实验一(模拟调制系统调制及解调模拟)
- 格式:docx
- 大小:1.88 MB
- 文档页数:29
现代通信系统第三版课程设计1. 项目概述本课程设计基于《现代通信系统》(第三版)一书,目的是通过实践的方式深入理解课本所涉及的各种通信系统技术,培养学生的实际操作能力和解决问题的能力。
本课程设计包含以下三个部分:1.模拟调制与解调技术实验2.数字调制与解调技术实验3.信道编码与译码实验2. 实验设备2.1 模拟调制与解调技术实验设备•信号发生器•功率放大器•带通滤波器•相移电路•同步解调电路•示波器2.2 数字调制与解调技术实验设备•数字信号发生器•数字信号处理器•有限冲激响应(FIR)滤波器•频率域均衡器•同步解调器•示波器2.3 信道编码与译码实验设备•卷积码编译解码器•RS码编码解码器•码间隔交织器•示波器3. 实验内容3.1 模拟调制与解调技术实验3.1.1 实验一(模拟调制)使用信号发生器产生一个理想低频信号,通过功率放大器和带通滤波器对其进行一定程度的放大和限带,然后将其输入到相移电路中进行调制,得到调制信号后可以使用示波器观察两个信号的波形。
3.1.2 实验二(模拟解调)将调制信号通过同步解调电路后进行解调,并用示波器观察解调后得到的信号波形是否与原信号一致。
3.2 数字调制与解调技术实验3.2.1 实验三(PSK调制)使用数字信号发生器产生一个二进制比特流,通过FIR滤波器和频率域均衡器处理后进行PSK调制,观察调制信号波形。
3.2.2 实验四(PSK解调)将调制信号通过同步解调电路解调,观察解调后得到的信号波形是否正确。
3.3 信道编码与译码实验3.3.1 实验五(卷积码编解码)使用卷积码编码器对一串输入比特流进行编码,并通过噪声信道将编码后的信号传输。
接收端使用相同的卷积码进行解码,并观察比特错误率(BER)与信噪比(SNR)之间的关系。
3.3.2 实验六(RS码编解码)使用RS码进行编码和解码,观察RS码的纠错性能。
3.3.3 实验七(码间隔交织)使用码间隔交织器对一串输入比特流进行交织,使得相邻的比特尽可能被分离,降低误码率。
实验一:模拟调制系统调制及解调模拟实验要求:1、 学生按照实验指导报告独立完成相关实验的内容;2、 上机实验后撰写实验报告,记录下自己的实验过程,记录实验心得。
3、 以电子形式在规定日期提交实验报告。
实验指导一、线性调幅1. 普通调幅原理介绍: 普通调幅即:AM 幅度调制 ,常规双边带幅度调制(Double-SideBand Modulation Passband)其中输入信号是u(t),输出信号是y(t),y(t)是个实信号,若u(t)=0cos u t Ω,则有0()(())cos(2)()(cos())cos(2)c c c a c a cy t u t U f t y t U m t f t u m U απθαπθ=++=+Ω+=① 其中,α是输入信号的偏移,c f 是载波频率,θ是初始相位(设θ=0),c U 是载波幅度,a m 是调制指数。
传输载波时,α=1;不传输载波时,α=0。
()(1cos )cos ()cos cos()cos()22c a c a a c c c c y t U m t t m my t U t t t ωωωω=+Ω=++Ω+-Ω ② 由②得出,幅度调制的结果含有:载波c ω、上边带()c ω+Ω、下边带()c ω-Ω的成分,双边带幅度调制的输出包含了载频高端和低端的频率成分。
参数说明:DSB AM Modulator Passband(双边带频带幅度调制器)的主要参数DSB AM Demodulator Passband(双边带频带幅度解调器)的主要参数系统仿真框图:本例中信源是一个幅度为0.7,频率为8HZ的正弦信号。
各模块的参数设置:结果显示:AM幅度调制后信号的频域图:(可见载频两旁的边带成分)AM幅度调制后信号的时域图:系统仿真中示波器的波形图:(分别为调解波形、原始波形和调制波形)2.双边带调制原理介绍:即:双边带抑制载波幅度调制,为了提高调制效率,在双边带幅度调制的基础上抑制掉载波分量,使总功率全部包含在双边带中,这样就形成了双边带抑制载波幅度调制。
一、实验目的通过本次实验,加深对通信技术基础理论知识的理解,掌握通信系统基本原理,提高实际操作能力,培养团队协作精神。
二、实验背景通信技术是现代社会发展的重要基础,涉及信息传输、交换和处理等多个方面。
通信技术基础课程主要介绍了通信系统的基本原理、通信方式、传输介质、信道编码与调制等技术。
本次实验旨在让学生通过实际操作,加深对通信技术基础理论知识的理解。
三、实验内容1. 实验一:模拟通信系统(1)实验目的:了解模拟通信系统的基本原理,掌握模拟信号调制和解调方法。
(2)实验步骤:1)搭建模拟通信系统实验平台;2)发送端调制信号;3)接收端解调信号;4)观察解调信号与发送信号的波形对比。
2. 实验二:数字通信系统(1)实验目的:了解数字通信系统的基本原理,掌握数字信号调制和解调方法。
