β-葡聚糖酶
- 格式:pptx
- 大小:688.90 KB
- 文档页数:13
β-葡聚糖酶活性测定β-葡聚糖是由葡萄糖单体通过β-1,3和β-1,4糖苷键连接而成的D型葡萄糖聚合物,它主要存在于单子叶禾本科谷实中的糊粉层和胚乳细胞壁中。
β-葡聚糖酶属于水解酶类,能有效地降解β-葡聚糖分子中的β-1,3和β-1,4糖苷键,使之降解为小分子。
由于在饲料中,大麦的β-葡聚糖含量较高,难以被单胃动物消化利用,而且对饲料中各种养分的消化利用具有明显的干扰和抑制作用,成为麦类饲料中的抗营养因子。
在饲料中添加β-葡聚糖酶,能有效地消除β-葡聚糖的抗营养作用,促进饲料中各种养分的消化和吸收利用,增进畜禽健康。
在啤酒生产中,添加β-葡聚糖酶可以加快麦汁和啤酒的过滤速度、提高麦汁得率、增加可发酵糖的含量。
此外,β-葡聚糖酶在造纸工业、日化工业等其它许多方面也有着广泛的应用,对β-葡聚糖酶的研究将越来越受到人们的重视。
β-葡聚糖酶活力的测定方法主要有3种:还原糖测定法(分光光度法)、粘度测定法和底物染色法。
其中还原糖测定法简便实用,比较准确,而且结果重复性好,是广泛使用的一种酶活测定方法。
其原理是:β-葡聚糖酶能将β-葡聚糖降解成寡糖和单糖,其具有的还原基团在沸水浴条件下可与DNS试剂发生显色反应,显色的深浅与还原糖量成正比,而还原糖的生成量又与反应液中β-葡聚糖酶的活力成正比,因此,可以利用比色测定反应液的吸光度值来计算还原糖的生成量,从而得出β-葡聚糖酶的活力。
但在该测定方法的具体操作中存在一些影响酶活力测定结果的因素,本文即对还原糖法测定β-葡聚糖酶活力的几个重要影响因素进行研究,并得出最佳测定条件。
1 材料与方法1.1 菌株与培养基1.1.1 发酵产酶菌株黑曲霉(Aspergillus niger)A47菌株,由本实验室保藏。
1.1.2 固态发酵培养基麸皮70 g、米糠27 g、NH4NO3 2.95 g、微量元素液0.05 ml、蒸馏水100ml,pH值5.0,121 ℃灭菌20 min。
贝塔葡聚糖提取全文共四篇示例,供读者参考第一篇示例:贝塔葡聚糖是一种天然多糖,广泛存在于海藻、菌类和植物细胞壁中。
它具有多种生物活性,如抗炎、抗氧化、抗肿瘤等,因此受到了越来越多的关注。
贝塔葡聚糖的提取方法有很多种,其中以酶法和酸碱法为主要方法。
本文将介绍贝塔葡聚糖的基本信息、提取方法以及在医药、食品和化妆品等领域的应用。
一、贝塔葡聚糖的基本信息贝塔葡聚糖(Beta-glucan)是一种异聚体,由β-D-葡萄糖单元通过1,3和1,4的糖苷键连接而成。
它主要存在于植物细胞壁、真菌、酵母和海藻等中,并且具有多种结构和性质。
根据β-葡聚糖分子链中1,3和1,4键的数量和排列方式的不同,可以分成不同种类,如线型β-葡聚糖、支链β-葡聚糖等。
贝塔葡聚糖具有多种生物活性,包括免疫调节、抗氧化、抗肿瘤、降血脂、降血糖等。
其中最为突出的是其免疫调节作用,能够增强机体的免疫力,抗病毒、抗菌和抗炎等。
贝塔葡聚糖被广泛应用于医药、食品、化妆品等领域。
二、贝塔葡聚糖的提取方法1. 酶法提取:酶法是目前贝塔葡聚糖提取的主要方法之一。
主要步骤包括原料处理、酶解、分离和纯化等。
首先将含有贝塔葡聚糖的原料(如海藻、菌类等)进行粉碎和提取,然后加入适量的酶(如纤维素酶)进行酶解,使贝塔葡聚糖释放出来。
接着通过分离和纯化步骤获得纯净的贝塔葡聚糖。
