单片机外文翻译
- 格式:doc
- 大小:33.00 KB
- 文档页数:10
单片机英文文献资料及翻译单片机(英文:Microcontroller)Microcontroller is a small computer on a single integrated circuit that contains a processor core, memory, and programmable input/output peripherals. Microcontrollers are designed for embedded applications, in contrast to the microprocessors used in personal computers or other general purpose applications.A microcontroller's processor core is typically a small, low-power computer dedicated to controlling the operation of the device in which it is embedded. It is often designed to provide efficient and reliable control of simple and repetitive tasks, such as switching on and off lights, or monitoring temperature or pressure sensors.MEMORYMicrocontrollers typically have a limited amount of memory, divided into program memory and data memory. The program memory is where the software that controls the device is stored, and is often a type of Read-Only Memory (ROM). The data memory, on the other hand, is used to store data that is used by the program, and is often volatile, meaning that it loses its contents when power is removed.INPUT/OUTPUTMicrocontrollers typically have a number of programmable input/output (I/O) pins that can be used to interface with external sensors, switches, actuators, and other devices. These pins can be programmed to perform specific functions,such as reading a sensor value, controlling a motor, or generating a signal. Many microcontrollers also support communication protocols like serial, parallel, and USB, allowing them to interface with other devices, including other microcontrollers, computers, and smartphones.APPLICATIONSMicrocontrollers are widely used in a variety of applications, including:- Home automation systems- Automotive electronics- Medical devices- Industrial control systems- Consumer electronics- RoboticsCONCLUSIONIn conclusion, microcontrollers are powerful and versatile devices that have become an essential component in many embedded systems. With their small size, low power consumption, and high level of integration, microcontrollers offer an effective and cost-efficient solution for controlling a wide range of devices and applications.。
单片机缩写的英文全称及中文名称单片机缩写的英文全称是Microcontroller,中文名称是微控制器。
一、引言单片机(Microcontroller)是一种集成电路芯片,能够实现计算、处理和控制功能。
它由微处理器核心、存储器、输入输出接口等多种电子元件组成,广泛应用于各种电子产品中。
在单片机的缩写中,“Micro”表示微型或微小,“controller”表示控制器。
本文将介绍单片机的英文全称及中文名称,并解释其在电子领域中的重要性。
二、单片机的英文全称及简介单片机的英文全称是Microcontroller,简称MCU。
它是一种在单个芯片上集成了微处理器核心和各种外围设备,如存储器、定时器、模拟输入输出接口等的集成电路。
单片机主要用于控制和处理各种电子设备,包括个人电脑、手机、汽车电子、家用电器等。
三、单片机的中文名称及优势单片机的中文名称是微控制器。
与传统的微处理器相比,单片机具有体积小、功耗低、成本低等优势。
由于其整合了多种外围设备,单片机可以实现复杂的控制和计算功能,极大地简化了电子产品的设计和制造过程。
单片机还具备易于编程与编译、易于调试的特点,使得开发人员可以更快速、更高效地完成各种应用。
四、单片机的应用领域单片机广泛应用于各种电子产品中,以下是几个主要的应用领域:1. 汽车电子:单片机在汽车电子中扮演着重要的角色,可以实现引擎控制、车身控制、安全控制等功能,提高了汽车的性能和安全性。
2. 家用电器:单片机被应用于各种家电产品,如空调、洗衣机、电视等。
它能够实现多种功能,提供更高的智能化和人性化体验。
3. 工业控制:单片机在工业自动化领域中得到广泛应用。
它可以实现对机械设备、生产线等的监控和控制,提高了生产效率和质量。
4. 通信设备:单片机在通信领域中扮演重要角色,如手机、电子支付终端等。
它可以实现数据处理、通信协议支持等功能,保证了通信设备的正常运行。
五、单片机的发展趋势随着科技的不断发展,单片机在未来将继续迎来更大的发展空间。
外文文献一单片机简介单片机是一种集成在电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的计算机系统。
单片机也被称为微控制器(Microcontroller),是因为它最早被用在工业控制领域。
单片机由芯片内仅有CPU的专用处理器发展而来。
最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。
INTEL的Z80是最早按照这种思想设计出的处理器,从此以后,单片机和专用处理器的发展便分道扬镳。
二、单片机的发展趋势现在可以说单片机是百花齐放,百家争鸣的时期,世界上各大芯片制造公司都推出了自己的单片机,从8位、16位到32位,数不胜数,应有尽有,有与主流C51系列兼容的,也有不兼容的,但它们各具特色,互成互补,为单片机的应用提供广阔的天地。
纵观单片机的发展过程,可以预示单片机的发展趋势,大致有:1.低功耗CMOSMCS-51系列的8031推出时的功耗达630mW,而现在的单片机普遍都在100mW左右,随着对单片机功耗要求越来越低,现在的各个单片机制造商基本都采用了CMOS(互补金属氧化物半导体工艺)。
象80C51就采用了HMOS(即高密度金属氧化物半导体工艺)和CHMOS(互补高密度金属氧化物半导体工艺)。
CMOS虽然功耗较低,但由于其物理特征决定其工作速度不够高,而CHMOS则具备了高速和低功耗的特点,这些特征,更适合于在要求低功耗象电池供电的应用场合。
所以这种工艺将是今后一段时期单片机发展的主要途径。
2.微型单片化现在常规的单片机普遍都是将中央处理器(CPU)、随机存取数据存储(RAM)、只读程序存储器(ROM)、并行和串行通信接口,中断系统、定时电路、时钟电路集成在一块单一的芯片上,增强型的单片机集成了如A/D转换器、PMW(脉宽调制电路)、WDT(看门狗)、有些单片机将LCD(液晶)驱动电路都集成在单一的芯片上,这样单片机包含的单元电路就更多,功能就越强大。
Electric boiler temperature system1.MCUA microcontroller (or MCU) is a computer-on-a-chip. It is a type of microprocessor emphasizing self-sufficiency and cost-effectiveness, in contrast to a general-purpose microprocessor (the kind used in a PC).The majority of computer systems in use today are embedded in other machinery, such as telephones, clocks, appliances, vehicles, and infrastructure. An embedded system usually has minimal requirements for memory and program length and may require simple but unusual input/output systems. For example, most embedded systems lack keyboards, screens, disks, printers, or other recognizable I/O devices of a personal computer. They may control electric motors, relays or voltages, and read switches, variable resistors or other electronic devices. Often, the only I/O device readable by a human is a single light-emitting diode, and severe cost or power constraints can even eliminate that.In contrast to general-purpose CPUs, microcontrollers do not have an address bus or a data bus, because they integrate all the RAM and non-volatile memory on the same chip as the CPU. Because they need fewer pins, the chip can be placed in a much smaller, cheaper package.Integrating the memory and other peripherals on a single chip and testing them as a unit increases the cost of that chip, but often results in decreased net cost of the embedded system as a whole. (Even if the cost of a CPU that has integrated peripherals is slightly more than the cost of a CPU + external peripherals, having fewer chips typically allows a smaller and cheaper circuit board, and reduces the labor required to assemble and test the circuit board). This trend leads to design.A microcontroller is a single integrated circuit, commonly with the following features:central processing unit - ranging from small and simple 4-bit processors to sophisticated 32- or 64-bit processorsinput/output interfaces such as serial ports (UARTs)other serial communications interfaces like I²C, Serial Peripheral Interface and Controller Area Network for system interconnect peripherals such as timers and watchdog RAM for data storage ROM, EPROM,EEPROM or Flash memory for program storage clock generator - often an oscillator for a quartz timing crystal, resonator or RC circuit many include analog-to-digital converters .This integration drastically reduces the number of chips and the amount of wiring and PCB space that would be needed to produce equivalent systems using separate chips and have proved to be highly popular in embedded systems since their introduction in the 1970s.Some microcontrollers can afford to use a Harvard architecture: separate memory buses for instructions and data, allowing accesses to take place concurrently.The decision of which peripheral to integrate is often difficult. The Microcontroller vendors often trade operating frequencies and system design flexibility against time-to-market requirements from their customers and overall lower system cost. Manufacturers have to balance the need to minimize the chip size against additional functionality.Microcontroller architectures are available from many different vendors in so many varieties that each instruction set architecture could rightly belong to a category of their own. Chief among these are the 8051, Z80 and ARM derivatives.[citation needed]A microcontroller (also MCU or µC) is a functio nal computer system-on-a-chip. It contains a processor core, memory, and programmable input/output peripherals.Microcontrollers include an integrated CPU, memory (a small amount of RAM, program memory, or both) and peripherals capable of input and output.It emphasizes high integration, in contrast to a microprocessor which only contains a CPU (the kind used in a PC). In addition to the usual arithmetic and logic elements of a general purpose microprocessor, the microcontroller integrates additional elements such as read-write memory for data storage, read-only memory for program storage, Flash memory for permanent data storage, peripherals, and input/output interfaces. At clock speeds of as little as 32KHz, microcontrollers often operate at very low speed compared to microprocessors, but this is adequate for typical applications. They consume relatively little power (milliwatts or even microwatts), and will generally have the ability to retain functionality while waiting for an event such as a button press or interrupt. Power consumption while sleeping (CPU clock and peripherals disabled) may be just nanowatts, making them ideal for low power and long lasting battery applications.Microcontrollers are used in automatically controlled products and devices, such as automobile engine control systems, remote controls,office machines, appliances, power tools, and toys. By reducing the size, cost, and power consumption compared to a design using a separate microprocessor, memory, and input/output devices, microcontrollers make it economical to electronically control many more processes.The majority of computer systems in use today are embedded in other machinery, such as automobiles, telephones, appliances, and peripherals for computer systems. These are called embedded systems. While some embedded systems are very sophisticated, many have minimal requirements for memory and program length, with no operating system, and low software complexity. Typical input and output devices include switches, relays, solenoids, LEDs, small or custom LCD displays, radio frequency devices, and sensors for data such as temperature, humidity, light level etc. Embedded systems usually have no keyboard, screen, disks, printers, or other recognizable I/O devices of a personal computer, and may lack human interaction devices of any kind.It is mandatory that microcontrollers provide real time response to events in the embedded system they are controlling. When certain events occur, an interrupt system can signal the processor to suspend processing the current instruction sequence and to begin an interrupt service routine (ISR). The ISR will perform any processing required based on the source of the interrupt before returning to the original instruction sequence. Possible interrupt sources are device dependent, and often include events such as an internal timer overflow, completing an analog to digital conversion, a logic level change on an input such as from a button being pressed, and data received on a communication link. Where power consumption is important as in battery operated devices, interrupts may also wake a microcontroller from a low power sleep state where the processor is halted until required to do something by a peripheral event.Microcontroller programs must fit in the available on-chip program memory, since it would be costly to provide a system with external, expandable, memory. Compilers and assembly language are used to turn high-level language programs into a compact machine code for storage in the microcontroller's memory. Depending on the device, the program memory may be permanent, read-only memory that can only be programmed at the factory, or program memory may be field-alterable flash or erasable read-only memory.Since embedded processors are usually used to control devices, they sometimes need to accept input from the device they are controlling. This is the purpose of the analog to digital converter. Since processors are built to interpret and process digital data, i.e. 1s and 0s, they won'tbe able to do anything with the analog signals that may be being sent to it by a device. So the analog to digital converter is used to convert the incoming data into a form that the processor can recognize. There is also a digital to analog converter that allows the processor to send data to the device it is controlling.In addition to the converters, many embedded microprocessors include a variety of timers as well. One of the most common types of timers is the Programmable Interval Timer, or PIT for short. A PIT just counts down from some value to zero. Once it reaches zero, it sends an interrupt to the processor indicating that it has finished counting. This is useful for devices such as thermostats, which periodically test the temperature around them to see if they need to turn the air conditioner on, the heater on, etc.Time Processing Unit or TPU for short. Is essentially just another timer, but more sophisticated. In addition to counting down, the TPU can detect input events, generate output events, and other useful operations.Dedicated Pulse Width Modulation (PWM) block makes it possible for the CPU to control power converters, resistive loads, motors, etc., without using lots of CPU resources in tight timer loops.Universal Asynchronous Receiver/Transmitter (UART) block makes it possible to receive and transmit data over a serial line with very little load on the CPU.For those wanting ethernet one can use an external chip like Crystal Semiconductor CS8900A, Realtek RTL8019, or Microchip ENC 28J60. All of them allow easy interfacing with low pin count.DescriptionThe AT89C51 is a low-power, high-performance CMOS 8-bit microcomputer with 4K bytes of Flash programmable and erasable read only memory (PEROM). The device is manufactured using Atmel’s high-density nonvolatile memory technology and is compatible with the industry-standard MCS-51 instruction set and pinout. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel AT89C51 is a powerful microcomputer which provides a highly-flexible and cost-effective solution to many embedded control applications.Function characteristicThe AT89C51 provides the following standard features: 4K bytes of Flash, 128 bytes of RAM, 32 I/O lines, two 16-bit timer/counters, a five vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator and clock circuitry. In addition, the AT89C51 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port and interrupt system to continue functioning. The Power-down Mode saves the RAM contents but freezes the oscillator disabling all other chip functions until the next hardware reset.Pin DescriptionVCC:Supply voltage.GND:Ground.Port 0Port 0 is an 8-bit open-drain bi-directional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as highimpedance inputs.Port 0 may also be configured to be the multiplexed loworder address/data bus during accesses to external program and data memory. In this mode P0 has internal pullups.Port 0 also receives the code bytes during Flash programming,and outputs the code bytes during programverification. External pullups are required during programverification.Port 1Port 1 is an 8-bit bi-directional I/O port with internal pullups.The Port 1 output buffers can sink/source four TTL inputs.When 1s are written to Port 1 pins they are pulled high by the internal pullups and can be used as inputs. As inputs,Port 1 pins that are externally being pulled low will source current (IIL) because of the internal pullups.Port 1 also receives the low-order address bytes during Flash programming and verification.Port 2Port 2 is an 8-bit bi-directional I/O port with internal pullups.The Port 2 output buffers can sink/source four TTL inputs.When 1s are written to Port 2 pins they are pulled high by the internal pullups and can beused as inputs. As inputs,Port 2 pins that are externally being pulled low will source current, because of the internal pullups.Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses. In this application, it uses strong internal pullupswhen emitting 1s. During accesses to external data memory that use 8-bit addresses, Port 2 emits the contents of the P2 Special Function Register.Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.Port 3Port 3 is an 8-bit bi-directional I/O port with internal pullups.The Port 3 output buffers can sink/source four TTL inputs.When 1s are written to Port 3 pins they are pulled high by the internal pullups and can be used as inputs. As inputs,Port 3 pins that are externally being pulled low will source current (IIL) because of the pullups.Port 3 also serves the functions of various special features of the AT89C51 as listed below:Port 3 also receives some control signals for Flash programming and verification.RSTReset input. A high on this pin for two machine cycles while the oscillator is running resets the device.ALE/PROGAddress Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming.In normal operation ALE isemitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.PSENProgram Store Enable is the read strobe to external program memory.When the AT89C51 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.EA/VPPExternal Access Enable. EA must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, EA will be internally latched on reset.EA should be strapped to VCC for internal program executions.This pin also receives the 12-volt programming enable voltage(VPP) during Flash programming, for parts that require12-volt VPP.XTAL1Input to the inverting oscillator amplifier and input to the internal clock operating circuit.XTAL2Output from the inverting oscillator amplifier.Oscillator CharacteristicsXTAL1 and XTAL2 are the input and output, respectively,of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 1.Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven as shown in Figure 2.There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low timespecifications must be observed.Figure 1. Oscillator Connections Figure 2. External Clock Drive ConfigurationIdle ModeIn idle mode, the CPU puts itself to sleep while all the onchip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the special functions registers remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset.It should be noted that when idle is terminated by a hard ware reset, the device normally resumes program execution,from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.Power-down ModeIn the power-down mode, the oscillator is stopped, and the instruction that invokes power-down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the power-down mode is terminated. The only exit from power-down is a hardware reset. Reset redefines the SFRs but does not change the on-chip RAM. The reset should not be activated before VCC is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize.Program Memory Lock BitsOn the chip are three lock bits which can be left unprogrammed (U) or can be programmed (P) to obtain the additional features listed in the table below.When lock bit 1 is programmed, the logic level at the EA pin is sampled and latched during reset. If the device is powered up without a reset, the latch initializes to a random value, and holds that value until reset is activated. It is necessary that the latched value of EA be in agreement with the current logic level at that pin in order for the device to function properly.中文翻译:1.单片机单片机即单片微型计算机,是把中央处理器、存储器、定时/计数器、输入输出接口都集成在一块集成电路芯片上的微型计算机。
SCM is an integrated circuit chip,is the use of large scale integrated circuit technology to a data processing capability of CPU CPU random access memory RAM,read-only memory ROM,a variety of I / O port and interrupt system, timers / timer functions (which may also include display driver circuitry,pulse width modulation circuit,analog multiplexer,A / D converter circuit)integrated into a silicon constitute a small and complete computer systems.SCM is also known as micro—controller (Microcontroller), because it is the first to be used in industrial control。
Only a single chip by the CPU chip developed from a dedicated processor。
The first design is by a large number of peripherals and CPU on a chip in the computer system, smaller, more easily integrated into a complex and demanding on the volume control device which。
引言:单片机(Microcontroller)是一种广泛应用于嵌入式系统中的小型计算机芯片。
它集成了处理器核心、存储器、外设接口和时钟电路等核心部件,可以独立运行。
随着全球化的发展,外文文献对于学习和研究单片机领域来说至关重要。
本文翻译的外文文献《MicrocontrollerbasedTrafficLightControlSystem》详细介绍了基于单片机的交通信号灯控制系统。
概述:交通信号灯控制是现代都市交通系统中至关重要的一环。
传统的交通信号灯控制系统通常由定时器控制,不能根据实际交通情况动态调整信号灯的时间。
而基于单片机的交通信号灯控制系统可以实现根据实时交通流量来动态调整信号灯的时间,优化交通效率。
本文将详细介绍该系统的设计和实现。
正文:一、单片机选型1.1.CPU性能:本文选择了一款高性能的32位单片机作为控制核心,它具有较高的处理能力和较大的存储器容量,可以同时处理多条交通路口的信号控制。
1.2.外设接口:该单片机具有丰富的外设接口,可以与交通信号灯、传感器和通信设备等进行连接,实现信号控制和数据交互。
1.3.低功耗设计:为了节约能源和延长系统寿命,在单片机选型时考虑了低功耗设计,降低系统运行的能耗。
二、硬件设计2.1.交通信号灯:在设计交通信号灯时,考虑了日夜可见性和能耗。
采用了高亮度LED作为信号灯光源,同时添加了光敏传感器控制信号灯的亮度,以满足不同时间段的亮度需求。