(2)实验步骤:1)搭建数字通信系统实验平台;2)发送端调制数字信号;3)接收端解调数字信号;4)观察解调信号与发送信号的波形对比。
3. 实验三:信道编码与调制(1)实验目的:了解信道编码与调制的基本原理,掌握信道编码与调制方法。
(2)实验步骤:1)搭建信道编码与调制实验平台;2)进行信道编码与调制操作;3)观察编码与调制后的信号波形;4)分析信道编码与调制效果。
四、实验结果与分析1. 实验一:模拟通信系统实验结果表明,模拟通信系统在调制和解调过程中,信号波形发生了一定的变化。
调制后的信号与原始信号相比,具有更高的频带利用率,但易受噪声干扰。
解调后的信号与调制信号相比,存在一定的误差,这是由于调制和解调过程中的非线性失真所导致的。
2. 实验二:数字通信系统实验结果表明,数字通信系统在调制和解调过程中,信号波形发生了一定的变化。
调制后的信号与原始信号相比,具有更高的频带利用率,且抗干扰能力强。
解调后的信号与调制信号相比,误差较小,这是由于数字通信系统采用信道编码技术,提高了信号的抗干扰能力。
3. 实验三:信道编码与调制实验结果表明,信道编码与调制技术在提高信号抗干扰能力方面具有显著效果。
基于Matlab的模拟调制与解调(开放实验)一、实验目的(一)了解AM、DSB和SSB 三种模拟调制与解调的基本原理(二)掌握使用Matlab进行AM调制解调的方法1、学会运用MATLAB对基带信号进行AM调制2、学会运用MATLAB对AM调制信号进行相干解调3、学会运用MATLAB对AM调制信号进行非相干解调(包络检波)(三)掌握使用Matlab进行DSB调制解调的方法1、学会运用MATLAB对基带信号进行DSB调制2、学会运用MATLAB对DSB调制信号进行相干解调(四)掌握使用Matlab进行SSB调制解调的方法1、学会运用MATLAB对基带信号进行上边带和下边带调制2、学会运用MATLAB对SSB调制信号进行相干解调二、实验环境MatlabR2020a三、实验原理(一)滤波法幅度调制(线性调制)(二)常规调幅(AM)1、AM表达式2、AM波形和频谱3、调幅系数m(三)抑制载波双边带调制(DSB-SC)1、DSB表达式2、DSB波形和频谱(四)单边带调制(SSB)(五)相关解调与包络检波四、实验过程(一)熟悉相关内容原理 (二)完成作业已知基带信号()()()sin 10sin 30m t t t ππ=+,载波为()()cos 2000c t t π= 1、对该基带信号进行AM 调制解调(1)写出AM 信号表达式,编写Matlab 代码实现对基带进行进行AM 调制,并分别作出3种调幅系数(1,1,1m m m >=<)下的AM 信号的时域波形和幅度频谱图。
代码 基带信号fs = 10000; % 采样频率 Ts = 1/fs; % 采样时间间隔t = 0:Ts:1-Ts; % 时间向量m = sin(10*pi*t) + sin(30*pi*t); % 基带信号载波信号fc = 1000; % 载波频率c = cos(2*pi*fc*t); % 载波信号AM调制Ka = [1, 0.5, 2]; % 调制系数m_AM = zeros(length(Ka), length(t)); % 存储AM调制信号相干解调信号r = zeros(length(Ka), length(t));绘制AM调制信号的时域波形和幅度频谱图figure;for i = 1:length(Ka)m_AM(i, :) = (1 + Ka(i)*m).*c; % AM调制信号subplot(3, 2, i);plot(t, m_AM(i, :));title(['AM调制信号(Ka = ' num2str(Ka(i)) ')']);xlabel('时间');ylabel('幅度');ylim([-2, 2]);subplot(3, 2, i+3);f = (-fs/2):fs/length(m_AM(i, :)):(fs/2)-fs/length(m_AM(i, :));M_AM = fftshift(abs(fft(m_AM(i, :))));plot(f, M_AM);title(['AM调制信号的幅度频谱图(Ka = ' num2str(Ka(i)) ')']);xlabel('频率');ylabel('幅度');r(i, :) = m_AM(i, :) .* c; % 相干解调信号end绘制相干解调信号的时域波形和幅度频谱图figure;for i = 1:length(Ka)subplot(length(Ka), 1, i);plot(t, r(i, :));title(['相干解调信号(Ka = ' num2str(Ka(i)) ')']);xlabel('时间');ylabel('幅度');end图像(2)编写Matlab代码实现对AM调制信号的相干解调,并作出图形。