2. 酸碱法提取:酸碱法是另一种常用的贝塔葡聚糖提取方法。
该方法主要是利用酸碱对贝塔葡聚糖原料进行溶解和分离。
首先将原料进行预处理,然后通过酸碱处理使贝塔葡聚糖溶解到溶液中,再通过沉淀、洗涤等步骤得到纯净的贝塔葡聚糖。
以上两种提取方法各有优缺点,选择适合的提取方法取决于原料的性质、成本和对产品纯度的要求等因素。
1. 医药领域:贝塔葡聚糖在医药领域有着广泛的应用。
其免疫调节、抗炎、抗氧化等生物活性使其成为一种重要的免疫增强剂和抗肿瘤药物。
近年来,贝塔葡聚糖也被发现对心血管疾病、糖尿病、肥胖等具有一定的预防和治疗效果,因此备受关注。
β-葡聚糖酶的特性、功能及应用研究何玮璇张永亮(华南农业大学动物科学学院,广东广州610642)[中图分类号]S816.7[文献标识码]C[文章编号]1005-8613(2010)08-0019-03广东饲料第19卷第8期2010年8月β-葡聚糖是一类非淀粉性多糖(NSP ),作为谷物类植物细胞壁成分之一,在大麦、燕麦、小麦等胚乳细胞壁中含量尤为丰富。
因畜禽体内缺乏分解β-葡聚糖的酶,β-葡聚糖在消化道中吸水膨胀变得黏连等性质,使其成为限制麦类饲料营养成分有效利用的主要抗营养因子。
研究表明,饲料中添加β-葡聚糖酶可消除β-葡聚糖的抗营养作用,因此对β-葡聚糖酶特性及其应用的研究一直受到人们广泛关注,本文介绍了β-葡聚糖酶的特性与功能、研究与应用等方面,并对其应用前景和方向作了展望。
1β-葡聚糖酶的功能与特性1.1β-葡聚糖酶的种类及功能β-葡聚糖酶按来源可分为植物性β-葡聚糖酶和微生物性β-葡聚糖酶,后者又可再分为细菌性β-葡聚糖酶和真菌性β-葡聚糖酶,人和畜禽体内缺乏β-葡聚糖酶。
现在人们主要从细菌如枯草芽孢杆菌或真菌如黑曲霉、木霉等微生物中提取β-葡聚糖酶。
根据酶作用底物糖苷键的类型和机制,可将β-葡聚糖酶分为纤维素酶、昆布多糖酶、内切β-1,3-葡聚糖酶等,其名称与功能如表1所示。
其中因β-1,3-1,4-葡聚糖在和燕麦等胚乳细胞壁中含量达70%左右,习惯上人们把1,3-1,4-β-葡聚糖称为β-葡聚糖,把相应的β-1,3-1,4-葡聚糖酶称为β-葡聚糖酶。
[收稿日期]2010-7-05编码(EC )习惯名系统名功能3.2.1.4纤维素酶1,4-(1,3;1,4)-β-D 葡聚糖-4葡聚糖水解酶内切纤维素和含有1,3、1,4糖苷键的β-D-葡聚糖的1,4糖苷键3.2.1.6昆布多糖酶1,4-(1,3;1,4)-β-D 葡聚糖-3(4)葡聚糖水解酶当葡萄糖残基的还原基团参与的糖苷键在其C(3)位被取代时,该酶水解葡萄糖残基的另一1,3或1,4-β糖苷键3.2.1.21β-葡萄糖苷酶(纤维二糖酶)β-D 葡萄糖苷葡萄糖水解酶水解β-D-糖苷的非还原性末端,释放出β-D-葡萄糖3.2.1.39内切1,3-β葡聚糖酶1,3-β-D-葡聚糖葡聚糖水解酶内切1,3-β葡聚糖中的β-1,3糖苷键3.2.1.58外切1,3-β葡聚糖酶1,3-β-D-葡聚糖葡聚糖水解酶外切1,3β葡聚糖,释放出葡萄糖3.2.1.71内切1,2-β葡聚糖酶1,2-β-D-葡聚糖葡聚糖水解酶内切1,2-β葡聚糖中的β-1,2糖苷键3.2.1.73地衣多糖酶(1,3,-1,4-β-葡聚糖酶)1,3-1,4-β-D-葡萄糖4-葡聚糖水解酶内切1,3-1,4-β-D-葡萄糖中的1,4糖苷键3.2.1.74外切1,4-β葡聚糖酶1,4-β-D-葡聚糖葡聚糖水解酶从纤维素的非还原性末端切下葡萄糖3.2.1.75内切1,6-β葡聚糖酶1,6-β-D-葡聚糖葡聚糖水解酶内切1,6-β-葡聚糖3.2.1.91外切β-1,4-葡聚糖纤维二糖水解酶β-1,4-葡聚糖纤维二糖水解酶逐个切下纤维素非还原性末端的纤维二糖残基注:参考Pitson et a1.