 30+50+30 = 110.0 m,其中中跨为挂孔结构,挂梁长16m,为钢筋混凝土结构施工方法:悬臂施工T构部分,满堂支架施工边跨现浇段,边跨合龙时,中跨体系转换为简支单悬臂结构,拆除施工支架,然后施工中跨挂梁,挂梁与中跨主梁铰接,施工桥面铺装,并考虑3650天收缩徐变。
预应力布置形式:T构部分配置顶板预应力,边跨配置底板预应力截面形式如下图2. 跨中箱梁截面图3. 墩顶箱梁截面梁桥分析与设计的一般步骤1. 定义材料和截面2. 建立结构模型3. 输入非预应力钢筋4. 输入荷载①.恒荷载②.钢束特性和形状③.钢束预应力荷载5. 定义施工阶段6. 输入移动荷载数据①.选择移动荷载规范②.定义车道③.定义车辆④.移动荷载工况7. 运行结构分析8. 查看分析结果9. PSC设计(预应力混凝土梁)10. RC设计(普混梁和柱)PSC设计参数确定RC设计参数的确定运行设计运行RC梁设计/运行RC柱设计查看设计结果表格和图形查看设计结果表格和图形输出PSC设计计算书输出RC设计计算书使用的材料❑混凝土主梁采用JTG04(RC)规范的C50混凝土,桥墩采用JTG04(RC)规范的C40混凝土❑钢材采用JTG04(S)规范,在数据库中选Strand1860荷载❑恒荷载自重,在程序中按自重输入,由程序自动计算❑预应力钢束(φ15.2 mm×31)截面面积: Au = 4340 mm2孔道直径: 130 mm钢筋松弛系数(开),选择JTG04和0.3(低松弛)超张拉(开)预应力钢筋抗拉强度标准值(fpk):1860N/mm^2预应力钢筋与管道壁的摩擦系数:0.25管道每米局部偏差对摩擦的影响系数:1.5e-006(1/mm)锚具变形、钢筋回缩和接缝压缩值:开始点:6mm结束点:6mm张拉力:抗拉强度标准值的75%,张拉控制应力1395MPa❑徐变和收缩条件水泥种类系数(Bsc): 5 (5代表普通硅酸盐水泥)28天龄期混凝土立方体抗压强度标准值,即标号强度(fcu,f):50N/mm^2t5天长期荷载作用时混凝土的材龄:=ot3天混凝土与大气接触时的材龄:=s相对湿度: %RH70=构件理论厚度:程序计算适用规范:中国规范(JTG D62-2004)徐变系数: 程序计算混凝土收缩变形率: 程序计算❑移动荷载适用规范:公路工程技术标准(JTG B01-2003)荷载种类:公路I级,车道荷载,即CH-CD2. 设置操作环境打开新文件(新项目),以 ‘混凝土悬臂梁’ 为名保存(保存)。
自锚式悬索桥成桥阶段分析大桥是跨海大桥,目前除铁路部分还没有运行外,其他公路部分已经在使用。
把握桥梁的成桥阶段特性可对事故做出迅速反应,制定相应的应对措施,对桥梁的维护管理也是相当重要的。
本文将对大桥的成桥阶段模型建模方法和分析结果进行简要说明。
一.分析简要为了了解桥梁的特性以及维护管理的需要,首先要建立桥梁结构分析模型。
建立成桥阶段模型较为重要的是如何模拟成桥阶段的结构刚度、边界条件以及质量分布。
悬索桥在施工阶段表现出非常明显的非线性特征,但在主缆和吊杆产生了较大张力的成桥阶段,对追加荷载(车辆荷载、风荷载等)的反应则表现出线性特征。
因此可以将成桥状态的坐标和构件内力作为初始平衡状态,对追加荷载的反应假定为线性反应,利用初始平衡状态的内力计算几何刚度,并与结构刚度进行叠加生成成桥状态的刚度。
因为大桥是自锚式悬索桥,在初始平衡状态主缆和加劲梁作用有初始轴力,且轴力对弯曲刚度的影响是不能被忽略的。