2.2.传感器:通过安装车辆感应器和行人感应器等传感器,可以在实时监测交通流量的基础上,智能调整信号灯时间,提高路口的交通效率。
2.3.通信设备:在交通信号灯控制系统中引入了通信设备,可以实现各交通路口之间的信息交互和协调控制,提高整体交通系统的效率。
三、软件设计3.1.程序架构:采用了多任务的实时操作系统,将交通信号灯控制、传感器数据处理和通信设备控制等功能分别封装成不同的任务,实现了系统的高效运行和任务调度。
外文译英文原文:STM32 MicrocontrollerIntroductionRequirements based STM32 family is designed for high-performance, low-cost, low-power embedded applications designed specifically for ARM Cortex-M3 core. According to the performance into two different series: STM32F103 "Enhanced〞 series and STM32F101 "Basic" series. Enhanced Series clock frequency of 72MHz, the highest performance of similar products product; basic clock frequency of 36MHz, 16-bit product prices get more than 16 products significantly enhance the performance and is 16 product users the best choice. Both series have built-in 32K to 128K of flash memory, the difference is the maximum capacity of the SRAM and peripheral combinations. At 72MHz, executing from Flash, STM32 power consumption 36mA, are 32 products on the market s lowest power, the equivalent of 0.5niA/MHz.STM32F103 Performance Characteristics1)Kernel. ARM32 bit CPU, the maximum operating frequency of 72MHz,1.25DMIPS/MHz. Single-cycle multiply and hardware divide.2)Memory. Integrated on-chip 32-512KB of Flash memory. 6-64KB SRAM memory.3)Clock, reset, and power management. 2.0-3.6V power supply and I/O interface, the drive voltage. POR, PDR and programmable voltage detector. 4-16MHz crystal. Embedded factory tuned 8MHz RC oscillator circuit. 40 kHz internal RC oscillator circuit. CPU clock for the PLL. With calibration for the RTC 32kHz crystal.4)Low power consumption. Three kinds of low-power mode. Sleep, stop, standby mode. For RTC and backup registers supply VBAT.5)Debug mode. Serial debugging and JTAG interface.6)Direct data storage. 12-channel direct data storage controller. Supported peripherals: timers, ADC, DAC, SPI, IIC and USART.7)Up to a maximum of 112 fast I / O ports. Depending on the modeL there are 26,37,51,80, and 112 I/O ports, all ports can be mapped to 16 external interrupt vectors. In addition to the analog input, all of them can accept the input of 5V or less.8)Up to a maximum of 11 timers. Four 16-bit timers, each with 4 IC / OC / PWM orpulse counter. 2 16 6-channel advanced control timer: up to 6 channels can be used for PWM output. 2 watchdog timer. Systick tinier: 24 down counter. Two 16-bit basic timer for driving DAC.9)Up to a maximum of 13 communication interfaces. 2 IIC interface. 5 USART interfaces. 3 SPI interface, two and IIS reuse. CAN interface. USB 2.0 full-speed interface. SDIO interface.System Function1)Integration of embedded Flash and SRAM memory ARM Cortex-M3 core. And 8/16 equipment compared, ARM Cortex-M3 32-bit RISC processor provides a higher code efficiency. STM32F103xx microcontrollers with an embedded ARM core, so it can be compatible with all ARM tools and software.2)Embedded Flash memory and RAM memory. Built up to 512KB embedded Flash, can be used to store programs and data. Up to 64KB of embedded SRAM clock speed of the CPU can read and write.3)Variable static memory. Variable static memory with 4 chip selects, supports four modes: Flash, RAM, PSRAM, NOR and NAND. After three FSMC interrupt lines connected to the OR after the nested vector interrupt controller. No read / write FIFO, except PCCARD, the code is executed from external memory is not supported Boot, the target frequency is equal to SYSCLK / 2, so the time when the system clock is 72MHz, 36MHz conducted in accordance with external access.4)Nested Vectored Internipt Controller. Can handle 43 maskable interrupt channels, providing 16 interrupt priority levels. Tightly coupled nested vectored intenupt controller to achieve lower latency interrupt handling directly passed to the kernel interrupt vector table entry address, tightly coupled nested vectored interrupt controller kernel interface, allowing early treatment interruption, the latter to be more high-priority interrupt processing, support tail chain, auto-save processor state terrupts automatically restored on interrupt exit, no instructions intervention.5)External internipt / event controller. External interrupt / event controller consists for 19 to generate interrupt / event requests edge detector lines. Each line can be individually configured to select the trigger event, it can be individually masked. There is a pending interrupt request registers to maintain state. When an external line appear longer than the internal APB2 clock-cycle pulse, the external interrupt / event controller is able to detect. Up to 112 GPIO connected to the 16 external internipt lines.6)Clocks and startup. At boot time or to the system clock selection, but the reset whenthe internal 8MHz crystal oscillator is selected as the CPU clock. Can choose a 4-16MHz external clock, and will be monitored to determine the success. During this time, the interrupt controller is disabled and the software management is subsequently disabled. Also, if there is a need, PLL clock internipt management fully available. Comparator can be used more pre-configuration of the AHB frequency, including high-speed and low-speed APB APB, APB highest frequency of high-speed 72MHz, low-speed APB highest frequency of 36MHz.Architectural AdvantagesIn addition to the new features Enhanced peripheral interfaces, STM32 series also interconnect with other STM32 microcontrollers offer the same standard interface, such sharing of peripherals to enhance the entire product family, application flexibility, so that developers can a plurality of design reuse the same software. New STM32 standard peripherals include 10 timers, two 12-bit ADC, two 12-bit DAC, two I2C interfaces, five USART interfaces and three SPI ports. There are 12 new products peripherals direct data storage channel, there is a CRC calculation unit, like other STM32 microcontrollers, the supports 96 unique identifier.New series also has followed the STM32 microcontroller family of products low voltage and energy saving are two advantages. 2.0V to 3.6V operating voltage range compatible with the mainstream of battery technologies such as lithium batteries and nickel-metal hydride batteries, the package also features a battery operation mode dedicated pin Vbat. 72MHz frequency to execute code from flash consumes only 27mA current. There are four low-power mode, the current consumption can be reduced to two microamps. Quick Start from low power mode to save energy too; starting circuit using STM32 internally generated 8MHz signal, the microcontroller from stop mode when you wake up with less than 6 microseconds.中文译:单片机STM321STM32的介绍STM32系列基于专为要求高性能、低本钱、低功耗的嵌入式应用专门设计的ARMCortex-M3内核.按性能分成两个不同的系列:STM32F103 “增强型〞系列和STM32F101 “根本型〞系列.增强型系列时钟频率到达72MHz,是同类产品中性能最高的产品;根本型时钟频率为36MHz,以16位产品的价格得到比16位产品大幅提升的性能,是16位产品用户的最正确选择.两个系列都内置32K 到128K 的闪存,不同的是SRAM的最大容量和外设接口的组合.时钟频率72MHz时,从闪存执行代码,STM32功耗36mA,是32位市场上功耗最低的产品,相当于0.5mA/MHz.2STM32F103性能特点1〕内核.ARM32位CPU,最高工作频率72MHz, 1.25DMIPS/MHzo单周期乘法和硬件除法.2〕存储器.片上集成32-512KB的Flash存储器.6-64KB的SRAM存储器.3〕时钟、复位和电源治理.2.0-3.6V的电源供电和I/O接口的驱动电压. POR、PDR和可编程的电压探测器.4-16MHZ的晶振.内嵌出厂前调校的8MHz RC振荡电路.内部40 kHz的RC振荡电路.用于CPU时钟的PLL.带校准用于RTC的32kHz的晶振.4〕低功耗.3种低功耗模式:休眠,停止,待机模式.为RTC和备份存放器供电的VBAT.5〕调试模式.串行调试和JTAG接口.6〕直接数据存储.12通道直接数据存储限制器.支持的外设:定时器,ADC, DAC, SPI, IIC 和USART.7〕最多高达112个的快速I/O端口.根据型号的不同,有26, 37, 51, 80, 和112的I/O端口,所有的端口都可以映射到16个外部中断向量.除了模拟输入,所有的都可以接受5V以内的输入.8〕最多多达11个定时器.4个16位定时器,每个定时器有4个IC/OC/PWM 或者脉冲计数器.2个16位的6通道高级限制定时器:最多6个通道可用于PWM 输出.2个看门狗定时器.Systick定时器:24位倒计数器.2个16位根本定时器用于驱动DACo9〕最多多达13个通信接口.2个HC接口.5个USART接口.3个SPI接口,两个和IIS复用.CAN接口.USB 2.0全速接口.SDIO接口.3系统作用1〕集成嵌入式Hash和SRAM存储器的ARM Cortex-M3内核.和8/16位设备相比,ARM Cortex-M3 32位RISC处理器提供了更高的代码效率. STM32F103xx微限制器带有一个嵌入式的ARM核,所以可以兼容所有的ARM 工具和软件.2〕嵌入式Flash存储器和RAM存储器.内置多达512KB的嵌入式Flash, 可用于存储程序和数据.多达64KB的嵌入式SRAM可以以CPU的时钟速度进行读写.3〕可变静态存储器.可变静态存储器带有4个片选,支持四种模式:Flash, RAM, PSRAM, NOR和NANDo 3个FSMC中断线经过OR后连接到嵌套矢量中断限制器.没有读/写FIFO,除PCCARD之外,代码都是从外部存储器执行, 不支持Boot,目标频率等于SYSCLK/2,所以当系统时钟是72MHz时' 外部访问根据36MHz进行.4〕嵌套矢量中断限制器.可以处理43个可屏蔽中断通道,提供16个中断优先级.紧密耦合的嵌套矢量中断限制器实现了更低的中断处理延迟,直接向内核传递中断入口向量表地址,紧密耦合的嵌套矢量中断限制器内核接口,允许中断提前处理,对后到的更高优先级的中断进行处理,支持尾链,自动保存处理器状态,中断入口在中断退出时自动恢复,不需要指令干预.5〕外部中断/事件限制器.外部中断/事件限制器由用于19条产生中断/事件请求的边沿探测器线组成.每条线可以被单独配置用于选择触发事件,也可以被单独屏蔽.有一个挂起存放器来维护中断请求的状态.当外部线上出现长度超过内部APB2时钟周期的脉冲时,外部中断/事件限制器能够探测到.多达112个GPIO连接到16个外部中断线.6〕时钟和启动.在启动的时候还是要进行系统时钟选择,但复位的时候内部8MHz的晶振被选用作CPU时钟.可以选择一个外部的4-16MHZ的时钟,并且会被监视来判定是否成功.在这期间,限制器被禁止并且软件中断治理也随后被禁止.同时,如果有需要,PLL时钟的中断治理完全可用.多个预比拟器可以用于配置AHB频率,包括高速APB和低速APB,高速APB最高的频率为72MHz, 低速APB最高的频率为36MHzo4架构优势除新增的功能强化型外设接口外,STM32互连系列还提供与其它STM32微限制器相同的标准接口,这种外设共用性提升了整个产品家族的应用灵活性,使开发人员可以在多个设计中重复使用同一个软件.新STM32的标准外设包括10 个定时器、两个12位模数转换器、两个12位数模转换器、两个12c接口、五个USART接口和三个SPI端口.新产品外设共有12条直接数据存储通道,还有一个CRC计算单元,像其它STM32微限制器一样,支持96位唯一标识码.新系列微限制器还沿续了STM32产品家族的低电压和节能两大优点.2.0V 到3.6V的工作电压范围兼容主流的电池技术,如锂电池和银氢电池,封装还设有一个电池工作模式专用引脚Vbato以72MHz频率从闪存执行代码,仅消耗27mA 电流.低功耗模式共有四种,可将电流消耗降至两微安.从低功耗模式快速启动也同样节省电能;启动电路使用STM32内部生成的8MHz信号,将微控制器从停止模式唤醒用时小于6微秒.。
外文资料Outline, Application and Development of the singlechipThe singlechip is one kind of integrated circuit chip, which uses the ultra large-scale technology and has the data-handling capacity (for example arithmetic operation, logic operation, data transfer, interrupt processing) the microprocessor (CPU), random access data-carrier storage (RAM), read-only program memory (ROM), input output circuit (I/O), possibly also includes fixed time the counter, serial passes unguardedly (SCI), demonstration actuation electric circuit (LCD or LED actuation electric circuit), pulse-duration modulation electric circuit (PWM), simulation multichannel switch and A/Electric circuit and so on D switch integrates to together the monolith chip on, constitutes to be smallest the computer system which however consummates. These electric circuits can under the software control accurate, be rapid, highly effective complete the procedure designer preset the duty.From this looked that, singlechip has the function which the microprocessor does not have, it may alone complete the intellectualization control function which the modern industry control requests, this is singlechip biggest characteristic.However singlechip also is different with the single trigger, the chip before the development, it only has the function greatly strengthened ultra large scale integrated circuit, if entrusts with it the specific procedure, it then is youngest, the integrity microcomputer control system, it (PC machine) has the essential difference with the single trigger or the personal computing, singlechip application belongs to the chip level application, needs the user to understand singlechip chip the structure and the command system as well as other integrated circuit application technologies and the system design need theory and technology, with such specific chip design application procedure, thus causes this chip to have the specific function.The different singlechip has the different hardware characteristic and the software characteristic, namely their technical characteristic is different, the hardware characteristic is decided by singlechip chip internal structure, the user must use some kind of singlechip, must understand whether this product does satisfy the characteristic target which the need the function and the application system requests. Here technical characteristic including function characteristic, control characteristic and electrical specification and so on, these information needs to obtain from in theproduction merchant technical manual. The software characteristic is refers to the command system characteristic and the development support environment, the instruction characteristic is singlechip addressing way which we is familiar with, the data processing and the logical processing way, input-output characteristic and to power source request and so on. The development support environment is compatible and the probability including the instruction, supports the software (to contain may support development application procedure software resources) and the hardware resources. Must use some model singlechip to develop own application system, master its structure characteristic and the technical characteristic is that we need..Singlechip control system could substitute for before uses control system which the complex electronic circuit or the digital circuit constituted, might the software control realizes, and could realize the intellectualization, now singlechip control category omnipresent, for example correspondence product, domestic electric appliances, intelligent instrument measuring appliance, process control and special-purpose control device and so on, singlechip application domain was more and more widespread.Indeed, singlechip application significance is far is not restricted in its application category or from this the economic efficiency which brings, it fundamentally changed the traditional control method and the design thought more importantly. Is controls technical a revolution, is an important milestone.2.The MCU’s development outlineIn 1946 first electronic accounting machine birth until now, only then 50 years, depends upon microelectronic technology and the semiconductor technology progress, from the electron tube - transistor- integrated circuit - large scale integrated circuit, now together on the chip definitely may integrate several million even more than ten million transistor, causes the computer volume slightly, the function is stronger. Specially in the nearly 20 years time, computer technology obtained the rapid development, the computer in the industry and agriculture, the scientific research, the education, the national defense and the aerospace domain has obtained the widespread application, computer technology already was a national modern science and technology level important symbol.Singlechip is born in the 20th century 70's, looks like F8 monolithic microcomputer which Fairchid Corporation develops. The so-called singlechip is uses the large scale integrated circuit technology the central processing element (Center Processing Unit, Also is Chang Cheng CPU) and the data-carrier storage (RAM), theprogram memory (ROM) and other I/O passes integrates unguardedly on together the chip, constitutes a smallest computer system, but modern singlechip then has added on the severance unit, fixed time unit and A/D transformation and so on more complex, more perfect electric circuit, causes singlechip the function more and more formidable, the application is more widespread.The 20th century 70's, microelectronic technology is being at the development phase, the integrated circuit belongs to the scale development time, each kind of new material new craft not yet mature, singlechip still occupied the primary development phase, the part integration scale also quite small, the function quite was simple, CPU, RAM had generally has also included some simple I/O integrates to the chip on, looks like Farichild Corporation to belong to this type, it also must be joined to the periphery other processing electric circuits just now to constitute the integrity the computing system. The similar singlechip also has Zilog Corporation the Z80 microprocessor.In 1976 INTEL Corporation has promoted the MCS-48 singlechip, this time singlechip is the genuine 8 monolithic microcomputers, and pushes to the market. It is young by the volume, function entire, the price has lowly won the widespread application, has laid the foundation for singlechip development, becomes in singlechip history the important milestone.Under the MCS-48 leadership, after that, each big semiconductor company developed and has developed own singlechip one after another, looked like Zilog Corporation the Z8 series. To the beginning of the 80's, singlechip has developed to the high performance stage, looks like INTEL Corporation the MCS-51 series, Motorola Corporation 6,801 and 6,802 series, Rokwell Corporation 6,501 and 6,502 series and so on, In addition,Japan's famous electrical company NEC and HITACHI all one after another developed had oneself characteristic the special-purpose singlechip.The 80's, world each big company competes to develop the variety multi-purpose strong singlechip, some severaldozens series, more than 300 varieties, this time singlechip belongs approximately truely monolithic, mostly integrated CPU, RAM, ROM, number many I/O connection, many kinds of interruption system, even also has some to bring A/D switch singlechip, function more and more formidable, RAM and ROM capacity also more and more big, the addressing space even may reach 64kB, may say, singlechip developed to a brand-new stage, the applicationdomain has been more widespread, many domestic electric appliances moved towards the intellectualized development path which controlled using singlechip.After 1982, 16 singlechips are published, represent the product are INTEL Corporation's MCS-96 series, 16 singlechips compare 8 machine, the data width increased a time, real-time processing ability stronger, the basic frequency is higher, the integration rate had achieved 120,000 transistors, RAM increased to 232 bytes, ROM then has achieved 8kB, and had 8 interrupt sources, at the same time has disposed multichannel A/D transformation channel, high speed I/The O processing unit, is suitable for the more complex control system.After 90's, singlechip obtained the rapid development, the world each big semiconductor company has developed a function more formidable singlechip one after another. American Microchip Corporation had issued one kind of incompatible MCS-51 new generation of PIC series singlechip, has aroused the field widespread interest completely, its product only then 33 simplified the set of instructions to attract many users specially, caused the people to concentrate from the INTEL 111 complex instructions. The PIC singlechip has obtained the fast development, holds the small space in the field.The afterwards matter, the familiar singlechip public figures quite have been all clear, more monolithic aircraft types pour out, MOTOROLA Corporation had issued one after another the MC68HC series singlechip, Japan's several famous companies all developed a performance stronger product, but Japan's singlechip used in generally the special-purpose systems control, but did not look like company and so on INTEL puts in to the market forms the general singlechip. For example NEC Corporation produces the uCOM87 series singlechip, its representative works uPC7811 is one kind of performance quite outstanding singlechip. MOTOROLA Corporation's characteristic and so on MC68HC05 series its high speed low price has won many users.Zilog Corporation's Z8 series product representative works are Z8671, contains BASIC the Debug interpreter, enormous place then user. But American country half COP800 series singlechip then uses the advanced Harvard structure. ATMEL Corporation then perfectly unifies singlechip technology and the advanced Flash memory technology, has issued the performance quite outstanding AT89 series singlechip. Including company and so on China's Taiwan HOLTEK and WINBOND in abundance has also joined singlechip development ranks, by reason of their inexpensive superiority, shares cup of beautiful thick soup.In 1990 American INTEL Corporation promoted 80,960 super 32 singlechips to cause the computer stir, the product has put in the market one after another, became in singlechip history an important milestone.This period, in singlechip field, singlechip variety extraordinary splendour, competes to be the most unusual. Some 8, 16 even 32 machine, but 8 singlechips by its price inexpensive, the variety complete, the application software rich, the support environment were still full, characteristic and so on development convenience but are occupying the dominant position. But INTEL Corporation by reason of their abundant technology, the performance outstanding type and the good foundation, at present was still singlechip mainstream product. Only is the 90's intermediate stages, INTEL Corporation is busy is developing their personal computing microprocessor, not the enough energy continued singlechip technology which