通信原理实验范文实验目的:通过模拟调制解调实验,了解信号的调制解调原理,掌握调制解调的实际操作。
实验器材:信号发生器、调制解调器、示波器、音频放大器、示波器探头、电缆等。
实验原理:调制是指根据原始信号的特点,将其与高频载波进行合成,形成调制后的信号,使其适合于在传输介质上进行传播。
解调是指在接收到调制信号后,还原出原始信息信号的过程。
实验步骤:1.将信号发生器与调制解调器的输入端通过电缆连接。
2.将调制解调器的输出端与示波器的输入端连接。
3.将示波器的输出端通过音频放大器放大后连接至扬声器。
4.打开信号发生器和调制解调器,调节信号发生器的频率和幅度,使其与调制解调器的输入匹配。
5.调节调制解调器的参数,选择合适的调制方式,例如调幅、调频或调相。
6.观察示波器的显示结果,根据示波器的输出调整调制解调器的参数,使得输出信号达到预期效果。
7.调节音频放大器的参数,使得通过扬声器传播出的信号清晰可听。
8.实验结束后,关闭所有设备,整理实验器材。
实验注意事项:1.注意实验过程中的电气安全,避免触电事故的发生。
2.调试设备时,要轻拿轻放,避免损坏设备。
3.调节设备参数时要小心操作,避免造成误操作导致的不良后果。
4.在实验过程中,及时与实验指导老师沟通,遇到问题要及时解决。
实验结果分析:通过完成以上实验步骤,我们可以观察到示波器的输出结果,根据输出结果可以判断调制解调器的参数设置是否正确。
如果输出信号与预期不符,则可以通过调整参数来改善输出效果,直到达到预期目标。
此外,通过观察输出信号的波形,我们还可以分析调制解调的调制方式是调幅、调频还是调相。
总结:通过这个基于模拟调制解调的通信原理实验,我们可以更好地理解通信系统中的调制解调原理。
通过实际操作不仅可以增加理论知识的实践应用,还可以锻炼我们的动手能力和问题解决能力。
这些实验经验对于我们今后从事通信工程方面的工作将提供重要帮助。
通信原理实验大全引言:通信原理是指利用一定的物理媒介将信息从发送者传递到接收者的过程。
通信原理实验是通信原理课程中的重要内容,通过实验可以加深对通信原理的理解,掌握通信原理的基本原理和技术。
本文将介绍几个通信原理实验的具体步骤和实验原理。
实验一:模拟调制与解调技术实验目的:熟悉模拟调制与解调技术的基本原理和方法,掌握AM,FM,PM的调制与解调过程。
实验步骤:1.使用函数发生器产生载波信号。
2.使用调制信号(如语音信号)对载波进行调制。
3.对调制后的信号进行解调,获得原始信号。
4.分析解调后的信号与原始信号的相似性。
实验原理:模拟调制是将载波信号与调制信号进行相互作用,在载波上叠加调制信号的变化。
调制信号可以是模拟信号,如语音信号,也可以是数字信号。
调制后的信号通过传输媒介传递到接收端,接收端通过解调技术将信号还原为原始信号。
实验二:数字调制与解调技术实验目的:熟悉数字调制与解调技术的基本原理和方法,掌握ASK,FSK,PSK等数字调制与解调过程。
实验步骤:1.使用函数发生器产生数字信号。
2.将数字信号进行调制,如ASK调制、FSK调制、PSK调制等。
3.对调制后的信号进行解调,获得原始数字信号。
4.分析解调后的信号与原始数字信号的相似性。
实验原理:数字调制是将数字信号转换为模拟信号的过程,通过将数字信号与载波进行相互作用,改变载波的一些特性来实现信号传输。
数值调制通常使用正弦波作为载波信号。
解调则是将调制信号还原为原始数字信号的过程。
实验三:信道编码和解码技术实验目的:熟悉信道编码和解码技术的基本原理和方法,掌握卷积码、纠错码等编码与解码过程。
实验步骤:1.使用编码器将原始信息进行编码。
2.对编码后的信息添加噪声进行模拟信道传输。
3.使用解码器对接收到的编码信息进行解码。
4.比较解码后的信息与原始信息的相似性。
实验原理:信道编码是为了提高信道传输的可靠性和容错性,通过在原始信息中添加冗余数据,使得在传输中出现的错误可以被检测和纠正。
模拟调制系统~幅度调制(⼀)⼀、信号的调制在通信系统中,信源输出的是由原始信息变换成的电信号,这种信号通常具有较宽的频谱,并且在频谱的低端分布较⼤的能量,称为基带信号。
但是多数信道是低频端受限的,⽆法长距离传输低频信号。
因此在传输过程中需要将基带信号所蕴含的信息转载到⾼频载波上,这⼀过程叫做信号的调制。
⽽在接收端将接收到的信号进⾏解调,以获取传递的信息。
⼆、调制定理我们知道⼀个余弦函数的傅⾥叶变换为\cos(w_0t)<\frac{Fourier}{}>\pi [δ(w+w_0)+δ(w-w_0)]那么⼀个信号m(t)与之相乘,其结果的傅式变换为\pi [M(w+w_0)+M(w-w_0)],它所表⽰的物理含义就是是信号m(t)的幅度谱M(\omega)分别向⾼频和低频搬移\omega_0。
我们将信号m(t)看作信源所产⽣的最⾼频率为\omega_m低频宽带信号,要使其能够在信道上传输,就可以乘以⼀个频率⾼到⾜以匹配信道的余弦信号(即⾼频载波),使其所包含的频谱信息都搬移⾄[\omega_0-\omega_m,\omega_0+\omega_m]的位置,这就是调制定理。