本文利用MIDAS软件中的几何刚度初始荷载命令反应轴力对刚度的影响。
本工程成桥阶段分析将参考设计图纸建立几何形状,然后赋予截面特性值和边界条件。
模型建成后利用几何刚度初始荷载命令赋予主缆和加劲梁以初始轴力,用于计算结构的几何刚度。
在运行特征值分析后,通过对主要振型与激振实验结果值的比较,判定建立的分析模型正确与否,然后加载静力和动力荷载,分析结构的各种特性。
本文进行的分析内容如下:成桥阶段特征值分析对比主要振型的频率的分析结果和实验结果。
激振实验通过激振实验结果判断特征值分析的准确性。
静力分析在分析模型中加载静力荷载。
动力分析在分析模型中加载动力荷载,做时程分析。
二.MIDAS中用于成桥阶段分析的功能MIDAS中用于大桥成桥阶段分析所需的单元和功能参见表一。
表一 MIDAS中用于悬索桥分析的功能类 别 内 容 适 用使用单元 索单元梁单元变截面梁单元主缆、吊杆加劲梁索塔荷载功能 几何刚度初始荷载时程分析数据初始轴力(计算几何刚度)将激振力换算为动力荷载边界条件 点弹性支承弹性连接刚性连接梁端刚域(偏心)弹性支座(桥梁端部外侧)弹性支座(索塔外侧)主缆与鞍座的刚臂连接下弦、腹杆、竖向构件偏心距离分析功能 静力分析特征值分析时程分析静力荷载作用下的反应检查刚性质量模型的正确性预测动力加载时的反应查看结果 (后处理) 特征值分析图形和文本时程图形和文本与实测值的比较动力分析三.分析模型几何形状如<图1>所示大桥为主缆锚固在加劲梁上的自锚式悬索桥,其加劲梁在初始平衡状态有初始轴力作用。
V〇1.43,N〇.3 f h丨v£讨第43卷第3期March,2017_________________________Sichuan Building Materials________________________2017 年3 月基于Midas的悬索桥倒拆分析方法探讨林君武(重庆市交通工程监理咨询有限责任公司,重庆400060)摘要:在悬索桥的设计及实际施工中,确定悬索桥空缆状态及各个施工阶段的状态是至关重要的。
因此,需对悬索桥进行倒拆分析,以确定空缆状态下的主缆线形及相关受力状态。
本文结合具体实例,确定成桥状态,利用桥梁结构有限元分析软件Midas Civil建立悬索桥分析模型,考虑几何非线性影响,进行悬索桥的倒拆分析,确定空缆时的结构状态,总 结相关结论,为类似悬索桥的设计和施工提供参考依据,关键词:悬索桥;有限元分析;倒拆分析方法;非线性因素中图分类号:U448 文献标志码:B文章编号:1672 - 4011 (2017)03 - 0096 - 02DOI:10.3969/j.issn. 1672 - 4011. 2017. 03. 048〇前言悬索桥的施工步骤一般是先浇筑下部结构和锚碇,然后 进行主塔施工,利用施工完毕后的主塔架设猫道,把猫道作 为架设主缆的施工平台,然后在主缆上安装吊索,逐段拼装 架设加劲梁段。
主缆是悬索桥的主要承m构件,其几何形状 在施工过程中的变化是非常大的,因此,在进行悬索桥分析 时,往往是把设计成桥状态作为初始研究状态,通过做逆施 工阶段分析,并考虑悬索桥的几何非线性影响,推导出悬索 桥在空缆状态下受自童満^载作用的初始平衡状态。
国内外已有不少专家及设计人员对悬索桥的分析方法 进行了研究,这些方法大多是采用结构有限元方法进行分析 计算,模拟方法和计算模型各有不同。