develops oneself creates leads, but by company and so on PHILIPS continues to develop the C51 series singlechip.3.Singlechip application domainSinglechip widely applies in the instrument measuring appliance, the domestic electric appliances, the medical equipment, domain and so on aerospace, special purpose equipment intellectualized management and process control, may divide the following several categories approximately:1. On intelligent instrument measuring appliance applicationSinglechip has the volume small, the power loss low, the control function strong, the expansion is nimble, merit and so on microminiaturization and easy to operate, widely applies in the instrument measuring appliance, the union different type sensor, may realize such as physical quantity the and so on voltage, power, frequency, humidity, temperature, current capacity, speed, thickness, angle, length, degree of hardness, element, pressure survey. Uses singlechip control to cause the instrument measuring appliance digitization, the intellectualization, the microminiaturization, also the function compares uses the electron or the digital circuit is more formidable. For example precise measurement equipment (dynamometer, oscilloscope, each kind of analyzer).2. In industry control applicationMay constitute the various formats control system, the data acquisition system with singlechip. For example the factory assembly line intellectualized management, the elevator intellectualization control, each kind of alarm system, constitutes two cascade control systems with the computer networking and so on.3.In domestic electric appliances applicationMay say like this that, the present domestic electric appliances basically have all used singlechip control, praised, the washer, the electric refrigerator, the air conditioner, the color television, other acoustic video frequency equipments from the electricity food, again to the electronic weighting equipment, all kinds of, omnipresent.4.In computer network and correspondence domain applicationOf the modern singlechip has the correspondence connection generally, may very conveniently and the computer carries on the data communication, for provided the extremely good physical conditions application in between the computer network and the communication facility, the present communication facility basically has all realized singlechip intelligence control, from the handset, the telephone, the small program controlled switch, the building automatic correspondence ringing system, the train wireless correspondence, again the mobile phone which everywhere to the routine work in, the colony mobile communication, radio intercom and so on.5.Singlechip in medical equipment domain applicationSinglechip quite is also widespread inmedical equipment use, for example medical life-support machine, each kind of analyzer, , ultrasound diagnosis equipment and hospital bed ringing system and so on.In addition, singlechip in the industry and commerce, the finance, the scientific research, the education, domain and so on national defense aerospace all has the extremely widespread use.4.Singlechip development tendencyNow may say singlechip was all flowers blooms together, the time which hundred school of thought contended, in the world each big chip manufacture company has all promoted own singlechip, from 8, 16 to 32, innumerable, had everything expected to find, has compatibly with the mainstream C51 series, also had not not compatibly, but they unique, became mutually supplementarily, provided the broad world for singlechip application.Looks over singlechip developing process, may indicate singlechip development tendency, has approximately:1. Low power loss CMOS2. The MCS-51 series 8,031 promotes when the power loss reaches 630mW, but the present singlechip all about 100mW, along with more and more is generally low to singlechip power loss request, the present each singlechip manufacturer basic has all used CMOS (complementary metal oxide semiconductor craft). Looked like80C51 to use HMOS (namely high density metal oxide compound semiconductor craft) and CHMOS (supplementary high density metal oxide compound semiconductor craft). CMOS although power loss low, but because its physical characteristic decides its working speed insufficiently high, but CHMOS then had has been high speed and the low power loss characteristic, these characteristics, suited in are requesting the low power loss likely battery power supply the application situation. Therefore this kind of craft will be the main way which the next section of times singlechip will develop.3. Miniature monolithic4. Now the conventional singlechip all is generally the central processor (CPU), the random access data storage (RAM), the read-only program memory (ROM), parallel and the serial communication connection, the interruption system, the timing circuit, the clock electric circuit integration on together the sole chip, the enlargement mode singlechip integrated like A/The D switch, PMW (pulse-duration modulation electric circuit), WDT (watch-dog), some singlechips (liquid crystal) actuate LCD the electric circuit all to integrate on the sole chip, such singlechip contains unit electric circuit more, the function is more formidable. Even singlechip merchant also may act according to the user requiremnetthe body custom make, makes has oneself characteristic singlechip chip.5. In addition, present product universal demand volume small, weight light, this requests singlechip strong and the power loss is low besides the function, but also requests its volume to have to be small. Present many singlechips all have the many kinds of seals form, SMD (superficial seal) more and more receives welcome, to enable the system which constitutes by singlechip towards the microminiaturized direction to develop.3.Mainstream and multi- varieties coexistenceNow although singlechip variety is many, unique, but still as the core singlechip occupies the mainstream take 80C51, the compatible its structure and the command system have PHILIPS Corporation the product, the ATMEL Corporation's product and the Chinese Taiwan's Winbond series singlechip. Therefore C8051 was the core singlechip occupied the half of the country. But Microchip Corporation's PIC simplified the set of instructions (RISC) also to have the strong development tendency, the Chinese Taiwan's HOLTEK Corporation recent years singlechip output grows day by day, if the low price nature superior superiority, occupied a certain market minute volume. In addition also has MOTOROLA Corporation the product, the Japaneseseveral big companies' special-purpose singlechips. In the certain time, this kind of situation will be able to continue, will not have the monopoly aspect which some singlechip unified, will walk will be depends on for existence supplementarily, will complement one another, the communal development path.中文译文单片机概述、应用及发展单片机是一种集成电路芯片,采用超大规模技术把具有数据处理能力(如算术运算,逻辑运算、数据传送、中断处理)的微处理器(CPU),随机存取数据存储器(RAM),只读程序存储器(ROM),输入输出电路(I/O口),可能还包括定时计数器,串行通信口(SCI),显示驱动电路(LCD或LED驱动电路),脉宽调制电路(PWM),模拟多路转换器及A/D转换器等电路集成到一块单块芯片上,构成一个最小然而完善的计算机系统。
外文翻译英文原文:STM32 MicrocontrollerIntroductionRequirements based STM32 family is designed for high-performance, low-cost, low-power embedded applications designed specifically for ARM Cortex-M3 core. According to the performance into two different series: STM32F103 "Enhanced" series and STM32F101 "Basic" series. Enhanced Series clock frequency of 72MHz, the highest performance of similar products product; basic clock frequency of 36MHz, 16-bit product prices get more than 16 products significantly enhance the performance and is 16 product users the best choice. Both series have built-in 32K to 128K of flash memory, the difference is the maximum capacity of the SRAM and peripheral combinations. At 72MHz, executing from Flash, STM32 power consumption 36mA, are 32 products on the market's lowest power, the equivalent of 0.5mA/MHz.STM32F103 Performance Characteristics1)Kernel. ARM32 bit CPU, the maximum operating frequency of 72MHz,1.25DMIPS/MHz. Single-cycle multiply and hardware divide.2)Memory. Integrated on-chip 32-512KB of Flash memory. 6-64KB SRAM memory.3)Clock, reset, and power management. 2.0-3.6V power supply and I / O interface, the drive voltage. POR, PDR and programmable voltage detector. 4-16MHz crystal. Embedded factory tuned 8MHz RC oscillator circuit. 40 kHz internal RC oscillator circuit. CPU clock for the PLL. With calibration for the RTC 32kHz crystal.4)Low power consumption. Three kinds of low-power mode. Sleep, stop, standby mode. For RTC and backup registers supply VBAT.5)Debug mode. Serial debugging and JTAG interface.6)Direct data storage. 12-channel direct data storage controller. Supported peripherals: timers, ADC, DAC, SPI, IIC and USART.7)Up to a maximum of 112 fast I / O ports. Depending on the model, there are 26,37,51,80, and 112 I / O ports, all ports can be mapped to 16 external interruptvectors. In addition to the analog input, all of them can accept the input of 5V or less.8)Up to a maximum of 11 timers. Four 16-bit timers, each with 4 IC / OC / PWM or pulse counter. 2 16 6-channel advanced control timer: up to 6 channels can be used for PWM output. 2 watchdog timer. Systick timer: 24 down counter. Two 16-bit basic timer for driving DAC.9)Up to a maximum of 13 communication interfaces. 2 IIC interface. 5 USART interfaces. 3 SPI interface, two and IIS reuse. CAN interface. USB 2.0 full-speed interface. SDIO interface.System Function1)Integration of embedded Flash and SRAM memory ARM Cortex-M3 core. And 8/16 equipment compared, ARM Cortex-M3 32-bit RISC processor provides a higher code efficiency. STM32F103xx microcontrollers with an embedded ARM core, so it can be compatible with all ARM tools and software.2)Embedded Flash memory and RAM memory. Built up to 512KB embedded Flash, can be used to store programs and data. Up to 64KB of embedded SRAM clock speed of the CPU can read and write.3)Variable static memory. Variable static memory with 4 chip selects, supports four modes: Flash, RAM, PSRAM, NOR and NAND. After three FSMC interrupt lines connected to the OR after the nested vector interrupt controller. No read / write FIFO, except PCCARD, the code is executed from external memory is not supported Boot, the target frequency is equal to SYSCLK / 2, so the time when the system clock is 72MHz, 36MHz conducted in accordance with external access.4)Nested Vectored Interrupt Controller. Can handle 43 maskable interrupt channels, providing 16 interrupt priority levels. Tightly coupled nested vectored interrupt controller to achieve lower latency interrupt handling directly passed to the kernel interrupt vector table entry address, tightly coupled nested vectored interrupt controller kernel interface, allowing early treatment interruption, the latter to be more high-priority interrupt processing, support tail chain, auto-save processor state terrupts automatically restored on interrupt exit, no instructions intervention.5)External interrupt / event controller. External interrupt / event controller consists for 19 to generate interrupt / event requests edge detector lines. Each line can be individually configured to select the trigger event, it can be individually masked. There is a pending interrupt request registers to maintain state. When an external line appear longer than the internal APB2 clock-cycle pulse, the external interrupt / eventcontroller is able to detect. Up to 112 GPIO connected to the 16 external interrupt lines.6)Clocks and startup. At boot time or to the system clock selection, but the reset when the internal 8MHz crystal oscillator is selected as the CPU clock. Can choose a 4-16MHz external clock, and will be monitored to determine the success. During this time, the interrupt controller is disabled and the software management is subsequently disabled. Also, if there is a need, PLL clock interrupt management fully available. Comparator can be used more pre-configuration of the AHB frequency, including high-speed and low-speed APB APB, APB highest frequency of high-speed 72MHz, low-speed APB highest frequency of 36MHz.Architectural AdvantagesIn addition to the new features Enhanced peripheral interfaces, STM32 series also interconnect with other STM32 microcontrollers offer the same standard interface, such sharing of peripherals to enhance the entire product family, application flexibility, so that developers can a plurality of design reuse the same software. New STM32 standard peripherals include 10 timers, two 12-bit ADC, two 12-bit DAC, two I2C interfaces, five USART interfaces and three SPI ports. There are 12 new products peripherals direct data storage channel, there is a CRC calculation unit, like other STM32 microcontrollers, the supports 96 unique identifier.New series also has followed the STM32 microcontroller family of products low voltage and energy saving are two advantages. 2.0V to 3.6V operating voltage range compatible with the mainstream of battery technologies such as lithium batteries and nickel-metal hydride batteries, the package also features a battery operation mode dedicated pin Vbat. 72MHz frequency to execute code from flash consumes only 27mA current. There are four low-power mode, the current consumption can be reduced to two microamps. Quick Start from low power mode to save energy too; starting circuit using STM32 internally generated 8MHz signal, the microcontroller from stop mode when you wake up with less than 6 microseconds.中文翻译:单片机STM321 STM32的介绍STM32系列基于专为要求高性能、低成本、低功耗的嵌入式应用专门设计的ARM Cortex-M3内核。
单片机英文文献Principle of MCUSingle-chip is an integrated on a single chip a complete computer system. Even though most of his features in a small chip, but it has a need to complete the majority of computer components: CPU, memory, internal and external bus system, most will have the Core. At the same time, such as integrated communication interfaces, timers, real-time clock and other peripheral equipment. And now the most powerful single-chip microcomputer system can even voice, image, networking, input and output complex system integration on a single chip.Also known as single-chip MCU (Microcontroller), because it was first used in the field of industrial control. Only by the single-chip CPU chip developed from the dedicated processor. The design concept is the first by a large number of peripherals and CPU in a single chip, the computer system so that smaller, more easily integrated into the complex and demanding on the volume control devices. INTEL the Z80 is one of the first design in accordance with the idea of the processor, From then on, the MCU and the development of a dedicated processor parted ways.Early single-chip 8-bit or all of the four. One of the most successful is INTEL's 8031, because the performance of a simple and reliable access to a lot of good praise. Since then in 8031 to develop a single-chip microcomputer system MCS51 series. Based on single-chip microcomputer system of the system is still widely used until now. As the field of industrial control requirements increase in the beginning of a 16-bit single-chip, but not ideal because the price has not been very widely used. After the 90's with the big consumer electronics product development, single-chip technology is a huge improvement. INTEL i960 Series with subsequent ARM in particular, a broad range of applications, quickly replaced by 32-bit single-chip 16-bit single-chip high-end status, and enter the mainstream market. Traditional 8-bit single-chip performance has been the rapid increase in processing power compared to the 80's to raise a few hundred times. At present, the high-end 32-bit single-chip frequency over 300MHz, the performance of the mid-90's close on the heels of a special processor, while the ordinary price of the model dropped to one U.S. dollars, the most high-end models, only 10 U.S. dollars. Contemporary single-chip microcomputer system is no longer only the bare-metal environment in the development and use of a large number of dedicated embedded operating system is widely used in the full range of single-chip microcomputer. In PDAs and cell phones as the core processing of high-end single-chip or even a dedicated direct access to Windows and Linux operating systems.More than a dedicated single-chip processor suitable for embedded systems, so it was up to the application. In fact the number of single-chip is the world's largest computer. Modern human life used in almost every piece of electronic and mechanical products will have a single-chip integration. Phone, telephone, calculator, home appliances, electronic toys, handheld computers and computer accessories such as a mouse in the Department are equipped with 1-2 single chip. And personal computers also have a large number of single-chip microcomputer in the workplace. Vehicles equipped with more than 40 Department of the general single-chip, complex industrial control systems and even single-chip may have hundreds of work at the same time! SCM is not only far exceeds the number of PC and other integrated computing, even more than the numberof human beings.Hardwave introductionThe 8051 family of micro controllers is based on an architecture which is highly optimized for embedded control systems. It is used in a wide variety of applications from military equipment to automobiles to the keyboard on your PC. Second only to the Motorola 68HC11 in eight bit processors sales, the 8051 family of microcontrollers is available in a wide array of variations from manufacturers such as Intel, Philips, and Siemens. These manufacturers have added numerous features and peripherals to the 8051 such as I2C interfaces, analog to digital converters, watchdog timers, and pulse width modulated outputs. Variations of the 8051 with clock speeds up to 40MHz and voltage requirements down to 1.5 volts are available. This wide range of parts based on one core makes the 8051 family an excellent choice as the base architecture for a company's entire line of products since it can perform many functions and developers will only have to learn this one platform.The basic architecture consists of the following features:·an eight bit ALU·32 descrete I/O pins (4 groups of 8) which can be individually accessed·two 16 bit timer/counters·full duplex UART· 6 interrupt sources with 2 priority levels·128 bytes of on board RAM·separate 64K byte address spaces for DA TA and CODE memoryOne 8051 processor cycle consists of twelve oscillator periods. Each of the twelve oscillator periods is used for a special function by the 8051 core such as op code fetches and samples of the interrupt daisy chain for pending interrupts. The time required for any 8051 instruction can be computed by dividing the clock frequency by 12, inverting that result and multiplying it by the number of processor cycles required by the instruction in question. Therefore, if you have a system which is using an 11.059MHz clock, you can compute the number of instructions per second by dividing this value by 12. This gives an instruction frequency of 921583 instructions per second. Inverting this will provide the amount of time taken by each instruction cycle (1.085 microseconds).单片机原理单片机是指一个集成在一块芯片上的完整计算机系统。