调制的过程实质是完成信息的转载。
三、希尔伯特变换在信号处理领域中,⼀个实信号的希尔伯特变换(Hilbert transform)是将其通过⼀个冲激响应为h(t)=\frac{1}{\pi t}的系统所得到的输出信号。
该系统的频率响应为H(j\omega)=-sgn(\omega)。
这种变换所表⽰的物理含义为信号正频域的部分相移-\frac{\pi}{2},信号负频域的部分相移\frac{\pi}{2}。
欧拉公式e^{j\omega_0t}=cos(\omega_0t)+jsin(\omega_0t)中我们可以将cos(\omega_0t)与sin(\omega_0t)看作⼀对希尔伯特变换,⽽任⼀实信号x(t)均可表⽰为⼀系列e^{j\omega_0t}的线性组合,那么x(t)与其希尔伯特变换也可以通过这种⽅式扩展成⼀个复信号,⽅便信号的处理。
实验一 16QAM调制与解调仿真一、实验目的(1)掌握16QAM调制与解调原理。
(2)掌握Matlab/Simulink仿真软件使用方法。
(3)设计16QAM调制与解调仿真电路,观察同相支路、正交支路波形及16QAM星座图。
二、实验环境与仪器Windows98/2000/XP、Matlab(R2010a)/Simulink三、实验内容1、熟悉地掌握了MATLAB软件在通信系统设计与仿真的基本步骤与方法。
2、搭建16QAM调制解调仿真系统;3、运行仿真系统,得出各模块部分的波形及并进行分析。
四、实验原理1、16QAM调制原理16QAM是用两路独立的正交4ASK信号叠加而成,4ASK是用多电平信号去键控载波而得到的信号。
它是2ASK体制的推广,和2ASK相比,这种体制的优点在于信息传输速率高。
正交幅度调制是利用多进制振幅键控(MASK)和正交载波调制相结合产生的。
16进制的正交振幅调制是一种振幅相位联合键控信号。
16QAM的产生有2种方法:(1)正交调幅法,它是有2路正交的四电平振幅键控信号叠加而成;(2)复合相移法:它是用2路独立的四相位移相键控信号叠加而成。
这里采用正交调幅法。
16QAM正交调制的原理如下图1.1所示。
图1.1 16QAM调制器组成框图图中串/并变换器将速率为Rb的二进制码元序列分为两路,速率为Rb/2。
2-4电平变换为Rb/2的二进制码元序列变成速率为RS=Rb/log216的4个电平信号,4电平信号与正交载波相乘,完成正交调制,两路信号叠加后产生16QAM信号。
在两路速率为Rb/2的二进制码元序列中,经2-4电平变换器输出为4电平信号,即M=16。
经4电平正交幅度调制和叠加后,输出16个信号状态,即16QAM RS=Rb/log216=Rb/4,本实验采用便是这种方式。
2、QAM解调原理16QAM信号采取正交相干解调的方法解调,解调器首先对收到的16QAM信号进行正交相干解调,一路与cosωct相乘,一路与sinωc t相乘。
实验一:模拟线性调制系统仿真一、实验目的:1、掌握模拟调制系统的调制和解调原理;2、理解相干解调。
二、实验内容:1、编写AM 、DSB 、SSB 调制,并画出时域波形和频谱图。
2、完成DSB 调制和相干解调。
三、实验步骤1、线性调制1) 假定调制信号为m t ,载波c ()cos 2πm f t =()cos 2πc t f t =,f m =1kHz ,f c =10kHz ; 绘制调制信号和载波的时域波形(保存为图1-1)。
2) 进行DSB 调制,;进行AM 调制,DSB ()()()s t m t c t =⋅[]AM ()1()()s t m t c t =+⋅;绘制DSB 已调信号和AM 已调信号的波形,并与调制信号波形进行对照(保存为图1-2)。
3) 用相移法进行SSB 调制,分别得到上边带和下边带信号,SSB 11ˆ()()()()()22Q s t m t c t m t c t =⋅⋅ ,ˆ()sin 2πm m t f t =,()sin 2πQ c c t f t =。
4) 对载波、调制信号、DSB 已调信号、AM 已调信号和SSB 已调信号进行FFT 变换,得到其频谱,并绘制出幅度谱(保存为图1-3)。
2、DSB 信号的解调1) 用相干解调法对DSB 信号进行解调,解调所需相干载波可直接采用调制载波。
2) 将DSB 已调信号与相干载波相乘。
3) 设计低通滤波器,将乘法器输出中的高频成分滤除,得到解调信号。
4) 绘制低通滤波器的频率响应(保存为图1-4)。
5) 对乘法器输出和滤波器输出进行FFT 变换,得到频谱。
6) 绘制解调输出信号波形;绘制乘法器输出和解调器输出信号幅度谱(保存为图1-5)。
7) 绘制解调载波与发送载波同频但不同相时的解调信号的波形,假定相位偏移分别为ππππ,,,8432(保存为图1-6)。