在悬索桥的倒拆分析 方法中,桥梁结构有限元分析软件Midas Civil能对悬索桥的整个结构体系做较为精确的初始平衡状态分析。
Midas做悬索桥分析相信刚接触Midas做悬索桥分析的朋友,肯定对(1) 几何初始刚度,(2)初始内力,(3)平衡节点和构件内力三者头疼的不行,虽然Midas提供了很多有关悬索桥的技术资料,但如果没有真正接触过悬索桥工程项目的朋友,是无法很好地领会到三者的区别的。
下面我以利用Midas2006的建模助手和悬索桥分析控制进行自锚式悬索桥初步设计的过程作一个概括总结。
假定各位对Midas的基本操作及窗口选项的出处都已经熟悉,尽量做到言简意赅。
步骤一:利用悬索桥建模助手得到初始模型1,得到(1)几何初始刚度,(2)初始内力步骤二:利用悬索桥分析控制,定义好更新节点组和垂点组,得到(1)更新的几何初始刚度,(2)更新的初始内力,(3)新得到的平衡节点和构件内力步骤三:恒载+活载分析,需要步骤二的(1)初始内力,(2)平衡节点和构件内力,至于步骤二的几何初始刚度,并不需要。
我做过模型对比,删除后对内力和变形的影响为零蛋。
这也得到了两个结论:1、活载分析只需要黄金搭档,即“初始内力”+“PostCS的线性分析”,“初始几何刚度”对活载分析的作用完全可以由“初始内力”来代替。
因为在线性分析中,“初始几何刚度”只对几何刚度有影响,并不会反映到内力当中。
2、成桥恒载分析只需要施工阶段分析的无敌助手,即“平衡节点和构件内力”。
当然需要定义非线性施工阶段的“独立模型” + 钩选“平衡节点和构件内力”。
步骤四:倒拆分析,需要步骤二的(1)初始内力,(2)平衡节点和构件内力步骤五:正装分析,需要步骤四倒拆分析而得的最后施工阶段的单元内力结果,转换为几何初始刚度输入步骤五的正装模型的第一个施工阶段中。
通过以上五个步骤,可以带到以下有益的结论1、频频出现在Midas技术资料的热门字眼“初始几何刚度”其实作用非常小,在步骤三、步骤四种均可删去,即使保留“初始几何刚度”,在步骤三中不起作用,在步骤四中不会随着倒拆的进行而发生更新。
关于MIDAS/Civil悬索桥分析的一些功能说明1)建模助手的功能使用简化方法计算获得索的水平张力和主缆的初始形状,利用悬索单元的柔度矩阵重新进行迭代分析。
当获得了所有主缆单元的无应力长之后,则构成由主缆和吊杆组成的索的体系,即,主缆两端、索塔墩底部、吊杆下端均按固接处理。
当将无应力索长赋予悬索单元时,将产生不平衡力引起结构变形,然后通过坐标的变化判断收敛与否,当不收敛时则更新坐标重新计算无应力索长直至收敛,建模助手分析结束。
2)悬索桥分析控制以建模助手生成的主缆坐标、无应力索长、水平张力为基础进行悬索桥整体结构的初始平衡状态分析。
对于地锚式悬索桥,其通过建模助手建立的模型,若小范围地调整加劲梁,对索的无应力长度和主缆坐标影响不是很大,因此一般来说直接采用建模助手的结果即可,当需要做精密的分析时也可采用悬索桥分析控制功能进行第二阶段分析。
而自锚式悬索桥,由于其加劲梁受较大轴力的作用,加劲梁端部和索墩锚固位置会发生较大变化,即主缆体系将发生变化,所以从严格意义来说建模助手获得的索体系和无应力长与实际并不相符。
因此必须对整体结构重新进行精密分析。
其过程如下:将主缆和吊杆的力按静力荷载加载到由索塔墩和加劲梁组成的杆系结构上,计算加劲梁和索塔墩的初始内力,并将其作用在整体结构上。
通过反复计算直至收敛,获得整体结构的初始平衡状态。