The single chip computer abbreviation Microcontroller is typical of embedded Microcontroller controller (Microcontroller Unit), common English letters is the abbreviation of MCU said Microcontroller, it was first used in industrial control field. SCM by chip inside only CPU dedicated processor. The earliest design concept is through the huge amounts of peripheral and CPU integration in a chip, make the computer system smaller, more easy to integrate into the complex and to volume demanding control equipment of. Intel-based Z80 is the earliest designed according to this kind of thought the processor, henceforth, SCM and dedicated processor development parted.Early microcontroller is 8 bits or 4 digit. One of the most successful intel-based 8031 is simple, reliable performance, because good got a lot of praise. Then in the microcomputer 8031 developed MCS51 series microcontroller systems. Based on this system of SCM system have until now in widespread use. With the improvement of industrial control area requirement, begin to emerge 16-bit single chip, but because the price is not ideal did not get very widely. After the 1990s with consumer electronic products development, microcontroller technology has been a tremendous increase. As the INTEL i960 series especially later ARM series widely, 32-bit SCM rapidly replacing 16-bit single chip of high-end status, and into the mainstream market. While the traditional 8 bit micro-controller performance also obtained the rapid increase, processing power than 1980s raised hundreds times. At present, high-end 32-bit SCM frequency has exceeded 300MHz, performance straight after the middle of 90's of dedicated processor, whereas normal type ex-factory price dropped to $1, the highest-profile [1] type was only ten dollars. Contemporary SCM system no longer only in LuoJi environment, development and use of special embedded operating system is widely used in the whole range of single-chip microcomputer. While in as a handheld computers and mobile phones key processing of high-end microcontroller even can directly use the special Windows and Linux operating system.Single-chip processor more than dedicated suitable for use with embedded system, so it has gained the most applications. In fact microcontroller is the world largest number of the computer. Modern human life that are used in almost every pieces of electronic and mechanical products will be integrated have microcontroller. Mobile, telephone, calculator, home appliances, electronic toys, PDA and mouse and so on computer accessories are equipped with 1-2 department microcontroller. The PCS in also will affect many microcomputer in the work. Cars equipped with more than 40 department generalsingle-chip microcomputer, complex industrial control system even there may be hundredsmicrocomputer in working at the same time! The number of MCU is not only far more than PCS and other calculation combined, and even more than the number of human beings.SCM is also called monolithic micro controller, it is not complete a logic function chips, but it is a computer system integration to a chip. The computer equivalent of a micro computer, and compared, microcontroller lack only the I/O devices. General speaking: a chip became a computer. Its compact size, light quality, cheap, for learning, application and development provides the convenience. Meanwhile, "learning to use a single chip computer is knowledge of computer principle and structureof the best choice.SCM internal also use and computer functions similar module, such as CPU, memory, parallel bus and hard disk storage device functions are the same, the difference is its relative performance all these parts of our home computer weak, but the price is much lower, usually less than 10 yuan can... Use it to do some control electric appliance category is not very complicated work is sufficient. We use now roller washing machine, smoke exhaust hood, VCD and so on the home appliance inside can see the figure! ... It was mainly used as a core part of the control part.It is a kind of on-line real-time control computer, on-line is site control, need is strong anti-jamming ability, low cost, this also is and off-line computer (such as household PC) the main difference.A single chip computer is by program running, and can be modified. Through the different program realization of different function, especially the unique some special function, this is another device needs to spend effort can do that, while some others are great effort also hard to do. One is not very complicated function if use in the United States during the 1950s development of 74 series, or from the 1960s CD4000 series these pure hardware to fix words, circuit must be a large piece of PCB board! But if if use American 1970s success on the market series microcontroller, and the results will be difference! Just because of single chip through your programming can achieve high intelligence, high efficiency and high reliability.Due to cost is sensitive microcontroller, so, at present, the dominant software or lowest assembly language, it is besides the binary machine code above the lowest language, since so low-level why use? Many senior language has reached the level of visual programming is why not? The reason is very simple, that is no home computer microcontroller as the CPU, also did not like hard disk that mass storage device. A visual small programs written in high-level languages inside has even a button, also can achieve dozens of K size! For household PC hard disk speaking nothing, but the SCM speaking isunacceptable. Microcomputer in hardware resources utilization must high to just go, so assembly although original but still in use large. The same way, if the giant computer operating system and application software got home PC came running, household PC is also cannot bear.Can say, the twentieth century across the three "electricity" age, namely the age of electricity, electronic era and now has entered the computer era. However, this kind of computer, usually refers to the personal computer, the abbreviation PCS. It consists of host, keyboard, display etc. And those computer, most people do not so familiar with. This computer is intelligence gives all kinds of mechanical SCM (also called micro controller). As the name suggests, the computer is minimal systems only took a piece of integrated circuits, simple operation and control can be carried out. Because of its small size, usually hidden in the accused of mechanical "stomach". It in the whole device, plays the role of like the human mind, it went wrong, the whole device broke down. Now, this SCM use field has been widely, such as intelligent instruments, real-time control, communication equipment, navigation system, household electric appliances, etc. Various products once usingsingle-chip microcomputer, can have the effect that product upgrading, often in product specialty bariatric adjectives -- "intelligent", such as intelligent washing machines etc. Now some factories technicians or other leisure electronic developers out some of the products, not the circuits are too complex, is functional too simple and the easy be imitators. Investigate its reason, may be stuck in product without using SCM or other programmable logic devices..Microcontroller history1971 Intel company developed the world's first four microprocessor, The Intel company hoff successfully developed the world's first piece of four 4004 Intel microprocessor chips, marks the first generation of microprocessor market, microprocessor and computer era begins. For invention microprocessor, hoff by the British economist magazine named "the most influential since world war ii the seven scientists" one.In 1971, the Intel on November launch MCS - 4 microcomputer system (including 4001 ROM chip, 4002 RAM chips, 4003 shift register chips and 4004 microprocessor) which 4004 (figure below) contains 2,300 transistor, the dimension of 3mm x 4mm, computing performance than that ENIAC, initially sells for $200.April 1972, hoff etc, developed the first eight Intel microprocessor 8008. Because 8008 USES is P in gully MOS microprocessor, and therefore still belong to the first generation of microprocessors.1973 Intel company develop 8 bits of the microprocessor 8080; In 1973, August hoff person such as developed eight microprocessor 8080 to N in gully intel-based MOS circuit replaced P channel, the second generation microprocessor at birth.Frequency of 2MHz 8080 chip speed 8008 10 times faster than, can access 64KB memory, use based on six micron technology 6,000 transistors, processing speed of 0.64 the MIPS (at) Million will conference.In 1975, MITS issued on April first general-purpose Altair 8,800, price $37.5bn, with 1KB memory. This is the world's first microcomputer.1976 the Intel company develop MCS - 48 series of 8 bits of single chip microcontroller, this also is published.Zilog company in 1976 development Z80 microprocessor, widely used in microcomputer and industrial automatic control equipment. At that time, Zilog, Motorola and Intel microprocessor field in Japan.In the early 1980s, the Intel company in MCS - 48 series microcontroller, on the basis of launched MCS - 51 series 8 bits of high-grade microcontroller. MCS - 51 series microcontroller whether pieces (RAM capacity, I/O mouth function, system extension aspects had the very big enhancement. Singlechip the bus: we know that a circuit is always from the components through wires connected, and in analog circuits, the connection does not become a problem, because the devices are generally serial inter-relationship between the various devices connection is not much, but not the same as computer circuits, which is based on the microprocessor as the core, the device must be connected with the microprocessor, the device must be between the mutual coordination and so on need to connect on a lot of If still the same as analog circuits, in the microprocessor and a separate connection between the devices, the quantity line will be many alarmingly so in the microprocessor introduced the concept of bus, all devices share the connection All devices of all eight data lines from eight public online, which is equivalent to all devices in parallel, but only this is not enough, if there is two devices send data simultaneously, a 0, a 1, then , the receiving party received what is it? This situation is not allowed, so to pass the line of control to control the device time job, any time there can be only one device to send data (which may have multiple devices simultaneously receiving). Device's data lines will be referredto as data bus, all the line of control devices known as control bus. Singlechip at internal or external memory and other devices have memory cells, these memory cells to be assigned addresses to use, the allocation of addresses is of course to give the form of electrical signals, and because memory cells are more so for address the allocation of more lines, these lines were known as the address bus.Second, data, address, command: The reason why these three together, because these three are the essence is the same - figure, or are a string of'0 'and'1', composed of sequence . In other words, addresses, instructions are also data. Command: from single-chip chip designer provides a figure, it is consistent with our mnemonic commonly used commands have a strict one-to-one relationship, not by the developer to change the MCU. Address: Singlechip are looking for internal, external storage units, input and output port based on the value of the internal unit's address has been provided for the chip designers, and can not be changed, the external unit can be single-chip developers to decide, but Yes there is some address must be the unit (see procedures for the implementation process). Data: This is the object of treatment by the microprocessor, in a variety of different applications in different circuits, in general, the data may be processed so have several situations:1 ? address (such as MOV DPTR, # 1000H), that address 1000h into the DPTR.2 ? the way the words or control characters (such as MOV TMOD, # 3),3 which controls the characters.3 ? constants (such as MOV TH0, # 10H) 10H that is constant from time to time.4 ? The actual output value (such as the mouth then P1 lantern light to light the whole, then the implementation of instruction: MOV P1, # 0FFH, to light the whole dark, then the implementation of instruction: MOV P1, # 00H) and 00H are here 0FFH actual output value. Another example is the font code for the LED, is the actual output value.Understanding of the address, the nature of instructions, running is not difficult to understand why the process of running fly, the data will be implemented as instructions.Three, P0 mouth, P2 and P3 the mouth of the second function Usage: often on P0 beginner I, P2 and P3 mouth I use the second function puzzled think the second function and the original features have a switch between the process, or that there have to be a directive, in fact, the port's second feature is completely automatic, no need to use command to convert. Such as P3.6, P3.7, respectively, are WR, RD signal, when the micro-chip RAM or external justifications machine has an external I / O port, they were used as the second function, can not be used as general-purpose I / O port to use, as long as one microprocessor implementation of the MOVX instruction 1, there will be a corresponding signal sent from the P3.6 or P3.7, no prior use instructions indicate. In fact 'can not be used as general-purpose I / O port use' is not 'should not' but (user) 'not' as a general-purpose I / O port to use. At command you can arrange a Medium of Instruction SETB P3.7, and when the single-chip implementation of this Article directions, P3.7 will also become high, but users will not do so, because This usually will lead to the collapse of the system.Four, the program implementation process: single-chip power-on reset in 8051 after the program counter (PC) in the value of'0000 ', so the procedure always'0000' unit begin implementation of, that is to say: the system's ROM must exist in the'0000 'in this unit, and'0000' in the storage unit must be a command.Friday, the stack: the stack is a region, are used to store data, the region does not have any unique position, that is a part of internal RAM, special is its data storage and access methods, namely, theso-called 'advanced after that last-in first-out ', and the stack has a special data transmission command, ie' PUSH 'and' POP ', there is a special unit specifically for its services, that is, the stack pointer SP, when they first PUSH instruction, the SP on (at the original value of the foundation on) automatically add one, whenever the implementation of a POP instruction, SP on (at the original value basis) minus one automatically. Because of the value of SP can be used to change directions, so as long as the stage at the beginning of the proceedings to change the value of the SP, you can put the stack set up the required memory units, such as at the beginning of the proceedings, with a MOV SP, # 5FHinstructions when put on the stack from the memory modules installed in the unit 60H start. The normal procedure at the beginning of the total that there is a stack pointer of the instruction set, because at startup, SP initial value of 07H, thus the stack from the beginning the next unit 08h, and 08h to 1Fh in the region 8031 is the second, Three, four working registers area, often used, this will lead to data chaos. The author has prepared a different program, not exactly the same instructions to initialize the stack, which is the author's customary problem. When set up the stack area, does not mean that the region as a dedicated memory, it can be as common as the use of memory region, but under normal circumstances programming will not put it as an ordinary memory use.AVR single chipThe AVR core combines a rich instruction set with 32 general purpose working registers.All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowingtwo independent registers to be accessed in one single instruction executed in one clockcycle. The resulting architecture is more code efficient while achieving throughputs up toten times faster than conventional CISC microcontrollers.The ATmega8 provides the following features: 8K bytes of In-System ProgrammableFlash with Read-While-Write capabilities, 512 bytes of EEPROM, 1K byte of SRAM, 23general purpose I/O lines, 32 general purpose working registers, three flexibleTimer/Counters with compare modes, internal and external interrupts, a serial program-mable USART, a byte oriented Two-wire Serial Interface, a 6-channel ADC (eightchannels in TQFP and MLF packages) where four (six) channels have 10-bit accuracyand two channels have 8-bit accuracy, a programmable Watchdog Timer with InternalOscillator, an SPI serial port, and five software selectable power saving modes. The Idlemode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interruptsystem to continue functioning. The Power-down mode saves the register contents butfreezes the Oscillator, disabling all other chip functions until the next Interrupt or Hard-ware Reset. In Power-save mode, the asynchronous timer continues to run, allowing theuser to maintain a timer base while the rest of the device is sleeping. The ADC NoiseReduction mode stops the CPU and all I/O modules except asynchronous timer andADC, to minimize switching noise during ADC conversions. In Standby mode, the crys-tal/resonator Oscillator is running while the rest of the device is sleeping. This allowsvery fast start-up combined with low-power consumption.T he device is manufactured using Atmel’s high density non-volatile memory technology.The Flash Program memory can be reprogrammed In-System through an SPI serialinterface, by a conventional non-volatile memory programmer, or by an On-chip bootprogram running on the AVR core. The boot program can use any interface to downloadthe application program in the Application Flash Memory. Software in the Boot FlashSection will continue to run while the Application Flash Section is updated, providingtrue Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega8 is a powerful microcon-troller that provides a highly-flexible and cost-effective solution to many embeddedcontrol applications.The ATmega8 AVR is supported with a full suite of program and system developmenttools, including C compilers, macro assemblers, program debugger/simulators, In-Cir-cuit Emulators, and evaluation kits.MCU applicationCurrently microcontroller penetrated into every aspect of our lives, almost hard to find which field no trace of single chip. Missile navigation devices, the plane on various kinds of instrument control, computer network communication and data transmission, industrial automation process real-time control and data processing, is widely used in all kinds of intelligent IC card, civil luxury car security system, video camera, video camera, full-automatic washing machine control, as well asprogram-controlled toys, electronic pets, etc, these are inseparable from microcontroller. Mention automatic control field of robot, intelligent instruments, medical equipment and various kinds of intelligent machinery. Therefore, SCM's study, development and application of computer application will create and intelligent control of scientists and engineers.SCM is widely applied in instrumentation, household appliance, medical equipment, aerospace, special equipment of intelligent management and process control and other fields, roughly can divide the following several categories:1. In intelligent instruments on the applicationSingle-chip microcomputer with small size, low power consumption, control function is strong, flexible, miniaturization and extended use convenience etc, which are widely used in instrumentation, combined with different kinds of sensors, which can realize such as voltage, power, frequency, humidity, temperature and flow rate, speed, thickness, Angle, length, hardness, elements and pressures, physical measurement. Adopting SCM control makes instrument digital, intelligent, miniaturization, and functional than by electronic or digital circuit stronger. For example precision measuring equipment (power meter, oscilloscope, various analyzer).2. The application in industrial controlMCU can constitute the various forms of control system, the data acquisition system. For example the production line of the intelligent pipe principle, the elevator intelligent control, various alarm system, network with computer constitute a secondary control system, etc.3. The application in household appliancesIt can be said that now of household appliances basically adopts single-chip microcomputer control, from electric cooker, washing machines, refrigerators, air conditioner, color television, other audio video equipment, arrive again micro-electronic quantity equipment, multifarious, omnipresent.4. In computer network and communication