(1993)表1β-葡聚糖水解酶的名称及功能19··1.2β-葡聚糖酶的分子结构不同种类的β-葡聚糖酶结构差异很大,如植物来源和细菌来源的β-葡聚糖酶无论是氨基酸排列还是三维空间结构上基本没有相似性。
配合饲料中β-葡聚糖酶酶的加工及检测由于β-葡聚糖酶制剂的商品化生产,使得大麦可作为饲料原料添加到家禽日粮中,并且不会因高β-葡聚糖水平而降低家禽的生产性能及产生粘性粪便(Campbell和Bedford,1992)。
目前,β-葡聚糖酶已广泛用于世界大麦产区。
不过,有关热处理对添加到饲料中β-葡聚糖酶影响的研究报道仍然有限。
Eeckhout 等(1995)对在50~95摄氏度下调质和在72~91摄氏度下制粒的商品仔猪料中的β-葡聚糖酶活性进行了测定。
结果表明,即使在最低温度下,饲料中的β-葡聚糖酶活性在加工后亦丧失40%,而在最高温度下,仅保存7%的活性,并且2/3的活性是在调质期间丧失的。
另一方面,Esteve-Garcia等(1997)发现,添加到肉仔鸡料中的β-葡聚糖酶经过接近80摄氏度的调质与制粒温度仍能保留大部分的活性。
其所使用的酶被制成微细颗粒。
这表明,β-葡聚糖酶可以稳定的形态添加到饲料中。
至少有2个试验对肉用雏鸡在饲喂经热处理的酶补充日粮后的生产性能进行了测定。
McCracken等(1993)在大麦基础日粮中添加了一种稳定形态的商品酶混合物,其中含有β-葡聚糖酶和木聚糖酶活性,日粮在制粒前于85摄氏度温度下加热15分钟。
结果表明,日粮在未补充外源性酶的情况下进行热处理,使饲料营养物质的表观消化率降低、肉用雏鸡肠道内容物的粘度增加及粪便干物质含量减少;但在补充外源性酶的情况下进行热处理,则提高了饲料营养物质的消化率,并消除了热处理引起的不利效应。
这充分说明,酶在85摄氏度温度下仍保持活性。
Vukic-Vranjes等(1994)测定了两种日粮中添加商品酶混合物的效应,其中一种日粮含有20%的大麦。
该酶混合物含有β-葡聚糖酶、木聚糖酶、淀粉酶和果胶酶活性。
这两种日粮在70~75摄氏度下调质,在110~120摄氏度下制粒或挤压膨化。
与制粒相比,挤压膨化对雏鸡生产性能产生不利影响。
同时,挤压膨化还使饲料的体外粘度增加,这表明高温使饲料中非淀粉类多糖的溶解度增加。
β-葡聚糖酶活力测定方法(NY/T911-2004)∙ 1.原理β-葡聚糖酶能将木聚糖降解成还原性糖。
还原性糖在沸水浴条件下可以与3,5-二硝基水杨酸(DNS)试剂反应显色反应。
反应液颜色的深度与酶解产生的还原糖量成正比,而还原糖的生成量又与反应液中β-葡聚糖酶的活力成正比。
因此,通过分光比色测定反应液颜色的强度,可以计算反应液中β-葡聚糖酶的活力。
∙ 2. 操作∙ 2.1.标准葡萄糖曲线的制作2.1.1 吸取PH5.5的0.1M乙酸-乙酸钠+缓冲溶液4.0mL,加入DNS试剂5.0mL,沸水浴加热5min。
用自来水冷却至室温,用水定容至25.0mL,制成标准空白样。