四、实验思考题1、与调制信号比较,AM 、DSB 和SSB 的时域波形和频谱有何不同?2、低通滤波器设计时应考虑哪些因素?3、采用相干解调时,接收端的本地载波与发送载波同频不同相时,对解调性能有何影响?五、提示:1、Matlab只能处理离散值,所以调制信号、载波、已调信号和解调信号都是用离散序列表示的。
一、实验目的1. 理解通信系统的基本组成和原理。
2. 掌握模拟通信和数字通信的基本技术和方法。
3. 熟悉通信系统实验设备和仪器的使用。
4. 培养实验操作能力和分析问题、解决问题的能力。
二、实验内容1. 实验一:模拟调制解调(1)实验原理模拟调制是将基带信号转换成频带信号的过程,而解调则是将频带信号恢复成基带信号的过程。
本实验采用调幅(AM)和调频(FM)两种调制方式。
(2)实验步骤1. 搭建模拟调制解调实验系统,包括信号源、调制器、信道、解调器等。
2. 产生基带信号,调整信号参数。
3. 通过调制器将基带信号调制为AM或FM信号。
4. 将调制后的信号通过信道传输。
5. 通过解调器将接收到的信号解调为基带信号。
6. 比较调制前后的信号波形,分析调制效果。
(3)实验结果与分析通过实验,观察到调制后的信号频率发生了变化,实现了基带信号到频带信号的转换。
同时,通过解调器将信号恢复为基带信号,验证了调制解调过程的有效性。
2. 实验二:数字调制解调(1)实验原理数字调制是将基带信号转换成数字信号的过程,而解调则是将数字信号恢复成基带信号的过程。
本实验采用调幅键控(ASK)、移频键控(FSK)和相移键控(PSK)三种调制方式。
(2)实验步骤1. 搭建数字调制解调实验系统,包括信号源、调制器、信道、解调器等。
2. 产生基带信号,调整信号参数。
3. 通过调制器将基带信号调制为ASK、FSK或PSK信号。
4. 将调制后的信号通过信道传输。
5. 通过解调器将接收到的信号解调为基带信号。
6. 比较调制前后的信号波形,分析调制效果。
(3)实验结果与分析通过实验,观察到调制后的信号在频谱上发生了变化,实现了基带信号到数字信号的转换。
同时,通过解调器将信号恢复为基带信号,验证了调制解调过程的有效性。
3. 实验三:通信系统性能分析(1)实验原理通信系统性能分析主要包括误码率、信噪比、带宽等指标。
本实验通过对模拟和数字调制解调系统的性能进行分析,了解不同调制方式对系统性能的影响。
模拟调制与解调实验报告
一、实验目的:理解调制原理;
掌握通信原理实验箱和示波器的使用方法;
二、实验器材:通信原理实验箱,示波器,连接线若干
三、实验原理:幅度调制是由调制信号去控制高频载波幅度,使之随调制信号作线性变化的过程。
正弦波为:c(t)=A )cos(ϕωτ+
调制信号为:s m ()t =A ()t t m c ωcos
则已调信号:
()()()[]
c c m M M A s ωωωωω-++=2 在波形上已调信号的幅度随基带信号的规律呈正比变化,在频率上,完全是基带频率的简单搬移。
因此,幅度调制又称线性调制。
相干解调也是同步检波,即把在载频位置的已调信号搬回原始基带位置,为了无失真的恢复原基带信号,接收端必须提供一个与接收的已调载波严格同步的本地载波,与已调信号相乘后,经低通滤波器取出低频分量,即可得到原始的基带调制信号。
实验步骤:将实验箱对应的开关打开,将正弦信号借入示波器,调出对应波形,调节幅度,频率旋钮观察波形变化,将正弦信号改为方波信号重复上述步骤;将正弦波借入到实验箱模拟调制区的基带信号处,调制信号接入调制信号处,将输出接入示波器,调出图像,调节幅度频率旋钮观察波形变化。
将调制信号输入到解调端口,观察示波器的正弦波形,并与原始
信号波形相比较。
实验结果:
正弦载波:
调制载波:
调制后的波形:
解调后的波形:。
一、实验目的1. 理解模拟调制的基本原理和过程。
2. 掌握AM(调幅)、FM(调频)和PM(调相)三种基本调制方式的特点和应用。
3. 学习模拟调制系统的性能分析,包括带宽、调制指数等。
4. 通过实验验证调制和解调过程,加深对理论知识的理解。
二、实验原理模拟调制是将基带信号(信息信号)转换成适合在信道中传输的频带信号的过程。
常见的模拟调制方式包括调幅、调频和调相。
1. 调幅(AM):在AM调制中,载波的幅度随基带信号的幅度变化而变化。
其基本原理是利用调制信号控制载波的幅度。
2. 调频(FM):在FM调制中,载波的频率随基带信号的幅度变化而变化。
其基本原理是利用调制信号控制载波的频率。
3. 调相(PM):在PM调制中,载波的相位随基带信号的幅度变化而变化。
其基本原理是利用调制信号控制载波的相位。
三、实验设备1. 实验箱2. 信号发生器3. 示波器4. 数字频率计5. 阻抗匹配器四、实验步骤1. AM调制实验- 使用信号发生器产生一个正弦波作为载波信号。
- 将基带信号输入调制器,调整调制指数,观察调制信号的变化。
- 使用示波器观察调制信号的波形,分析调制指数对调制信号的影响。
- 使用数字频率计测量调制信号的频率,分析调制信号的带宽。