in the field of applicationModern single-chip generally have communication interface can be easily and computer data communications, for in the computer network and communication between devices applied to provide the excellent material conditions of present communication equipment basically realized thesingle-chip microcomputer intelligent control, from mobile, telephone, small pabx, building automatic train communication calling system, wireless communication, arrive again daily work deductions-from the mobile phone, cluster mobile communications, radios, etc.5. Microcomputer in the medical device field of applicationMicrocomputer in the medical equipment of use also is quite widespread, such as medical breathing machines, various analyzer, monitors, ultrasound diagnostic equipment and sickbed call system, etc. 6. In various large-scale electric appliance of modular applicationsSome special MCU designed to accomplish a specific function, and in various circuit of modular application, without asking using personnel understand its internal structure. If music integrated microcontroller, seemingly simple function, miniature in pure electronic chip (different from the principle of tape) be complex resemble computer principle. Such as: music signals in digital form stored in memory (ROM), similar to read by micro controller, into analog signals (similar to the music sound card).In large circuit, this modular application greatly reduced volume and simplify the circuit and reduce the damage, the error rate, also facilitate replacement.7. Microcomputer in the application fields of auto equipmentMicrocomputer in the automobile electronic application is very wide, for example in the car engine control, based on CAN bus automobile engine intelligence electronic controllers, GPS navigation system, abs antilock brakes, braking system, etc.In addition, microcomputer in the industry and commerce, finance, scientific research, education, national defence aerospace and other fields have a wide range of purposes.First, energy feedback unit work principleOn frequency-variable speed-adjustable system, when the motor load is a load of potential energy type such as oil pumping unit, mine hoist, etc; Or large inertia load such as: fan, cement system pipe, Dynamic balancing machines etc; And rolling mill, large longmen planer, spindle etc need fast brake class load, the motor is inevitably exists generating process, namely of motor rotor in external drag or load inertia maintain itself under the actual, making the motor speed is greater than the synchronous speed inverters, motor power will be issued by stored in inverter with dc bus filter capacitance, if you don't use this energy consume, so with dc bus voltage will rise, the influence of the frequency converter working normally.Energy feedback unit, through the automatic detection inverter with dc bus voltage, frequency converter dc link of dc voltage inverter with frequency voltage into with the same phase ac voltage, via multiple noise filter link after connected to exchange network, so as to achieve the purpose of energy feedback network, back to the grid electricity generating energy reached 97%, and effectively save electric energy.Second, energy feedback unit matters needing attention2.1, energy feedback unit and its connected device internal have endanger the personal safety of high pressure, wrong operation or improper installation may lead to personal property loss, so that the proposed by specially trained personnel installation operation.2.2, installation and wiring, in order to ensure the safe, please make sure to energy feedback unit and connected to it inverter power supply all disconnect and waits for 5 ~ 10 minutes, stay inverter internal capacitance stored in electricity discharge is finished, all can only operate.2.3, energy feedback unit and converter as close as possible to the farthest distance, do not exceed 2 meters.2.4, because energy feedback unit interior special design allows the user can not consider the grid sequence, namely: energy feedback unit of A, B and C terminals need not to the grid A, B and C or frequency converter input R, S, T one-to-one. But connection request when energy feedback unit of A, B and C terminals must and inverter communication input terminals R, S, T directly connected, can not through any intermediate switches or contactors, also can not connected to other ac circuits.2.5, energy feedback unit DC (+) terminal and converter DC bus is connected, DC (-) and converter DC bus negative connected the two cable advice adopting soft cable, and stranded inner connection, in order to reduce radiation.2.6, located on the radiator PE site wiring screws, please connect real reserve, could not connect grid neutral (neuter line).2.7, energy feedback unit designs for natural cooling way, so he asked energy feedback unit within the fluctuation, left 100mm 30mm inside cannot have other things influence the air flow shade.Third, energy feedback unit applicable occasions3.1, energy feedback unit used in potential type load such as: oil pumping unit, mine hoist, etc;3.2, energy feedback unit suitable to the large inertia load such as: fan, cement system pipe, dynamic balancing machines, centrifuge, etc;3.3, energy feedback unit applies to need to stop quickly of occasions, such as rolling mill, large longmen planer, spindle etc,3.4, energy feedback unit work may apply to other motors in renewable power state occasions. Four, energy feedback element and braking unit differenceEnergy feedback unit is renewable power of electric motor to power grid (right now meter feedback inversion), supply other equipment use, feedback efficiency can reaches as high as 97% above. And braking unit needs and braking resistance are used together, motor power generation of electricity consumption in regenerative braking resistance into heat wasted.In addition, using braking unit and braking resistance of braking unit, compared with energy feedback braking torque is small, can't achieve motor precision braking .Five.With the development of the technology of computer and control,the temperature control of electric heating furnace is becoming fully developed, the technology has been an important part of industry.To meet the requirement of industrial control, the thesis designs a system which is constituted of temperature detecting device, A/D conversion, monolithic processor keyboard and display apparatus, alarming circuit and D/A conversion based on the control of electric heating furnace. The thesis explains the principle, the concept of design, constitution and characteristic. Because of the great developing speed of automatic temperature controlling, the thesis try to explain the system in detail, and the thesis also reflect the direction of the development of temperature controlling system.This design controlled member is an electric heating stove, adds through the control in the resistance wire beginnings and ends voltage operating time operating time, comes the average power which outputs to the resistance wire to perform to control. Automatic temperature control of the electric furnace is realized by a temperature control circuit of solid state relay on the basis of the single-chip computer. This article put PID algorithm applies in the resistance furnace temperature control system, elaborated PID controller design, the hardware constitution and the software design, have realized set of temperatures gathering and the control design proposal. This control system has such advantages as low cost .control accuracy, good reliability and good resistance to interference.8.the application of single chip in electronic scaleThe development of the modern society has put forward higher request on weighing technology. The desk-top electronic scales have been great application in commercial trade, but they have many shortcomings such as large volume, high cost, AC supply power and not cove nince to carry, so they are restricted to use. The usual portable scales are lever scales which are mostly used by residents, and spring balance which measure through compression or drawing of spring. They are being rejected for their big measuring errors. People have been expecting cheap portable electronic scales which can measure accurately and be carried conveniently for many years.This thesis designs new-type portable electronic scales. It discusses the instrumental working principle, and introduces its error sources and how to distribute the error. And, the instrumental circuit, software-flow-chart and engineering designing technology are presented. Because capacitance。
中文资料原文单片机单片机也被称为微控制器(Microcontroller Unit),常用英文字母的缩写MCU表示单片机,它最早是被用在工业控制领域。
单片机由芯片内仅有CPU的专用处理器发展而来。
最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。
INTEL的Z80是最早按照这种思想设计出的处理器,从此以后,单片机和专用处理器的发展便分道扬镳。
早期的单片机都是8位或4位的。
其中最成功的是INTEL的8031,因为简单可靠而性能不错获得了很大的好评。
此后在8031上发展出了MCS51系列单片机系统。
基于这一系统的单片机系统直到现在还在广泛使用。
随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。
90年代后随着消费电子产品大发展,单片机技术得到了巨大提高。
随着INTEL i960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场。
而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提高了数百倍。
目前,高端的32位单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端[1]的型号也只有10美元。
当代单片机系统已经不再只在裸机环境下开发和使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。
而在作为掌上电脑和手机核心处理的高端单片机甚至可以直接使用专用的Windows和Linux操作系统。
单片机比专用处理器更适合应用于嵌入式系统,因此它得到了最多的应用。
事实上单片机是世界上数量最多的计算机。
现代人类生活中所用的几乎每件电子和机械产品中都会集成有单片机。
手机、电话、计算器、家用电器、电子玩具、掌上电脑以及鼠标等电脑配件中都配有1-2部单片机。
而个人电脑中也会有为数不少的单片机在工作。
附录一、英文原文:The Principle of MicrocontrollerIn operation the Single Chip Microcomputer (SCM)is connected to a host PC microcomputer via aserial port. The connecting cable is included with the unit.The SCM is supplied fitted with an 8751 chip. This chip features internal ROM containing versatile,real time monitor to communicate with a PC via the built-in serial port. The monitor includes a line assembler, disassembler, break points, single stepping and the facility to examine and exchange memory or register contents.A special function of the monitor is to store the program under development in the RAM of the SCM development board. The great advantage of the method that is direct access to the I/O ports is provided by the 8051 is retained and, consequently,the need for a costly in-circuit-emulation (ICE)package is not required.Once a program has been completed on the SCM development system it can be easily transferred intothe ROM of another 8751 via an EPROM programmer. This second 8751, now containing the control program, can be removed from the Programmer and installed into the SCM-TB target board. Most importantly, because direct access to the input/output ports of the 8751 has been retained during the development stage there is no need for peripheral I/O and address decoding chips; only the8751 chip is required. Thus the Single Chip Micro-Control, not multi-chip control is realised.The SCM-TB target board feature a single 40-wayDIL socket for the micro-controller chip plus termination facilities identical to the SCMDevelopment Board for simple and convenient transfer of any connecting cables. 8751 ICS should be purchased separately for the target board.In addition to the Single Chip Development System and Target Board, a number of add-on boards are available. These include a Port Monitor Board,Multi-Channel ADC, Screw Terminal Board andOutput Driver Board.Voice input to a machine is the most natural form of man-machine communications. Research coming to fruition overthe past several years indicates that the techniques ofmanmachine communication by voice constitute a whole new range of communication services—services that can extend man's capabilities, serve his social needs, and increase his productivitySpeech recognition can be defined as the technology which makes it possible for a computer to accept voice dataas input and then identify the word or phrases. There is atwofold rationale for a speech-recognition systea:(1) It is an easier means for noncomputer professionals toenter data into the computer.(2) In certain applications, such as in semiautomatedquality-control inspection procedures, computer usersneed to use their hands for other tasks. Speech recognition is a part of a broader speech processingtechnology involving computer identification or verification of speakers, computer synthesis of speech, production ofstoredspokenresponses,computer analysis of the physicaland psychological state of the speaker, efficienttransmission of spoken conversations, detection of speechpathologies, and aids to the handicapped , taking machinestalk and listen to humans depends upon economical implementationof speech synthesis and speech recognition.A number of different feature sets have been proposedto represent speech signals; these include energy and zerocrossing rates, formant filtering, short time spectrum,waveform digitization and linear predictive coding (LPC).The motivation for choosing one feature set over another isoften complex and highly dependent an constraints imposedupon the system, e.g., cost, speed, response time, computationalcomplexity, etc- Of all the many available feature sets, linear predictive coding is usually the most effectiveone .There are many classifications for computers, ranging from inexpensive microcomputers used in homes and offices, to liquid-cooled supercomputers used in universities and research laboratories. The present invention relates to microcomputers, also known as "personal computers" (or "PCs").A microcomputer can be defined as a "computer having a mass-produced integrated circuit microprocessor", such as, for example, the Intel 80×86 family of products which presently includes the 8086, 80286, 80386 and 80486 microprocessors. Although the microprocessor is the heart and defining feature of a microcomputer, it is not very useful unless it is integrated with a memory and a set of input/output ("I/O") devices, also known as peripherals. These three classes of devices communicate among themselves over a shared set of digital signal lines called a bus.The bus is logically organized into sets of address, data, and control lines. The address lines are for communicating device addresses which uniquely identify a particular device on the bus. The data lines are for communicating binary data between two bus devices, a bus master, which initiates a data transfer by placing an address on the address lines, and a bus slave, which reads and decodes the address generated by the bus master as its own. The control lines are for coordinating access to the bus and selecting a mode of operation on the bus such as write data or read data modes. For example, if the bus master is a microprocessor and the bus slave is a memory, the microprocessor may direct thememory to be read by placing the proper logic level on a write/read control line. In this way, the microprocessor gains access to the data stored in the memory location specified by the logic levels placed on the address lines by the microprocessor.A bus cycle begins when the bus master directs a write or a read on the bus. The bus cycle is completed after all data has been transferred across the bus and the bus master releases control of the bus. If the two devices communicating with each other over the bus operate at the same speed, then a bus cycle may be achieved over a minimum number of clock cycles. If, on the other hand, a bus device can only transmit or receive data over many clock cycles, then a delay must be injected into the state sequencing of the faster device. In such cases, a "ready" control line is typically activated by the slower device to indicate to the faster device that data is available on the bus or has been taken from the bus.Buses may be generally classified as synchronous or asynchronous, where synchronous buses are distinguished by the requirement that all bus devices synchronize their use of the bus by a single clock source (or a fundamental frequency). An example of a synchronous bus used in a microcomputer is the IBM PC AT I/O Channel, AT-bus or Industry Standard Architecture bus ("ISA-bus"). Present bus frequency standards for the ISA-bus are 8 MHz and 10 MHz.The ISA-bus, an example of a synchronous bus, is used with the Intel 80386 microprocessor. The ISA-bus provides a 16-bit data bus and a 24-bit address bus. For purposes of this discussion, the control lines of the ISA-bus include four bus cycle definition lines. The bus cycle definition lines define the type of bus cycle being performed. (In the following definitions, and throughout the remainder of this patent document, all signal names that are terminated with an asterisk [*] indicate an active low signal). A bus cycle definition line called memory read ("MEMR*") is activewhen data is to be read from memory. A bus cycle definition line called memory write ("MEMW*") is active when data is to be written to memory. A bus cycle definition line called I/O read ("IOR*") is active when data is to be read from a peripheral device. A bus cycle definition line called I/O write ("IOW*") is active when data is to be written to a peripheral device.In addition to the above-mentioned bus cycle definition signals there are some microprocessor specific signals that are used in most microcomputers for specifically interfacing the Intel 80×86 microprocessor family. There are two bus control signals and two bus arbitration signals of particular importance for bus interfacing. The bus control signals allow the microprocessor to indicate when a bus cycle has begun, and allows other bus devices to indicate a bus cycle termination. The address status ("ADS*") signal indicates that a valid bus cycle definition, and address, is being driven at the output pins of the 80386 microprocessor. The transfer acknowledge ("READY*") signal indicates that the current bus cycle is complete.One skilled in the technology will understand the operation of the ISA-bus, other applicable industry standard buses, and the Intel 80×86 microprocessor family. At least two references are available on the subject including The IBM PC from the Inside Out, Revised Edition, by Murray Sargent III and Richard L. Shoemaker; and IBM PC AT Technical Reference published by IBM Corporation.Synchronous buses are ordinarily preferred for microcomputers since they can often transfer data faster than asynchronous buses. Certain applications, however, especially where lengthy communication distances are involved, require asynchronous or "handshake only" type buses. When devices are separated by some distance, the same phase transition of a common clock cannot be guaranteed.The primary disadvantage of the synchronous ISA-bus has only recently been recognized. Basically, microcomputers are evolving down two separate paths of variables: one set of variables is associated with the bus design and the other set is associated with the microprocessor and memory designs. A synchronous bus, such as the ISA-bus, should remain constant so that microcomputers in a single product line are all compatible. That is, a peripheral such as a modem, printer and so on will operate through a respective controller at the clock frequency defined in the bus specification. Therefore, the bus should only change through more efficient (i.e., cost effective) designs which meet the same specifications. For example, the operating frequency of the bus should remain constant to assure proper operation of allperipherals constructed in accordance with the bus standard.In contrast, microprocessor and memory technologies are rapidly evolving in functionality and performance. For example, the microprocessor changes in architectural definition (e.g., number of pins, instruction sets, etc.) and clock frequency (e.g., 16 MHz, 25 MHz, 33 MHz), the cache becomes more sophisticated, coprocessors become a part of the microcomputer architecture (e.g., Intel 80387 numeric coprocessor), and main memory becomes faster.As an example of memory evolution, consider dynamic random access memory, or "DRAM". As DRAM technology improves, the opportunity for improved system performance becomes clear. In the early days of personal computers, the common DRAM chip being used in microcomputers was 64K×1 (65,536×1 bits), having an access time of 150 nanoseconds. Recently, a standard (i.e., readily available and cost effective) DRAM size used by microcomputer manufacturers was 256K×1, having an access time of 100 nanoseconds. Presently, a DRAM chip standard of 1M×1 (i.e., 1,048,576×1 bits), having an access time of 80 nanoseconds or less is evolving as a commercially feasible standard, and the technology trend is toward a 16M by 1 bit chip.It is desireable to isolate the memory and microprocessor from the synchronous I/O bus design so that different DRAM and microprocessors at different operating frequencies can be used without affecting the synchronous I/O bus design. Otherwise, if the synchronous bus is not isolated from the computation and storage elements, each technological improvement in memory or microprocessor products will require unique interface circuitry to scale-down communication speed with other devices across the synchronous bus.Consequently, a need exists for improvements in microcomputer systems to isolate I/O channel design from memory and microprocessor designs.二、英文翻译:单片机工作原理在通过端口把单片机连接到个人电脑上的操作中连接电缆也包含在这个系统中。