2.1.2 分别吸取葡萄糖溶液1.00mL、2.00mL、3.00mL、4.00mL、5.00mL、6.00mL和7.00mL,分别用PH5.5的0.1M醋酸缓冲溶液定容至100mL,配制成浓度为0.10mg/mL、0.20mg/mL、0.30mg/mL、0.40mg/mL、0.50mg、0.60mg/mL和0.70mg/mL葡萄糖标准溶液。
2.1.3 分别取上述浓度系列的葡萄糖标准溶液各2.00mL(做两个平行),分别加入到刻度试管中,再分别加入2.0mL缓冲液94.4)和5.0mLDNS试剂。
电磁振荡3s-5s,沸水浴加热5min。
然后用自来水冷却到室温,在用水定溶液至25mL。
以标准空白为对照调零,在540min处测定吸光度A值。
以葡萄糖糖浓度为Y轴、吸光度A值为X轴,绘制标准曲线。
每次新配制DNS试剂均需要重新绘制标准曲线∙ 3. 酶样测定吸取10.0mLβ-葡聚糖溶液,37℃平衡20min。
吸取10.0经过适当稀释的酶液,37℃平衡10min。
∙吸取2.00mL经过适当稀释的酶液(已经过37℃平衡),加入到刻度试管中,再加入5mLDNS试剂,电磁振荡3s-5s。
然后加入8.0g/lβ-葡聚糖溶液2.0ml,37℃保温30min,沸水浴加热5min。
β-1,3-葡聚糖和酶的应用Wuhuan120130178摘要:β-1,3-葡聚糖是由β-1,3-葡萄糖苷键聚合而成的高分子化合物,具有三股(超)螺旋结构,使其具有较强的生物活性。
β-1,3-葡聚糖是源于天然的原料,无毒性、无刺激性。
若将改产品应用于保健用品领域,未来市场前景将十分广阔。
β-1,3-葡聚糖酶可以将β-1,3-葡聚糖随机分解成为糊精或寡聚糖化合物的水解酶,在植物的发育和抗病中起到了很重要的作用,另外还可以很好的应用于食品、酿造、饲料和日化等工业方面,具有非常大的经济价值。
本文主要从β-1,3-葡聚糖和酶的生物结构特性出发,研究其作用机理和应用领域,以及β-1,3-葡聚糖和酶的发展前景。
关键词:β-1,3-葡聚糖;酶;机理;应用1.引言β-1,3-葡聚糖(glucan)是一类广泛存在于微生物(细菌、真菌、藻类、地衣)、植物乃至动物体内的大分子多糖,在酵母等真菌细胞壁中的质量分数较高可达20%~25%细胞干质量,其中85%左右为β-1,3-葡聚糖[1]。
β-1,3-葡聚糖具有能增强免疫调节、抗肿瘤调节血糖平衡和降低胆固醇、促进肠道益生菌增殖,预防肠癌、改善皮肤外观和祛除皱纹等生物活性,是一种良好的生物效应调节剂。
已获准上市的有香菇多糖(lentinan)、裂桐菌多搪(schizo-phyllan)等,对肿瘤、感染等疾病具有重要的治疗作用。
β-1,3-葡聚糖酶是一种可以将β-1,3-葡聚糖催化为葡萄糖等小分子化合物的水解酶,β-1,3-葡聚糖酶参与植物的多种生长发育过程,在植物抗病过程中扮演着重要角色β-1,3-葡聚糖酶可直接攻击真菌菌丝上的葡聚糖,抑制真菌的生长[2]。
此外,β-1,3-葡聚糖酶还可应用啤酒工业中,使啤酒和葡萄酒的澄清,在畜禽生产的饲料中增加禽畜的采食量等方面,具有极高的应用价值。
随着生物技术的迅猛发展。
具有生防价值的β-1,3-葡聚糖酶以及其转基因的研究也受到了广泛的重视并取得了较大的进展。
葡聚糖内-1,3-β-葡糖酶葡聚糖是一种多糖,由许多β-葡萄糖分子组合而成。
这种多糖在自然界广泛分布,包括植物、真菌、细菌和动物中。
葡聚糖在这些生物中具有多种重要功能,如提供结构支持、膜层保护、细胞间信号传递和免疫应答等。