(参考技术资料《自锚式悬索桥的计算》)3)对于初始荷载的说明671版本开始,在“荷载/初始荷载”中,分为大位移和小位移两项,其内又分为几何刚度初始荷载、平衡单元节点内力、初始荷载控制数据、初始单元内力共4项内容。
其作用分别如下:大位移/平衡单元节点内力:该功能只适用于施工阶段分析中选择非线性分析的独立模型,并且钩选了“包含平衡单元节点内力”选项时的情形。
进行斜拉桥或悬索桥逆施工阶段分析时,通过计算由张拉力和恒载导致的成桥状态的节点力和构件内力,可以考虑在外力作用下,位移为0的状态。
懸索橋分析時的一些注意事項1)使用MIDAS/Civil分析懸索橋的基本操作步驟a) 定義主纜、主塔、主梁、吊杆等構件的材料和截面特性;b) 打開主菜單“模型/結構建模助手/懸索橋”,輸入相應參數(各參數意義請參考聯機幫助的說明以及下文中的一些內容);c) 將建模助手的數據另存為“*.wzd”檔,以便以後修改或確認;d) 運行建模助手後,程式會提供幾何剛度初始荷載數據和初始單元內力數據,並自動生成“自重”的荷載工況;e) 對模型根據實際狀況,對單元、邊界條件和荷載進行一些必要的編輯後,將主纜上的各節點定義為更新節點組,將塔頂節點和跨中最低點定義為垂點組;f) 定義懸索橋分析控制數據後運行。
運行過程中需確認是否最終收斂。
運行完了後程式會提供平衡單元節點內力數據;g) 刪除懸索橋分析控制數據,將所有結構、邊界條件和荷載都定義為相應的結構組、邊界組和荷載組,定義一個一次成橋的施工階段,在施工階段對話框中選擇“考慮非線性分析/獨立模型”,並勾選“包含平衡單元節點內力”;h) 運行分析後查看該施工階段的位移是否接近於0以及一些構件的內力是否與幾何剛度初始荷載表格或者平衡單元節點內力表格的數據相同;i) 各項結果都滿足要求後即可進行倒拆施工階段分析或者成橋狀態的各種分析;j) 詳細計算原理請參考技術資料《用MIDAS做懸索橋分析》。
2)建模助手中選擇三維和不勾選三維的區別?a) 勾選三維就是指按空間雙索面來計算懸索橋,需要輸入橋面的寬度,輸入的橋面系荷載將由兩個索面來承擔;b) 不勾選三維時,程式將給建立單索面的空間模型,不需輸入橋面的寬度,輸入的橋面系荷載將由單索面來承擔。
3)建模助手中主梁和主塔的材料、截面以及重量是如何考慮的?a) 因為索單元必須考慮自重,因此建模助手分析中對於主纜和吊杆的自重,程式會自動考慮;b) 但在建模助手中主梁和主塔的材料和截面並不介入分析,程式只是根據輸入的幾何數據,給建立幾何模型,以便進行下一步的懸索橋精密分析。
xxxx技术有限公司20xx年8月目录1.概要 (1)2. 设置操作环境 (4)3. 定义材料和截面 (5)4. 建立结构模型 (14)5. 非预应力钢筋输入 (30)6. 输入荷载 (30)7. 定义施工阶段 (42)8. 输入移动荷载数据 (48)9. 运行结构分析 (52)10. 查看分析结果 (52)11. PSC设计 (62)12. RC设计 (70)附录:关于温度荷载和支座沉降的模拟 (79)1. 概要本桥为30+50+30三跨混凝土悬臂梁桥,其中中跨为挂孔结构,挂孔梁为普通钢筋混凝土梁,梁长16m。
墩为钢筋混凝土双柱桥墩,墩高15m。
(注:本例题并非实际工程,仅作为软件功能介绍的参考例题。
)在简化过程中省略了边跨合龙段模拟、成桥温度荷载模拟。
通过本例题重点介绍MIDAS/Civil软件的施工阶段分析功能、普通钢筋的输入方法、钢束预应力荷载的输入方法、移动荷载的输入方法和查看分析结果的方法、PSC设计及RC设计数据的输入方法和查看设计结果的方法等。