英文:MCU DescriptionSCM is also known as micro-controller (Microcontroller Unit), commonly used letters of the acronym MCU MCU that it was first used in industrial control.Only a single chip by the CPU chip developed from a dedicated processor. The first design is by a large number of peripherals and CPU on a chip in the computer system, smaller, more easily integrated into a complex and demanding on the volume control device which. INTEL's Z80 is the first designed in accordance with this idea processor, then on the development of microcontroller and dedicated processors have parted ways.Are 8-bit microcontroller early or 4 bits. One of the most successful is the INTEL 8031, for a simple, reliable and good performance was a lot of praise. Then developed in 8031 out of MCS51 MCU Systems. SCM systems based on this system until now is still widely used. With the increased requirements of industrial control field, began a 16-bit microcontroller, because the cost is not satisfactory but have not been very widely used. After 90 years with the great development of consumer electronics, microcontroller technology has been a huge increase. With INTEL i960 series, especially the later series of widely used ARM, 32-bit microcontroller quickly replace high-end 16-bit MCU status and enter the mainstream market. The traditional 8-bit microcontroller performance have been the rapid increase capacity increase compared to 80 the number of times. Currently, high-end 32-bit microcontroller clocked over 300MHz, the performance catching the mid-90's dedicated processor, while the average model prices fall to one U.S. dollars, the most high-end [1] model only 10 dollars. Modern SCM systems are no longer only in the development and use of bare metal environment, a large number of proprietary embedded operating system is widely used in the full range of SCM. The handheld computers and cell phones as the core processing of high-end microcontroller can even use a dedicated Windows and Linux operating systems.SCM is more suitable than the specific processor used in embedded systems, so it was up to the application. In fact the number of SCM is the world's largest computer. Modern human life used in almost every piece of electronic and mechanical products will be integrated single chip. Phone, telephone, calculator, home appliances,electronic toys, handheld computers and computer accessories such as a mouse with a 1-2 in both the Department of SCM. Personal computer will have a large number of SCM in the work. General car with more than 40 SCM, complex industrial control systems may even have hundreds of SCM in the same time work! SCM is not only far exceeds the number of PC and other computing the sum, or even more than the number of human beingsSingle chip, also known as single-chip microcontroller, it is not complete a certain logic chips, but to a computer system integrated into a chip. Equivalent to a micro-computer, and computer than just the lack of a microcontroller I / O devices. General talk: a chip becomes a computer. Its small size, light weight, cheap, for the study, application and development of facilities provided. At the same time, learning to use the MCU is to understand the principle and structure of the computer the best choice.SCM and the computer functions internally with similar modules, such as CPU, memory, parallel bus, the same effect as well, and hard disk memory devices, and different is its performance of these components were relatively weak many of our home computer, but the price is low , usually not more than 10 yuan you can do with it ...... some control for a class is not very complicated electrical work is enough of. We are using automatic drum washing machine, smoke hood, VCD and so on appliances which could see its shadow! ...... It is primarily as a control section of the core componentsIt is an online real-time control computer, control-line is that the scene is needed is a stronger anti-jamming ability, low cost, and this is, and off-line computer (such as home PC), the main difference.Single chipMCU is through running, and can be modified. Through different procedures to achieve different functions, in particular special unique features, this is another device much effort needs to be done, some great efforts are very difficult to do. A not very complex functions if the 50's with the United States developed 74 series, or the 60's CD4000 series of these pure hardware buttoned, then the circuit must be a large PCB board! But if the United States if the 70's with a series of successful SCM market, theresult will be a drastic change! Just because you are prepared by microcomputer programs can achieve high intelligence, high efficiency and high reliability!As the microcontroller on the cost-sensitive, so now the dominant software or the lowest level assembly language, which is the lowest level in addition to more than binary machine code language, and as so low why is the use? Many high-level language has reached the level of visual programming Why is not it? The reason is simply that there is no home computer as a single chip CPU, not as hard as a mass storage device. A visualization of small high-level language program which even if only one button, will reach tens of K of size! For the home PC's hard drive in terms of nothing, but in terms of the MCU is not acceptable. SCM in the utilization of hardware resources to be very high for the job so although the original is still in the compilation of a lot of use. The same token, if the giant computer operating system and applications run up to get home PC, home PC, also can not afford to.Can be said that the twentieth century across the three "power" era, that is, the age of electricity, the electronic age and has entered into the computer age. However, this computer, usually refers to the personal computer, referred to as PC. It consists of the host, keyboard, monitor and other components. Another type of computer, most people do not know how. This computer is to give all kinds of intelligent machines single chip (also known as micro-controller). As the name suggests, this computer system took only a minimal integrated circuit, can be a simple operation and control. Because it is small, usually hidden in the charged mechanical "stomach" in. It is in the device, like the human brain plays a role, it goes wrong, the whole plant was paralyzed. Now, this microcontroller has a very broad field of use, such as smart meters, real-time industrial control, communications equipment, navigation systems, and household appliances. Once all kinds of products were using SCM, can serve to upgrade the effectiveness of products, often in the product name preceded by the adjective - "intelligent," such as intelligent washing machines. Now some technical personnel of factories or other amateur electronics developers to engage in out of certain products, not the circuit is too complicated, that function is too simple and can easily be copied. The reason may be stuck in the product did not use a microcontroller or other programmable logic device.SSCM historyCM was born in the late 20th century, 70, experienced SCM, MCU, SoC three stages.First model1.SCM the single chip microcomputer (Single Chip Microcomputer) stage, mainly seeking the best of the best single form of embedded systems architecture. "Innovation model" success, laying the SCM and general computer completely different path of development. In the open road of independent development of embedded systems, Intel Corporation contributed.2.MCU the micro-controller (Micro Controller Unit) stage, the main direction of technology development: expanding to meet the embedded applications, the target system requirements for the various peripheral circuits and interface circuits, highlight the object of intelligent control. It involves the areas associated with the object system, therefore, the development of MCU's responsibility inevitably falls on electrical, electronics manufacturers. From this point of view, Intel faded MCU development has its objective factors. In the development of MCU, the most famous manufacturers as the number of Philips Corporation.Philips company in embedded applications, its great advantage, the MCS-51 single-chip micro-computer from the rapid development of the micro-controller. Therefore, when we look back at the path of development of embedded systems, do not forget Intel and Philips in History.Embedded SystemsEmbedded system microcontroller is an independent development path, the MCU important factor in the development stage, is seeking applications to maximize the solution on the chip; Therefore, the development of dedicated single chip SoC trend of the natural form. As the microelectronics, IC design, EDA tools development, application system based on MCU SoC design have greater development. Therefore, the understanding of the microcontroller chip microcomputer can be, extended to the single-chip micro-controller applications.MCU applicationsSCM now permeate all areas of our lives, which is almost difficult to find tracesof the field without SCM. Missile navigation equipment, aircraft, all types of instrument control, computer network communications and data transmission, industrial automation, real-time process control and data processing, extensive use of various smart IC card, civilian luxury car security system, video recorder, camera, fully automatic washing machine control, and program-controlled toys, electronic pet, etc., which are inseparable from the microcontroller. Not to mention the area of robot control, intelligent instruments, medical equipment was. Therefore, the MCU learning, development and application of the large number of computer applications and intelligent control of the scientists, engineers.SCM is widely used in instruments and meters, household appliances, medical equipment, aerospace, specialized equipment, intelligent management and process control fields, roughly divided into the following several areas:1. In the application of Intelligent InstrumentsSCM has a small size, low power consumption, controlling function, expansion flexibility, the advantages of miniaturization and ease of use, widely used instrument, combining different types of sensors can be realized Zhuru voltage, power, frequency, humidity, temperature, flow, speed, thickness, angle, length, hardness, elemental, physical pressure measurement. SCM makes use of digital instruments, intelligence, miniaturization, and functionality than electronic or digital circuits more powerful. Such as precision measuring equipment (power meter, oscilloscope, various analytical instrument).2. In the industrial control applicationWith the MCU can constitute a variety of control systems, data acquisition system. Such as factory assembly line of intelligent control3. In Household AppliancesCan be said that the appliances are basically using SCM, praise from the electric rice, washing machines, refrigerators, air conditioners, color TV, and other audio video equipment, to the electronic weighing equipment, varied, and omnipresent.4. In the field of computer networks and communications applicationsMCU general with modern communication interface, can be easy with the computerdata communication, networking and communications in computer applications between devices had excellent material conditions, are basically all communication equipment to achieve a controlled by MCU from mobile phone, telephone, mini-program-controlled switchboards, building automated communications call system, train radio communication, to the daily work can be seen everywhere in the mobile phones, trunked mobile radio, walkie-talkies, etc..5. Microcomputer in the field of medical device applicationsSCM in the use of medical devices is also quite extensive, such as medical respirator, the various analyzers, monitors, ultrasound diagnostic equipment and hospital beds, etc. call system.6. In a variety of major appliances in the modular applicationsDesigned to achieve some special single specific function to be modular in a variety of circuit applications, without requiring the use of personnel to understand its internal structure. If music integrated single chip, seemingly simple function, miniature electronic chip in the net (the principle is different from the tape machine), you need a computer similar to the principle of the complex. Such as: music signal to digital form stored in memory (like ROM), read by the microcontroller, analog music into electrical signals (similar to the sound card).In large circuits, modular applications that greatly reduce the volume, simplifies the circuit and reduce the damage, error rate, but also easy to replace.7. Microcontroller in the application field of automotive equipmentSCM in automotive electronics is widely used, such as a vehicle engine controller, CAN bus-based Intelligent Electronic Control Engine, GPS navigation system, abs anti-lock braking system, brake system, etc..In addition, the MCU in business, finance, research, education, national defense, aerospace and other fields has a very wide range of applications.Application of six important part of learningMCU learning an important part of the six applications1, Bus:We know that a circuit is always made by the devices connected by wires, in analog circuits, the connection does not become a problem because the device is a serialrelationship between the general, the device is not much connection between the , but the computer is not the same circuit, it is a microprocessor core, the device must be connected with the microprocessor, the device must be coordination between, so they need to connect on a lot, as if still analog circuit like the microprocessor and devices in the connection between the individual, the number of lines will be a little more surprising, therefore the introduction of the microprocessor bus 概念Zhong Each device Gongtong access connections, all devices 8 Shuju line all received eight public online, that is the equivalent of all devices together in parallel, but only this does not work, if there are two devices send data at the same time, a 0, a 1, then, whether the receiver received what is it? This situation is not allowed, so to be controlled by controlling the line, time-sharing the device to work at any time only one device to send data (which can have multiple devices to receive both). Device's data connection is known as the data bus, the device is called line of control all the control bus. Internal or external memory in the microcontroller and other devices have memory cells, the memory cell to be assigned addresses, you can use, distribution, of course, to address given in the form of electrical signals, and as more memory cells, so, for the address allocation The line is also more of these lines is called the address bus. Second, data, address, command:The reason why these three together because of the nature of these three are the same - the number, or are a string of '0 'and '1' form the sequence. In other words, addresses, instructions are also data. Instruction: from single chip designer provides a number of commonly used instructions with mnemonic we have a strict correspondence between the developer can not be changed by the MCU. Address: the search for MCU internal, external storage units, input and output port based on the address of the internal unit value provided by the chip designer is good, can not be changed, the external unit can be single chip developers to decide, but there are a number of address units is a must (see procedures for the implementation of the process).Third, P0 port, P2 and P3 of the second function I use:Beginners often on the P0 port, P2 and P3 port I use the second function puzzled that the second function and have a switch between the original function ofthe process, or have a directive, in fact, the port The second feature is automatic, do not need instructions to convert. Such as P3.6, P3.7 respectively WR, RD signal, when the microchip processing machines external RAM or external I / O port, they are used as a second function, not as a general-purpose I / O port used, so long as a A microprocessor implementation of the MOVX instruction, there will be a corresponding signal sent from the P3.6 or P3.7, no prior use of commands. In fact 'not as a general-purpose I / O port use' is also not a 'no' but (user) 'not' as a general-purpose I / O port to use. You can arrange the order of a SETB P3.7's instructions, and when the MCU execution to the instruction, the also make P3.7 into a high, but users will not do so because this is usually will cause the system to collapse.Fourth, the program's implementation:Reduction in power after the 8051 microcontroller within the program counter (PC) in the value of 0000 ', the process is always from the 0000' units started, that is: the system must exist in ROM 0000 'this unit , and in 0000 'unit must be stored in a single instruction.5, the stack:Stack is a region, is used to store data, there is no special about the region itself is a part of internal RAM, special access to its data storage and the way that the so-called 'advanced post out backward first out ', and the stack has a special data transmission instructions that' PUSH 'and' POP ', has a special expertise in its services unit, that is, the stack pointer SP, whenever a PUSH instruction execution, SP on (in the Based on the original value) automatically add 1, whenever the implementation of a POP instruction, SP will (on the basis of the original value) automatically by 1. As the SP values can be changed with the instructions, so long as the beginning of the process to change the value of the SP, you can set the stack memory unit required, such as the program begins, with an MOV SP, # 5FH instructions When set on the stack starting from the memory unit 60H unit. There is always the beginning of the general procedure with such a directive to set the stack pointer, because boot, SP initial value of 07H, 08H This unit from the beginning to stack next, and 08H to 1FH 8031 is the second in the region, three or four working register area, often used, thiswill lead to confusion of data. Different authors when writing programs, initialize the stack is not exactly the same directive, which is the author's habit. When set up the stack zone, does not mean that the region become a special memory, it can still use the same memory region as normal, but generally the programmer does not regard it as an ordinary memory used.中文翻译:早期的单片机都是8位或4位的。