葡聚糖内-1,3-β-葡糖酶(PG)是一种能够降解葡聚糖的酶类。
它可以催化葡聚糖的水解反应,将其分解成低聚糖和单糖。
目前,许多真菌中的PG已被分离和鉴定,其中以酵母菌的PG最为广泛研究。
PG对于细胞生长和分化、细胞壁合成和重组、藻类和真菌的招募、植物抵御病原菌的作用等有重要影响。
PG的生物学功能也被广泛研究和应用于医药和农业领域。
近年来,PG的研究是一个非常热门的课题。
研究人员通过分子生物学和基因工程技术得到了大量的PG基因序列。
同时,PG的表达也受到广泛关注,特别是在微生物发酵、细胞壁结构和医药领域。
在微生物发酵中,PG可以通过控制其基因表达来产生大量低聚糖和单糖。
这些产物对某些工业生产和食品添加剂有广泛的应用,比如说肉制品和面包。
在真菌和植物内,PG对于细胞壁合成和重组起着重要作用。
在细胞壁合成中,PG可以加速和协调细胞壁的合成。
在细胞壁重组中,PG的表达可以加快细胞壁的降解和合成,使细胞获得更好的结构和保护。
在医药领域,PG被广泛研究,用于治疗某些疾病。
例如,PG可以作为免疫调节剂,增强宿主对病原菌的抵御能力。
它也可以用作抗肿瘤药物,破坏肿瘤细胞壁,促进细胞凋亡。
总之,PG在生物界中是起着重要作用的酶类。
它拥有丰富的生物学功能和广泛的应用价值。
我们期待在未来的研究中能够更深入地了解PG的作用机制,扩大它的应用范围,并进一步应用于医药和农业领域。
植物β-1,3-葡聚糖酶的研究进展β-1,3-葡聚糖酶参与了植物的多种生长发育过程,包括细胞分裂、小孢子发生、花粉萌发、育性、韧皮部胼胝质去除、受精、种子萌芽及植物生长调控等过程。
20世纪70年代以前,对β-1,3-葡聚糖酶的研究主要集中于它对植物本身不同发育阶段的作用,随着分子生物学技术在植物抗病基因工程中的逐步应用,β-1,3-葡聚糖酶基因的抗病研究取得了快速发展。
目前,β-1,3-葡聚糖酶基因在植物抗病基因工程研究中已被认为是最具吸引力的基因之一。
1 β-1,3-葡聚糖酶基本生物学特性和分类已知的β-1,3-葡聚糖酶均属于糖基水解酶第十七家族,其成员具有共同的氨基酸序列结构:(LIVM)一x一(LIVM-FVW)3一(STAG)-E-(ST)-G- W-P-(Srr)-X-G.(Lan等,1998),β-1,3-葡聚糖酶分为外切酶和内切酶,目前主要研究的是内切酶。
它的分子量为32-37kD,等电点从酸性到碱性。
它的作用底物为以β-1,3-苷键连接起来的多聚糖,以随机作用方式将多聚糖分解成为糊精或寡聚糖。
各种类型的β-1,3-葡聚糖酶已从多种植物中分离出来。
根据其等电点、定位、mRNA表达模式及序列的同源性等特点可将其分为四种不同类型。
I类葡聚糖酶为碱性,主要存在于液泡中,体外具较强抑菌活性。
碱性β-1,3-葡聚糖酶通常具有1个液泡定位的羧基末端多肽(carboxyl terminal polypetide,CTPP)结构,CTPP中往往含有糖基化位点即CTPP切除信号氨基酸结构, CTPP的缺乏使得β-l,3-葡聚糖酶分泌到胞外,因此,CTPP存在与否成为β-1,3-葡聚糖酶分类的重要依据。
现已分离出三种编码I类葡聚糖酶的cDNA,它的前体蛋白含有N一端信号肽及C一端液泡导向肽序列。
在根及老叶中组成型表达.占可溶性蛋白的5%-10%,且主要分布在叶的表皮细胞层中。
受病源菌、乙烯、水杨酸、伤口、UV等因素诱导,但被auxin /cytokine所抑制,并受发育的调节。