图1. 分析模型桥梁概况及一般截面桥梁形式:三跨混凝土悬臂梁桥梁长度:L = 30+50+30 = 110.0 m,其中中跨为挂孔结构,挂梁长16m,为钢筋混凝土结构施工方法:悬臂施工T构部分,满堂支架施工边跨现浇段,边跨合龙时,中跨体系转换为简支单悬臂结构,拆除施工支架,然后施工中跨挂梁,挂梁与中跨主梁铰接,施工桥面铺装,并考虑3650天收缩徐变。
预应力布置形式:T构部分配置顶板预应力,边跨配置底板预应力截面形式如下图2. 跨中箱梁截面图3. 墩顶箱梁截面梁桥分析与设计的一般步骤1. 定义材料和截面2. 建立结构模型3. 输入非预应力钢筋4. 输入荷载①.恒荷载②.钢束特性和形状③.钢束预应力荷载5. 定义施工阶段6. 输入移动荷载数据①.选择移动荷载规范②.定义车道③.定义车辆④.移动荷载工况7. 运行结构分析8. 查看分析结果9. PSC设计(预应力混凝土梁)10. RC设计(普混梁和柱)PSC设计参数确定RC设计参数的确定运行设计运行RC梁设计/运行RC柱设计查看设计结果表格和图形查看设计结果表格和图形输出PSC设计计算书输出RC设计计算书使用的材料❑混凝土主梁采用JTG04(RC)规范的C50混凝土,桥墩采用JTG04(RC)规范的C40混凝土❑钢材采用JTG04(S)规范,在数据库中选Strand1860荷载❑恒荷载自重,在程序中按自重输入,由程序自动计算❑预应力钢束(φ15.2 mm×31)截面面积: Au = 4340 mm2孔道直径: 130 mm钢筋松弛系数(开),选择JTG04和0.3(低松弛)超张拉(开)预应力钢筋抗拉强度标准值(fpk):1860N/mm^2预应力钢筋与管道壁的摩擦系数:0.25管道每米局部偏差对摩擦的影响系数:1.5e-006(1/mm)锚具变形、钢筋回缩和接缝压缩值:开始点:6mm结束点:6mm张拉力:抗拉强度标准值的75%,张拉控制应力1395MPa❑徐变和收缩条件水泥种类系数(Bsc): 5 (5代表普通硅酸盐水泥)28天龄期混凝土立方体抗压强度标准值,即标号强度(fcu,f):50N/mm^2t5天长期荷载作用时混凝土的材龄:=ot3天混凝土与大气接触时的材龄:=s相对湿度: %RH70=构件理论厚度:程序计算适用规范:中国规范(JTG D62-2004)徐变系数: 程序计算混凝土收缩变形率: 程序计算❑移动荷载适用规范:公路工程技术标准(JTG B01-2003)荷载种类:公路I级,车道荷载,即CH-CD2. 设置操作环境打开新文件(新项目),以 ‘混凝土悬臂梁’ 为名保存(保存)。
湖南大学土木工程学院2009年4月目录1.概要 (1)2. 设置操作环境 (4)3. 定义材料和截面 (5)4. 建立结构模型 (14)5. 非预应力钢筋输入 (29)6. 输入荷载 (30)7. 定义施工阶段 (42)8. 输入移动荷载数据 (48)9. 运行结构分析 (52)10. 查看分析结果 (52)11. PSC设计 (62)12. RC设计 (70)附录:关于温度荷载和支座沉降的模拟 (79)1. 概要本桥为30+50+30三跨混凝土悬臂梁桥,其中中跨为挂孔结构,挂孔梁为普通钢筋混凝土梁,梁长16m。
墩为钢筋混凝土双柱桥墩,墩高15m。
(注:本例题并非实际工程,仅作为软件功能介绍的参考例题。
)在简化过程中省略了边跨合龙段模拟、成桥温度荷载模拟。