外文资料翻译The single-chip microcomputer is the culmination of both the development of the digital computer and the integrated circuit arguably the two most significant inventions of the 20th century.Some employ the split program/data memory of the Harvard architecture, shown in Fig.A-1, others follow the philosophy, widely adapted for general-purpose computers and microprocessors, of making no logical distinction between program and data memory as in the Princeton architecture, shown in Fig.A-2. In general terms a single-chip microcomputer is characterized by the incorporation of all the units of a computer into a single device, as shown in Fig3-5A-3. These two types of architecture are found in single-chip microcomputer.Program MemoryCPU Input & Output UnitData MemoryFig. A-1 A Harvard typeData Memory CPU Input & Output UnitFig. A-2 A conventional Princeton computerRead only memory (ROM)ROM is usually for the permanent, non-volatile storage of an applications program .Many microcomputers and microcontrollers are intended for high-volume applications and hence the economical manufacture of the devices requires that the contents of the program memory be committed permanently during the manufacture of chips. Clearly, this implies a rigorous approach to ROM code development since changes cannot be made after manufacture .This development process may involve emulation using a sophisticated development system with a hardware emulation capability as well as the use of powerful software tools.Some manufacturers provide additional ROM options by including in their range devices with (or intended for use with) user programmable memory. The simplest of these is usually device which can operate in a microprocessor mode by using some of the input/output lines as an address and data bus for accessing external memory.This type of device can behave functionally as the single chip microcomputer from which it is derived albeit with restricted I/O and a modified external circuit. The use of these ROM less devices is common even in production circuits where the volume does not justify the development costs of custom on-chip ROM; there can still be a significant saving in I/O and other chips compared to a conventional microprocessor based circuit. More exact replacement for ROM devices can be obtained in the form of variants with 'piggy-back' EPROM (Erasable programmable ROM ) sockets or devices with EPROM instead of ROM .These devices are naturally more expensive than equivalent ROM device, but do provide complete circuit equivalents. EPROM based devices are also extremely attractive for low-volume applications where they provide the advantages of a single-chip device, in terms of on-chip I/O, etc. with the convenience of flexible user programmability.Random access memory (RAM)RAM is for the storage of working variables and data used during program execution. The size of thismemory varies with device type but it has the same characteristic width (4,8,16 bits etc.) as the processor ,Special function registers, such as stack pointer or timer register are often logically incorporated into the RAM area. It is also common in Harvard type microcomputers to treat the RAM area as a collection of register; it is unnecessary to make distinction between RAM and processor register as is done in the case of a microprocessor system since RAM and registers are not usually physically separated in a microcomputer.Central processing unit (CPU)The CPU is much like that of any microprocessor. Many applications of microcomputers and microcontrollers involve the handling of binary-coded decimal (BCD) data (for numerical displays, for example) ,hence it is common to find that the CPU is well adapted to handling this type of data .It is also common to find good facilities for testing, setting and resetting individual bits of memory or I/O since many controller applications involve the turning on and off of single output lines or the reading the single line. These lines are readily interfaced to two-state devices such as switches, thermostats, solid-state relays, valves, motor, etc.Parallel input/outputParallel input and output schemes vary somewhat in different microcomputer; in most a mechanism is provided to at least allow some flexibility of choosing which pins are outputs and which are inputs. This may apply to all or some of the ports. Some I/O lines are suitable for direct interfacing to, for example, fluorescent displays, or can provide sufficient current to make interfacing other components straightforward. Some devices allow an I/O port to be configured as a system bus to allow off-chip memory and I/O expansion. This facility is potentially useful as a product range develops, since successive enhancements may become too big for on-chip memory and it is undesirable not to build on the existing software base.Serial input/outputSerial communication with terminal devices is common means of providing a link using a small number of lines. This sort of communication can also be exploited for interfacing special function chips or linking several microcomputers together .Both the common asynchronous synchronous communication schemes require protocols that provide framing (start and stop) information .This can be implemented as a hardware facility or U(S) ART (Universal (synchronous) asynchronous receiver/transmitter) relieving the processor (and the applications programmer) of this low-level, time-consuming, detail. t is merely necessary to selected a baud-rate and possibly other options (number of stop bits, parity, etc.) and load (or read from) the serial transmitter (or receiver) buffer. Serialization of the data in the appropriate format is then handled by the hardware circuit.Timing/counter facilitiesMany application of single-chip microcomputers require accurate evaluation of elapsed real time .This can be determined by careful assessment of the execution time of each branch in a program but this rapidly becomes inefficient for all but simplest programs .The preferred approach is to use timer circuit that can independently count precise time increments and generate an interrupt after a preset time has elapsed .This type of timer is usually arranged to be reloadable with the required count .The timer then decrements this value producing an interrupt or setting a flag when the counter reaches zero. Better timers then have the ability to automatically reload the initial count value. This relieves the programmer of the responsibility of reloading the counter and assessing elapsed time before the timer restarted ,which otherwise wound be necessary if continuous precisely timed interrupts were required (as in a clock ,for example).Sometimes associated with timer is an event counter. With this facility there is usually a special input pin , that can drive the counter directly.Timing componentsThe clock circuitry of most microcomputers requires only simple timing components. If maximum performance is required, a crystal must be used to ensure the maximum clock frequency is approached but not exceeded. Many clock circuits also work with a resistor and capacitor as low-cost timing components or can be driven from an external source. This latter arrangement is useful is external synchronization of the microcomputer is required.Programming languagesHigher level PLC programming languages have been around for some time, but lately their popularity has mushrooming. "As Raymond Leveille, vice president & general manager, Siemens Energy &Automation .inc; Programmable controls are being used for more and more sophisticated operations, languages other than ladder logic become more practical, efficient, and powerful. For example, it's very difficult to write a trigonometric function using ladder logic." Languages gaining acceptance include Boolean, control system flowcharting, and such function chart languages as Graphcet and its variation .And there's increasing interest in languages like C and BASIC.PLCs in process controlThus far, PLCs have not been used extensively for continuous process control .Will this continue? "The feeling that I've gotten," says Ken Jannotta, manger, product planning, series One and Series Six product ,at GE Fanuc North America,'is that PLCs will be used in the process industry but not necessarily for process control."Several vendors -obviously betting that the opposite will happen -have introduced PLCs optimized for process application .Rich Ryan, manger, commercial marketing, Allen-bradley Programmable Controls Div., cites PLCs's increasing use such industries as food ,chemicals ,and petroleum. Ryan feels there are two types of applications in which they're appropriate. "one," he says," is where the size of the process control system that's being automated doesn't justify DCS[distributed control system].With the starting price tags of chose products being relatively high, a programmable controller makes sense for small, low loop count application .The second is where you have to integrate the loop closely with the sequential logical .Batch controllers are prime example ,where the sequence and maintaining the process variable are intertwined so closely that the benefits of having a programmable controller to do the sequential logical outweighs some of the disadvantages of not having a distributed control system."Bill Barkovitz, president of Triconex, predicts that "all future controllers that come out in the process control system business will embrace a lot of more PLC technology and a lot more PLC functionality than they ever did before."Communications and MAPCommunications are vital to an individual automation cell and to be automated factory as a whole. We've heard a lot about MAP in the last few years ,and a lot of companies have jumped on the bandwagon. Many, however, were disappointed when a fully-defined and completed MAP specification didn't appear immediately .Says Larry Komarek: "Right now, MAP is still a moving target for the manufacturers, a specification that is not final .Presently, for example. people are introducing products to meet the MAP2.1standard .Yet2.1-based products will be obsolete when the new standard for MAP3.0 is introduced."Because of this, many PLC vendors are holding off on full MAP implementations. Omron, for example, has an ongoing MAP-compatibility program; but Frank Newburn, vice president of Omron's Industrial Division ,reports that because of the lack of a firm definition ,Omron's PLCs don't yet talk to MAP.Since it's unlikely that an individual PLC would talk to broad MAP anyway, makers are concentrating on proprietary networks. According to Sal Provanzano, users fear that if they do get on board and vendors withdraw from MAP, they'll be the ones left holding a communications structure that's not supported.Universal I/OWhile there are concerns about the lack of compatible communications between PLCs from different vendors, the connection at the other end-the I/O-is even more fragmented .With rare exceptions, I/O is still proprietary .Yet there are those who feel that I/O will eventually become more universal .GE Fanuc is hoping to do that with its Genius smart I/O line. The independent I/O makers are pulling in the same direction.Many say that I/O is such a high-value item that PLC makers will always want to keep it proprietary .As Ken Jannotta, says: "The I/O is going to be a disproportionate amount of the hardware sale. Certainly each PLC vendor is going to try to protect that. "For that reason, he says, PLC makers won't begin selling universal I/O system from other vendor. "if we start selling that kind of product, "says jannotta, "what do we manufacture?"With more intelligent I/O appearing, Sal Provanzano feels this will lead to more differentiation among I/O from different makers. "Where the I/O becomes extremely intelligent and becomes part of the system, "he says, "it really is hard to define which is the I/O and which is CPU. It really CPU, if you will, is equally integrated into the system as the I/O."Connecting PLC I/O to PCsWhile different PLCs probably will continue to use proprietary I/O, several vendors make it possible to connect5 their I/O to IBM PC-compatible equipment. Alle-bradeley, Could, and Cincinnati Milacron already have, and rumor has it that GE is planning something along these same lines .[4]Bill Ketelhut, manage of product planning at GE Fanuc North America ,sees this sort of thing as alternative to universal I/O."I think the trend ,instead of twoard universal I/O, will be multiple host interface ," he says .Jodie Glore ,director of marking, Square D Automation Products, Views it as another indication that PLCs are, and have been for some time, industrial computers.中文译文单片机是电脑和集成电路发展的巅峰,有据可查的是他们也是20世纪最有意义的两大发明。
Fundamentals of Single-chip MicrocomputerTh e si ng le-ch i p mi cr oc om pu ter is t he c ul mi nat i on o f bo th t h e d ev el op me nt o f th e d ig it al com p ut er an d t he int e gr at ed ci rc ui ta r gu ab ly th e t ow m os t s i gn if ic ant i nv en ti on s o f t h e 20t h c en tury[1].Th es e to w typ e s of a rc hi te ctu r e ar e fo un d i n s in gl e-ch ip m i cr oc om pu te r. So m e em pl oy t he sp l it p ro gr am/d ata me mo ry o f th e H a rv ar d ar ch it ect u re, sh ow n in Fi g.3-5A-1, o th ers fo ll ow t hep h il os op hy, wi del y a da pt ed f or ge n er al-p ur po se co m pu te rs a ndm i cr op ro ce ss or s, of ma ki ng no lo gi c al di st in ct io n be tw ee n p ro gram a n d da ta m em or y a s i n th e Pr in cet o n ar ch it ec tu re,sh ow n inF i g.3-5A-2.In g en er al te r ms a s in gl e-chi p m ic ro co mp ut er i sc h ar ac te ri zed b y the i nc or po ra tio n of al l t he uni t s o f a co mp ut er i n to a s in gl e dev i ce, as s ho w n in Fi g3-5A-3.Fig.3-5A-1 A Harvard typeFig.3-5A-2. A conventional Princeton computerFig3-5A-3. Principal features of a microcomputerRead only memory (ROM).R OM i s u su al ly f or th e p er ma ne nt,n o n-vo la ti le s tor a ge o f an a pp lic a ti on s pr og ra m .M an ym i cr oc om pu te rs an d mi cr oc on tr ol le r s a re in t en de d fo r h ig h-v olume a p pl ic at io ns a nd h en ce t he e co nom i ca l ma nu fa ct ure of t he d ev ic es r e qu ir es t ha t the co nt en ts o f the pr og ra m me mo ry b e co mm it te dp e rm an en tl y d ur in g th e m an uf ac tu re o f c hi ps . Cl ear l y, th is im pl iesa ri g or ou s a pp roa c h t o R OM co de d e ve lo pm en t s in ce c ha ng es ca nnotb e m ad e af te r man u f a ct ur e .T hi s d e ve lo pm en t pr oce s s ma y in vo lv e e m ul at io n us in g a s op hi st ic at ed deve lo pm en t sy st em w i th a ha rd wa re e m ul at io n ca pa bil i ty a s we ll a s th e u se of po we rf ul so ft wa re t oo ls.So me m an uf act u re rs p ro vi de ad d it io na l RO M opt i on s byi n cl ud in g i n th ei r r a ng e de vi ce s wi th (or i nt en de d fo r us e with) u s er pr og ra mm ab le m em or y. Th e s im p le st of th es e i s us ua ll y d evice w h ic h ca n op er ate in a m ic ro pr oce s so r mo de b y usi n g so me o f th e i n pu t/ou tp ut li ne s as a n ad dr es s an d da ta b us f or acc e ss in g e xt er na l m e mo ry. T hi s t ype o f d ev ic e c an b e ha ve fu nc ti on al l y a s t he si ng le c h ip mi cr oc om pu te r fr om wh ic h i t i s de ri ve d a lb eit w it h r es tr ic ted I/O an d a mo di fie d e xt er na l ci rcu i t. T he u se o f t h es e RO Ml es sd e vi ce s is c om mo n e ve n in p ro du ct io n c ir cu it s wh er e t he v ol um e does n o t j u st if y th e d e ve lo pm en t co sts of c us to m on-ch i p RO M[2];t he re c a n st il l b e a si g ni fi ca nt s a vi ng in I/O a nd ot he r c hi ps co mp ared t o a c on ve nt io nal mi cr op ro ce ss or b as ed c ir cu it. M o re e xa ctr e pl ac em en t fo r RO M d ev ic es c an b e o bt ai ne d in t he f o rm o f va ri antsw i th 'pi gg y-ba ck'EP RO M(Er as ab le p ro gr am ma bl e ROM)s oc ke ts o rd e vi ce s w it h EP ROM i ns te ad o f R OM 。
Single chip brief introductionThe monolithic integrated circuit said that the monolithic micro controller, it is not completes some logical function the chip, but integrates a computer system to a chip on. Summary speaking: A chip has become a computer. Its volume is small, the quality is light, and the price cheap, for the study, the application and the development has provided the convenient condition. At the same time, the study use monolithic integrated circuit is understands the computer principle and the structure best choice.The monolithic integrated circuit interior also uses with the computer function similar module, for instance CPU, memory, parallel main line, but also has with the hard disk behave identically the memory component7 what is different is its these part performance is opposite our home-use computer weak many, but the price is also low, generally does not surpass 10 Yuan then Made some control electric appliance one kind with it is not the 'very complex work foot, We use now the completely automatic drum washer, the platoon petti-coat pipe: VCD and so on Inside the electrical appliances may see its form! It is mainly takes the control section the core part.It is one kind of online -like real-time control computer, online -like is the scene control, needs to have the strong antijamming ability, the low cost, this is also and the off-line type computer (forinstance home use PC,) main differenceThe monolithic integrated circuit is depending on the procedure, and may revise. Realizes the different function through the different procedure, particularly special unique some functions, this is other component needs to take the very big effort to be able to achieve, some are the flowered big strength is also very difficult to achieve. One is not the very complex function, if develops in the 50s with the US 74 series, or the 60s's CD4000 series these pure hardware do decides, the electric circuit certainly arc a big PCB board ! But if, if succeeded in the 70s with the US puts in the market the series monolithic integrated circuit, the result will have the huge difference. Because only the monolithic integrated circuit compiles through you the procedure may realize the high intelligence, high efficiency, as well as redundant reliabilityThe CPU is the key component of a digital computer. Its purpose is to decode instruction received from memory and perform transfers, arithmetic, logic, and control operations with data stored in internal registers, memory, or I/O interface units. Externally, the CPU provides one or more buses for transferring instructions, data, and control information to and from components connected to it. A microcontroller is present in the keyboard and in the monitor in the generic computer; thus these components are also shaded. In such microcontrollers, the CPU may be quite different from those discussed in this chapter. The word lengths may be short, the numberof registers small, and the instruction sets limited. Performance, relatively speaking, is poor, but adequate for the task. Most important, the cost of these microcontrollers is very low, making their use cost effective.Because the monolithic integrated circuit to the cost is sensitive, therefore present occupies the dominant status the software is the most preliminary assembly language7 it was except the binary machine code above the most preliminary language, since why were such preliminary must use?Why high-level did the language already achieve the visualization programming level not to use? The reason is very simple, is the monolithic integrated circuit docs not have home computer such CPU, and also has not looked like the hard disk such mass memory equipment. Inside even if a visualization higher order language compilation script only then a button, also will achieve several dozens K the sizes! Does not speak anything regarding the home use PC hard disk, but says regarding the monolithic integrated circuit cannot accept. The monolithic integrated circuit in the hardware source aspect's use factor must very Gao Caixing, therefore assembly, although primitive actually massively is using, Same truth, if attains supercomputer's on operating system and the application software home use PC to come up the movement, home use PC could also not withstand.It can be said that the 20th century surmounted three "theelectricity" the time, namely the electrical time, the Electronic Age and already entered computer time. However, this kind of computer, usually refers to the personal computer, is called PC machine. It by the main engine, the keyboard, the monitor and so on is composed. Also has a kind of computer, most people actually not how familiar. This kind of computer is entrusts with the intelligence each kind of mechanical monolithic integrated circuit (also to call micro controller). , This kind of computer's smallest system only has used as the name suggests a piece of integrated circuit, then carries on the simple operation and the control. Because its volume is small, usually hides in is accused the machinery "the belly". It in the entire installment, plays is having like the human brains role, it went wrong, the entire installment paralyzed. Now, this kind of monolithic integrated circuit's use domain already very widespread, like the intelligent measuring appliance, the solid work paid by time control, the communication equipment, the guidance system, the domestic electric appliances and so on, Once each product used the monolithic integrated circuit, could get up causes the effect which the product turned to a new generation, often before product range crown by adjective---- ‘intelligence’, like intelligence washer and so on. Now some factory's technical personnel or other extra-curricular electronic exploiter do certain products, are not the electric circuit are too complex, is the function is too simple, and is imitated extremely easily. Investigates its reason, possibly on card, in theproduct has not used on the monolithic integrated circuit or other programmable logical component.单片机简介单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。