2. FM调制实验- 使用信号发生器产生一个正弦波作为载波信号。
- 将基带信号输入调制器,调整调制指数,观察调制信号的变化。
- 使用示波器观察调制信号的波形,分析调制指数对调制信号的影响。
- 使用数字频率计测量调制信号的频率,分析调制信号的带宽。
3. PM调制实验- 使用信号发生器产生一个正弦波作为载波信号。
- 将基带信号输入调制器,调整调制指数,观察调制信号的变化。
- 使用示波器观察调制信号的波形,分析调制指数对调制信号的影响。
- 使用数字频率计测量调制信号的频率,分析调制信号的带宽。
五、实验结果与分析1. AM调制实验- 当调制指数较小时,调制信号近似为未调制信号。
用SystemView仿真实现二进制振幅键控(2ASK)的模拟调制非相干解调及其性能估计1、实验目的:(1)了解2ASK系统的电路组成、工作原理和特点;(2)分别从时域、频域视角观测2ASK系统中的基带信号、载波及已调信号;(3)熟悉系统中信号功率谱的特点。
2、实验内容:以PN码作为系统输入信号,码速率Rb=20kbit/s。
(1)采用键控法实现2ASK的调制;分别观测绝对码序列、差分编码序列,比较两序列的波形;观察调制信号、载波及2ASK等信号的波形。
(2)获取主要信号的功率谱密度。
3、实验原理振幅键控(Amplitude Shift Keying,ASK)是利用载波的幅度变化来传递数字信号,而其频率和初始相位保持不变。
在2Ask中,载波的幅度只有两种变化状态,分别对应二进制信息“0”或“1”。
2ASK信号的一般表达式为e2ASK(t)=s(t)coswct其中s(t)=Σang(t-nTs)式中:Ts为码元持续时间;g(t)为持续时间为Ts的基带脉冲波形,为简便起见,通常假设g(t)是高度为1、宽度等于Ts的矩形脉冲;an是第n个符号的电平取值。
2ASK信号的产生方法通常有两种:数字键控法和模拟相乘法,相应的调制器如图1-1所示。
图(a)就是一般的模拟幅度调制的方法,用乘法器实现;图(b)是一种数字键控法,其中的开关电路受s(t)控制。
图(a)模拟幅度调制法图(b)数字键控法图1 2ASK调制器原理框图4、2ASK的模拟调制的仿真设计根据模拟相乘法原理图,利用S y s t e m Vi e w软件进行仿真设计,得到图2-2。
图2 2ASK调制仿真设计图参数设置:系统定时如图3图3运行时间设置窗口编号库/名称参数Token0 Source: PN Seq Amp = 0.5 v,Offset = 0 .5v,Rate =20e+3 Hz,Levels = 2,Phase = 0 deg Token2 MultiplierToken17 Source: Sinusoid Amp = 1v,Frq = 40e+3 Hz,Phase = 0deg运行完后可以很直观地观察到各点的波形如图所示:图4输入PN序列图5 2ASK调制信号5、2ASK的非相干解调的仿真设计5.1 2ASK的解调原理2ASK信号由两种基本的解调方法:非相干解调(包络检波法)和相干解调,相应的接收系统组成方框图如图2-9所示,上图为非相干解调方式,下图是相干解调方式。
通信系统实验报告——基于SystemView的仿真实验班级:学号:姓名:时间:目录实验一、模拟调制系统设计分析 -------------------------3一、实验内容-------------------------------------------3二、实验要求-------------------------------------------3三、实验原理-------------------------------------------3四、实验步骤与结果-------------------------------------4五、实验心得------------------------------------------10实验二、模拟信号的数字传输系统设计分析------------11一、实验内容------------------------------------------11二、实验要求------------------------------------------11三、实验原理------------------------------------------11四、实验步骤与结果------------------------------------12五、实验心得------------------------------------------16实验三、数字载波通信系统设计分析------------------17一、实验内容------------------------------------------17二、实验要求------------------------------------------17三、实验原理------------------------------------------17四、实验步骤与结果------------------------------------18五、实验心得------------------------------------------27实验一:模拟调制系统设计分析一、实验内容振幅调制系统(常规AM )二、实验要求1、 根据设计要求应用软件搭建模拟调制、解调(相干)系统;2、 运行系统观察各点波形并分析频谱;3、 改变参数研究其抗噪特性。