通过本例题重点介绍MIDAS/Civil软件的施工阶段分析功能、普通钢筋的输入方法、钢束预应力荷载的输入方法、移动荷载的输入方法和查看分析结果的方法、PSC设计及RC设计数据的输入方法和查看设计结果的方法等。
图1. 分析模型桥梁概况及一般截面桥梁形式:三跨混凝土悬臂梁桥梁长度:L = 30+50+30 = 110.0 m,其中中跨为挂孔结构,挂梁长16m,为钢筋混凝土结构施工方法:悬臂施工T构部分,满堂支架施工边跨现浇段,边跨合龙时,中跨体系转换为简支单悬臂结构,拆除施工支架,然后施工中跨挂梁,挂梁与中跨主梁铰接,施工桥面铺装,并考虑3650天收缩徐变。
预应力布置形式:T构部分配置顶板预应力,边跨配置底板预应力截面形式如下图2. 跨中箱梁截面图3. 墩顶箱梁截面梁桥分析与设计的一般步骤1. 定义材料和截面2. 建立结构模型3. 输入非预应力钢筋4. 输入荷载①.恒荷载②.钢束特性和形状③.钢束预应力荷载5. 定义施工阶段6. 输入移动荷载数据①.选择移动荷载规范②.定义车道③.定义车辆④.移动荷载工况7. 运行结构分析8. 查看分析结果9. PSC设计(预应力混凝土梁)10. RC设计(普混梁和柱)PSC设计参数确定RC设计参数的确定运行设计运行RC梁设计/运行RC柱设计查看设计结果表格和图形查看设计结果表格和图形输出PSC设计计算书输出RC设计计算书使用的材料❑混凝土主梁采用JTG04(RC)规范的C50混凝土,桥墩采用JTG04(RC)规范的C40混凝土❑钢材采用JTG04(S)规范,在数据库中选Strand1860荷载❑恒荷载自重,在程序中按自重输入,由程序自动计算❑预应力钢束(φ15.2 mm×31)截面面积: Au = 4340 mm2孔道直径: 130 mm钢筋松弛系数(开),选择JTG04和0.3(低松弛)超张拉(开)预应力钢筋抗拉强度标准值(fpk):1860N/mm^2预应力钢筋与管道壁的摩擦系数:0.25管道每米局部偏差对摩擦的影响系数:1.5e-006(1/mm)锚具变形、钢筋回缩和接缝压缩值:开始点:6mm结束点:6mm张拉力:抗拉强度标准值的75%,张拉控制应力1395MPa❑徐变和收缩条件水泥种类系数(Bsc): 5 (5代表普通硅酸盐水泥)28天龄期混凝土立方体抗压强度标准值,即标号强度(fcu,f):50N/mm^2t5天长期荷载作用时混凝土的材龄:=ot3天混凝土与大气接触时的材龄:=s相对湿度: %RH70=构件理论厚度:程序计算适用规范:中国规范(JTG D62-2004)徐变系数: 程序计算混凝土收缩变形率: 程序计算❑移动荷载适用规范:公路工程技术标准(JTG B01-2003)荷载种类:公路I级,车道荷载,即CH-CD2. 设置操作环境打开新文件(新项目),以 ‘混凝土悬臂梁’ 为名保存(保存)。
Midas Civil桥梁工程实例精解一、引言Midas Civil是一款专门针对桥梁工程设计和分析的软件,其功能强大、应用广泛。
本文将重点讨论Midas Civil在桥梁工程实例中的应用和精解,以帮助读者更好地了解该软件的工程实践价值。
二、Midas Civil桥梁工程实例分析1. 拱桥设计与分析以某某大型拱桥工程为例,介绍Midas Civil在拱桥设计与分析中的具体应用。
包括结构建模、材料设定、荷载分析、抗震设计等方面。
2. 梁桥设计与分析以某某梁桥工程为例,介绍Midas Civil在梁桥设计与分析中的具体应用。