外文翻译英文原文:STM32 MicrocontrollerIntroductionRequirements based STM32 family is designed for high-performance, low-cost, low-power embedded applications designed specifically for ARM Cortex-M3 core. According to the performance into two different series: STM32F103 "Enhanced" series and STM32F101 "Basic" series. Enhanced Series clock frequency of 72MHz, the highest performance of similar products product; basic clock frequency of 36MHz, 16-bit product prices get more than 16 products significantly enhance the performance and is 16 product users the best choice. Both series have built-in 32K to 128K of flash memory, the difference is the maximum capacity of the SRAM and peripheral combinations. At 72MHz, executing from Flash, STM32 power consumption 36mA, are 32 products on the market's lowest power, the equivalent of 0.5mA/MHz.STM32F103 Performance Characteristics1) Kernel. ARM32 bit CPU, the maximum operating frequency of 72MHz,1.25DMIPS/MHz. Single-cycle multiply and hardware divide.2) Memory. Integrated on-chip 32-512KB of Flash memory. 6-64KB SRAMmemory.3) Clock, reset, and power management. 2.0-3.6V power supply and I / O interface, the drive voltage. POR, PDR and programmable voltage detector. 4-16MHz crystal. Embedded factory tuned 8MHz RC oscillator circuit. 40 kHz internal RC oscillator circuit. CPU clock for the PLL. With calibration for the RTC 32kHz crystal.4) Low power consumption. Three kinds of low-power mode. Sleep, stop, standby mode. For RTC and backup registers supply VBAT.5) Debug mode. Serial debugging and JTAG interface.6) Direct data storage. 12-channel direct data storage controller. Supported peripherals: timers, ADC, DAC, SPI, IIC and USART.7) Up to a maximum of 112 fast I / O ports. Depending on the model, there are 26,37,51,80, and 112 I / O ports, all ports can be mapped to 16 external interruptvectors. In addition to the analog input, all of them can accept the input of 5V or less.8) Up to a maximum of 11 timers. Four 16-bit timers, each with 4 IC / OC / PWM or pulse counter. 2 16 6-channel advanced control timer: up to 6 channels can be used for PWM output. 2 watchdog timer. Systick timer: 24 down counter. Two 16-bit basic timer for driving DAC.9) Up to a maximum of 13 communication interfaces. 2 IIC interface. 5 USART interfaces. 3 SPI interface, two and IIS reuse. CAN interface. USB 2.0 full-speed interface. SDIO interface.System Function1) Integration of embedded Flash and SRAM memory ARM Cortex-M3 core. And 8/16 equipment compared, ARM Cortex-M3 32-bit RISC processor provides a higher code efficiency. STM32F103xx microcontrollers with an embedded ARM core, so it can be compatible with all ARM tools and software.2) Embedded Flash memory and RAM memory. Built up to 512KB embedded Flash, can be used to store programs and data. Up to 64KB of embedded SRAM clock speed of the CPU can read and write.3) Variable static memory. Variable static memory with 4 chip selects, supports four modes: Flash, RAM, PSRAM, NOR and NAND. After three FSMC interrupt lines connected to the OR after the nested vector interrupt controller. No read / write FIFO, except PCCARD, the code is executed from external memory is not supported Boot, the target frequency is equal to SYSCLK / 2, so the time when the system clock is 72MHz, 36MHz conducted in accordance with external access.4) Nested Vectored Interrupt Controller. Can handle 43 maskable interrupt channels, providing 16 interrupt priority levels. Tightly coupled nested vectored interrupt controller to achieve lower latency interrupt handling directly passed to the kernel interrupt vector table entry address, tightly coupled nested vectored interrupt controller kernel interface, allowing early treatment interruption, the latter to be more high-priority interrupt processing, support tail chain, auto-save processor state terrupts automatically restored on interrupt exit, no instructions intervention.5) External interrupt / event controller. External interrupt / event controller consists for 19 to generate interrupt / event requests edge detector lines. Each line can be individually configured to select the trigger event, it can be individually masked. There is a pending interrupt request registers to maintain state. When an external line appear longer than the internal APB2 clock-cycle pulse, the external interrupt / eventcontroller is able to detect. Up to 112 GPIO connected to the 16 external interrupt lines.6) Clocks and startup. At boot time or to the system clock selection, but the reset when the internal 8MHz crystal oscillator is selected as the CPU clock. Can choose a 4-16MHz external clock, and will be monitored to determine the success. During this time, the interrupt controller is disabled and the software management is subsequently disabled. Also, if there is a need, PLL clock interrupt management fully available. Comparator can be used more pre-configuration of the AHB frequency, including high-speed and low-speed APB APB, APB highest frequency of high-speed 72MHz, low-speed APB highest frequency of 36MHz.Architectural AdvantagesIn addition to the new features Enhanced peripheral interfaces, STM32 series also interconnect with other STM32 microcontrollers offer the same standard interface, such sharing of peripherals to enhance the entire product family, application flexibility, so that developers can a plurality of design reuse the same software. New STM32 standard peripherals include 10 timers, two 12-bit ADC, two 12-bit DAC, two I2C interfaces, five USART interfaces and three SPI ports. There are 12 new products peripherals direct data storage channel, there is a CRC calculation unit, like other STM32 microcontrollers, the supports 96 unique identifier.New series also has followed the STM32 microcontroller family of products low voltage and energy saving are two advantages. 2.0V to 3.6V operating voltage range compatible with the mainstream of battery technologies such as lithium batteries and nickel-metal hydride batteries, the package also features a battery operation mode dedicated pin Vbat. 72MHz frequency to execute code from flash consumes only 27mA current. There are four low-power mode, the current consumption can be reduced to two microamps. Quick Start from low power mode to save energy too; starting circuit using STM32 internally generated 8MHz signal, the microcontroller from stop mode when you wake up with less than 6 microseconds.中文翻译:单片机STM321 STM32的介绍STM32系列基于专为要求高性能、低成本、低功耗的嵌入式应用专门设计的ARM Cortex-M3内核。
单片机的外文文献及中文翻译一、外文文献Title: The Application and Development of SingleChip Microcontrollers in Modern ElectronicsSinglechip microcontrollers have become an indispensable part of modern electronic systems They are small, yet powerful integrated circuits that combine a microprocessor core, memory, and input/output peripherals on a single chip These devices offer significant advantages in terms of cost, size, and power consumption, making them ideal for a wide range of applicationsThe history of singlechip microcontrollers can be traced back to the 1970s when the first microcontrollers were developed Since then, they have undergone significant advancements in technology and performance Today, singlechip microcontrollers are available in a wide variety of architectures and capabilities, ranging from simple 8-bit devices to complex 32-bit and 64-bit systemsOne of the key features of singlechip microcontrollers is their programmability They can be programmed using various languages such as C, Assembly, and Python This flexibility allows developers to customize the functionality of the microcontroller to meet the specific requirements of their applications For example, in embedded systems for automotive, industrial control, and consumer electronics, singlechip microcontrollers can be programmed to control sensors, actuators, and communication interfacesAnother important aspect of singlechip microcontrollers is their low power consumption This is crucial in batterypowered devices and portable electronics where energy efficiency is of paramount importance Modern singlechip microcontrollers incorporate advanced power management techniques to minimize power consumption while maintaining optimal performanceIn addition to their use in traditional electronics, singlechip microcontrollers are also playing a significant role in the emerging fields of the Internet of Things (IoT) and wearable technology In IoT applications, they can be used to collect and process data from various sensors and communicate it wirelessly to a central server Wearable devices such as smartwatches and fitness trackers rely on singlechip microcontrollers to monitor vital signs and perform other functionsHowever, the design and development of systems using singlechip microcontrollers also present certain challenges Issues such as realtime performance, memory management, and software reliability need to be carefully addressed to ensure the successful implementation of the applications Moreover, the rapid evolution of technology requires developers to constantly update their knowledge and skills to keep up with the latest advancements in singlechip microcontroller technologyIn conclusion, singlechip microcontrollers have revolutionized the field of electronics and continue to play a vital role in driving technological innovation Their versatility, low cost, and small form factor make them an attractive choice for a wide range of applications, and their importance is expected to grow further in the years to come二、中文翻译标题:单片机在现代电子领域的应用与发展单片机已成为现代电子系统中不可或缺的一部分。
单片机外文翻译MICROCONTROLLER1.MCUA microcontroller (or MCU) is a computer-on-a-chip. It is a type of microprocessor emphasizing self-sufficiency and cost-effectiveness, in contrast to a general-purpose microprocessor (the kind used in a PC).The majority of computer systems in use today are embedded in other machinery, such as telephones, clocks, appliances, vehicles, and infrastructure. An embedded system usually has minimal requirements for memory and program length and may require simple but unusualinput/output systems. For example, most embedded systems lack keyboards, screens, disks, printers, or other recognizable I/O devices of apersonal computer. They may control electric motors, relays or voltages, and read switches, variable resistors or other electronic devices. Often, the only I/O device readable by a human is a single light-emitting diode, and severe cost or power constraints can even eliminate that.In contrast to general-purpose CPUs, microcontrollers do not have an address bus or a data bus, because they integrate all the RAM and non-volatile memory on the same chip as the CPU. Because they need fewer pins, the chip can be placed in a much smaller, cheaper package.Integrating the memory and other peripherals on a single chip and testing them as a unit increases the cost of that chip, but oftenresults in decreased net cost of the embedded system as a whole. (Evenif the cost of a CPU that has integrated peripherals is slightly more than the cost of a CPU + external peripherals, having fewer chips typically allows a smaller and cheaper circuit board, and reduces the labor required to assemble and test the circuit board). This trend leads to design.A microcontroller is a single integrated circuit, commonly with the following features: central processing unit - ranging from small and simple 4-bit processors to sophisticated 32- or 64-bit processors input/output interfaces such as serial ports (UARTs)other serial communications interfaces like I?C, Serial Peripheral Interface and Controller Area Network for system interconnect peripherals such as timers and watchdog RAM for data storage ROM, EPROM, EEPROM or Flash memory forprogram storage clock generator - often an oscillator for a quartz timing crystal, resonator or RC circuit many include analog-to-digital converters .This integration drastically reduces the number of chips and the amount of wiring and PCB space that would be needed to produce equivalent systems using separate chips and have proved to be highly popular in embedded systems since their introduction in the 1970s.Some microcontrollers can afford to use a Harvard architecture: separate memory buses for instructions and data, allowing accesses to take place concurrently.The decision of which peripheral to integrate is often difficult. The Microcontroller vendors often trade operatingfrequencies and system design flexibility against time-to-market requirements from their customers and overall lower system cost. Manufacturers have to balance the need to minimize the chip size against additional functionality.Microcontroller architectures are available from many different vendors in so many varieties that each instruction set architecture could rightly belong to a category of their own. Chief among these are the 8051, Z80 and ARM derivatives.[citation needed]A microcontroller (also MCU or µC) is a functional computer system-on-a-chip. It contains a processor core, memory, and programmableinput/output peripherals. Microcontrollers include an integrated CPU, memory (a small amount of RAM, program memory, or both) and peripherals capable of input and output.It emphasizes high integration, in contrast to a microprocessorwhich only contains a CPU (the kind used in a PC). In addition to the usual arithmetic and logic elements of a general purpose microprocessor, the microcontroller integrates additional elements such as read-write memory for data storage, read-only memory for program storage, Flash memory for permanent data storage, peripherals, and input/output interfaces. At clock speeds of as little as 32KHz, microcontrollers often operate at very low speed compared to microprocessors, but this is adequate for typical applications. They consume relatively little power (milliwatts or even microwatts), and will generally have the ability toretain functionality while waiting for an event such as a button pressor interrupt. Power consumption while sleeping(CPU clock and peripherals disabled) may be just nanowatts, making them ideal for low power and long lasting battery applications.Microcontrollers are used in automatically controlled products and devices, such as automobile engine control systems, remote controls, office machines, appliances, power tools, and toys. By reducing the size, cost, and power consumption compared to a design using a separate microprocessor, memory, and input/output devices, microcontrollers make it economical to electronically control many more processes.The majority of computer systems in use today are embedded in other machinery, such as automobiles, telephones, appliances, and peripherals for computer systems. These are called embedded systems. While some embedded systems are very sophisticated, many have minimal requirements for memory and program length, with no operating system, and lowsoftware complexity. Typical input and output devices include switches, relays, solenoids, LEDs, small or custom LCD displays, radio frequency devices, and sensors for data such as temperature, humidity, light level etc. Embedded systems usually have no keyboard, screen, disks, printers, or other recognizable I/O devices of a personal computer, and may lack human interaction devices of any kind.It is mandatory that microcontrollers provide real time response to events in the embedded system they are controlling. When certain events occur, an interrupt system can signal the processor to suspendprocessing the current instruction sequence and to begin an interrupt service routine (ISR). The ISR will perform any processing required based on the source of the interrupt before returning to the original instruction sequence. Possible interrupt sources are device dependent, and often include events such as an internal timer overflow, completing an analog to digital conversion, a logic level change on an input such as from a button being pressed, and data received on a communication link. Where power consumption is important as in battery operated devices, interrupts may also wake a microcontroller from a low power sleep state where the processor is halted until required to do something by a peripheral event.Microcontroller programs must fit in the available on-chip program memory, since it would be costly to provide a system with external, expandable, memory.Compilers and assembly language are used to turn high-level language programs into a compact machine code for storage in themicrocontroller's memory. Depending on the device, the program memory may be permanent, read-only memory that can only be programmed at the factory, or program memory may be field-alterable flash or erasableread-only memory.Since embedded processors are usually used to control devices, they sometimes need to accept input from the device they are controlling. This is the purpose of the analog to digital converter. Since processors are built to interpret and process digital data, i.e. 1s and 0s, theywon't be able to do anything with the analog signals that may be being sent to it by a device. So the analog to digital converter is used to convert the incoming data into a form that the processor can recognize. There is also a digital to analog converter that allows the processor to send data to the device it is controlling.In addition to the converters, many embedded microprocessors includea variety of timers as well. One of the most common types of timers isthe Programmable Interval Timer, or PIT for short. A PIT just countsdown from some value to zero. Once it reaches zero, it sends aninterrupt to the processor indicating that it has finished counting.This is useful for devices such as thermostats, which periodically test the temperature around them to see if they need to turn the airconditioner on, the heater on, etc.Time Processing Unit or TPU for short. Is essentially just another timer, but more sophisticated. In addition to counting down, the TPU can detect input events, generate output events, and other useful operations.Dedicated Pulse Width Modulation (PWM) block makes it possible forthe CPU to control power converters, resistive loads, motors, etc., without using lots of CPU resources in tight timer loops.Universal Asynchronous Receiver/Transmitter (UART) block makes it possible to receive and transmit data over a serial line with verylittle load on the CPU.For those wanting ethernet one can use an external chip like Crystal Semiconductor CS8900A, Realtek RTL8019, or Microchip ENC 28J60. All of them allow easy interfacing with low pin count.中文翻译:1.单片机单片机即单片微型计算机,是将中央处理器、存储器、定时/计数器、输入输出接口集成在一块集成电路芯片上的微型计算机。