实验十三模拟调制解调实验(FM)实验内容1.模拟调制(FM)实验2.模拟解调(FM)实验一、实验目的1.掌握变容二极管调频电路的工作原理及调频调制特性及其测量方法。
2.熟悉相位鉴频器的基本工作原理。
3.了解鉴频特性曲线(S曲线)的正确调整方法。
二、实验电路工作原理(一)模拟调制实验1.变容二极管工作原理调频即为载波的瞬时频率受调制信号的控制。
其频率的变化量与调制信号成线性关系。
常用变容二极管实现调频。
变容二极管调频电路如图8-1所示。
从J2处加入调制信号,使变容二极管的瞬时反向偏置电压在静态反向偏置电压的基础上按调制信号的规律变化,从而使振荡频率也随调制电压的规律变化,此时从J1处输出为调频波(FM)。
C15为变容二级管的高频通路,L1为音频信号提供低频通路,L1和C23又可阻止高频振荡进入调制信号源。
图8-1 变容二极管调频f因为LCf π21=,所以电容小时,振荡频率高,而电容大时,振荡频率低。
从图(a )中可以看到,由于C-u 曲线的非线性,虽然调制电压是一个简谐波,但电容随时间的变化是非简谐波形,但是由于LCf π21=,f 和C 的关系也是非线性。
不难看出,C-u 和f-C的非线性关系起着抵消作用,即得到f-u 的关系趋于线性(见图(c ))。
2. 变容二极管调频器获得线性调制的条件设回路电感为L ,回路的电容是变容二极管的电容C (暂时不考虑杂散电容及其它与变容二极管相串联或并联电容的影响),则振荡频率为LCf π21=。
为了获得线性调制,频率振荡应该与调制电压成线性关系,用数学表示为Au f =,式中A 是一个常数。
由以上二式可得LCAu π21=,将上式两边平方并移项可得2222)2(1-==Bu u LA C π,这即是变容二极管调频器获得线性调制的条件。
这就是说,当电容C 与电压u 的平方成反比时,振荡频率就与调制电压成正比。
3. 调频灵敏度调频灵敏度f S 定义为每单位调制电压所产生的频偏。
实验八模拟调制解调实验(AM)实验内容1.模拟调制(AM,DSB,SSB)实验2.模拟解调(AM)实验一. 实验目的1.掌握用集成模拟乘法器实现全载波调幅、抑止载波双边带调幅和单边带调幅的方法。
2.研究已调波与调制信号以及载波信号的关系。
3.通过实验对比全载波调幅、抑止载波双边带调幅和单边带调幅的波形。
4.掌握二极管峰值包络检波的原理。
二.实验电路工作原理(一) 调制实验幅度调制就是载波的振幅(包络)随调制信号的参数变化而变化。
本实验中载波是需外加455KHz高频信号,1KHz的低频信号为调制信号。
振幅调制器即为产生调幅信号的装置。
用MC1496集成电路构成的调幅器电路图如图7-2所示。
图中WB01用来调节引出脚1、4之间的平衡,器件采用双电源方式供电(+12V,-8V),所以5脚偏置电阻RB08接地。
电阻RB03、RB11、RB12、R02、R09为器件提供静态偏置电压,保证器件内部的各个晶体管工作在放大状态。
载波信号加在V1-V4的输入端,即引脚8、10之间;载波信号Vc经高频耦合电容CB01从10脚输入,CB02为高频旁路电容,使8脚交流接地。
调制信号加在差动放大器V5、V6的输入端,即引脚1、4之间,调制信号VΩ经低频偶合电容EB01从1脚输入。
2、3脚外接1KΩ电阻,以扩大调制信号动态范围。
当电阻增大,线性范围增大,但乘法器的增益随之减小。
已调制信号取自双差动放大器的两集电极(即引出脚6、12之间)输出。
(二) 解调实验检波过程是一个解调过程,它与调制过程正好相反。
检波器的作用是从振幅受调制的高频信号中还原出原调制的信号。
还原所得的信号,与高频调幅信号的包络变化规律一致,故又称为包络检波器。
假如输入信号是高频等幅信号,则输出就是直流电压。
这是检波器的一种特殊情况,在测量仪器中应用比较多。
例如某些高频伏特计的探头,就是采用这种检波原理。
若输入信号是调幅波,则输出就是原调制信号。
这种情况应用最广泛,如各种连续波工作的调幅接收机的检波器即属此类。
实验一:模拟调制系统调制及解调模拟
实验要求:
1、 学生按照实验指导报告独立完成相关实验的内容;
2、 上机实验后撰写实验报告,记录下自己的实验过程,记录实验心得。
3、 以电子形式在规定日期提交实验报告。
实验指导
一、线性调幅
1. 普通调幅
原理介绍: 普通调幅