包括纵横断面设计、施工阶段分析、架设过程模拟等方面。
3. 悬索桥设计与分析以某某悬索桥工程为例,介绍Midas Civil在悬索桥设计与分析中的具体应用。
包括索塔设计、索缆分析、振动稳定性分析等方面。
4. 桥梁监测与维护介绍Midas Civil在桥梁监测与维护方面的应用,如结构健康监测、裂缝分析、加固方案评估等。
三、Midas Civil在桥梁工程中的优势和应用价值1. 强大的建模和分析功能Midas Civil具有强大的建模和分析功能,能够准确模拟各类桥梁结构,在设计和施工阶段提供可靠的分析结果。
2. 多场景下的适用性Midas Civil不仅适用于各类桥梁类型,还可以应用于不同地理、气候条件下的工程实践,具有较强的通用性和灵活性。
3. 创新的工程实践技术Midas Civil在桥梁工程实践中引入了许多创新的技术和方法,如基于BIM的协同设计、结构优化算法等,推动了桥梁工程实践的进步。
4. 提高工程质量和效率通过Midas Civil的应用,桥梁工程的设计质量和施工效率得到了有效提升,有力支撑了工程质量和进度的保障。
四、Midas Civil在桥梁工程中的应用案例1. 桥梁工程A案例介绍Midas Civil在桥梁工程A中的应用情况,包括具体的建模分析过程、工程效果和成果展示等。
midas悬索桥midas关于悬索桥分析的知识该帖被浏览了1488次| 回复了2次关于MIDAS/Civil悬索桥分析的一些功能说明关于MIDAS/Civil 悬索桥分析的一些功能说明建模助手的功能使用简化方法计算获得索的水平张力和主缆的初始形状,利用悬索单元的柔度矩阵重新进行迭代分析。
当获得了所有主缆单元的无应力长之后,则构成由主缆和吊杆组成的索的体系,即,主缆两端、索塔墩底部、吊杆下端均按固接处理。
当将无应力索长赋予悬索单元时,将产生不平衡力引起结构变形,然后通过坐标的变化判断收敛与否,当不收敛时则更新坐标重新计算无应力索长直至收敛,建模助手分析结束。
)悬索桥分析控制以建模助手生成的主缆坐标、无应力索长、水平张力为基础进行悬索桥整体结构的初始平衡状态分析。
对于地锚式悬索桥,其通过建模助手建立的模型,若小范围地调整加劲梁,对索的无应力长度和主缆坐标影响不是很大,因此一般来说直接采用建模助手的结果即可,当需要做精密的分析时也可采用悬索桥分析控制功能进行第二阶段分析。
而自锚式悬索桥,由于其加劲梁受较大轴力的作用,加劲梁端部和索墩锚固位置会发生较大变化,即主缆体系将发生变化,所以从严格意义来说建模助手获得的索体系和无应力长与实际并不相符。
因此必须对整体结构重新进行精密分析。
其过程如下:将主缆和吊杆的力按静力荷载加载到由索塔墩和加劲梁组成的杆系结构上,计算加劲梁和索塔墩的初始内力,并将其作用在整体结构上。
通过反复计算直至收敛,获得整体结构的初始平衡状态。
(参考MIDAS主页技术资料《自锚式悬索桥))对于初始荷载的说明从671版本开始,在“荷载/初始荷载”中,分为大位移和小位移两项,其内又分为几何刚度初始荷载、平衡单元节点内力、初始荷载控制数据、初始单元内力共4项内容。
其作用分别如下:大位移/几何刚度初始荷载:描述当前荷载作用之前的结构的初始状态。
可由悬索桥建模助手自动计算给出结构的初始平衡状态。
用户输入几何刚度初始荷载进行非线性分析时,不需定义相应的荷载工况,程序会自动在内部考虑相应荷载和内力,使其达到平衡,因此此时位移为0。