即:AM 幅度调制 ,常规双边带幅度调制(Double-SideBand Modulation Passband) 其中输入信号是u(t),输出信号是y(t),y(t)是个实信号,若u(t)=0cos u t Ω,则有
0()(())cos(2)
()(cos())cos(2)c c c a c a c
y t u t U f t y t U m t f t u m U απθαπθ=++=+Ω+=
① 其中,α是输入信号的偏移,c f 是载波频率,θ是初始相位(设θ=0),c U 是载波幅度,a m 是调制指数。
传输载波时,α=1;不传输载波时,α=0。
()(1cos )cos ()cos cos()cos()22
c a c a a c c c c y t U m t t
m m y t U t t t
ωωωω=+Ω=++Ω+-Ω ② 由②得出,幅度调制的结果含有:载波c ω、上边带()c ω+Ω、下边带()c ω-Ω的
成分,双边带幅度调制的输出包含了载频高端和低端的频率成分。
参数说明:
DSB AM Modulator Passband(双边带频带幅度调制器)的主要参数
DSB AM Demodulator Passband(双边带频带幅度解调器)的主要参数
系统仿真框图:
本例中信源是一个幅度为0.7,频率为8HZ的正弦信号。
各模块的参数设置:
结果显示:
AM幅度调制后信号的频域图:(可见载频两旁的边带成分)
AM幅度调制后信号的时域图:
系统仿真中示波器的波形图:(分别为调解波形、原始波形和调制波形)
2.双边带调制
原理介绍:
即:双边带抑制载波幅度调制,为了提高调制效率,在双边带幅度调制的基础上抑制掉载波分量,使总功率全部包含在双边带中,这样就形成了双边带抑制载波幅度调制。
公式①中α=1表示保留载波,若α=0,就变成了双边带抑制载波幅度调制。
参数说明:
DSB SC AM Modulator Passband(双边带频带抑制幅度调制器)的主要参数
参数名称参数值
Input signal offset(输入信号偏移) 15
Initial phase(rad)(初始相位) Pi/2
Sample time(采样时间) 1/60
Signal Generator(信号发生器)的主要参数
参数名称参数值
Wave form(波形) Sawtooth
Amplitude(幅度) 1
Frequency(频率) Pi
Unit(单位) Rad/sec 系统仿真框图:
各模块参数设置:
双边带抑制载波调制后频域图:
结果显示:
双边带抑制载波调制后时域图:
3.单边带调制:
原理介绍:
双边带抑制载波调制虽然抑制了载波,提高了调制效率,但调制后的频带宽度仍然是基带信号宽带的2倍,而且完全对称,他们携带的信息完全相同。
因此,从信息传输的角度来看,只用一个边带传输传输就可以了。
单边带幅度调制SSB AM(Signal-SideBand Amplitude Modulation)中,发送端只传输频带幅度调制信号的上边带或下边带,它使用的宽带只有双边带调制信号的一半,因而具有更高的频率利用率。
参数说明:
DSB AM Modulator Passband(双边带频带幅度调制器)的主要参数
参数名称
参数值
Input signal offset(输入信号偏移) 1
Carrier frequency(载波频率) 1000
Initial phase(rad)(初始相位) 0
Analog Filter Design(模拟滤波器设计)的主要参数
参数名称参数值
Design method(设计方法) Butterworth(巴特沃斯)
filter type(滤波器类型) Bandpass(带通)
Filter order(滤波器阶数) 9
Lower passband edge frequency (rad/sec)
(通带低端频率)
990*2*pi
Upper passband edge frequency(rad/sec)
(通带高端频率)
1110*2*pi
系统仿真框图:
关于各模块参数设置:
结果显示:
单边带调制频域图:
单边带调制时域图:
二、非线性调制 1、 FM 频率调制
频带频率调制器(FM Modulator Passband )对输入的实信号实施频率调制,产生采样形式的信号。
假设输入信号为u(t),输出信号为y(t),则输出信号与输入信号u(t)满足关系式:
()cos(22())c c t y t f t K u d ππττθ=+⎰+
其中,t ⎰是载波频率,θ是初始相位,c K 是调整常数。
FM Demodulator Passband 从输入的基带频率信号中解调出原始的信息序列。
频带频率调解器的输入信号是采样形式的标量信号,输出信号是一维的标量信号。
基带频率解调器使用了低通滤波器,这个低通滤波器由参数Lowpass filter numerator 和Lowpass filter denominator 确定。
参数说明:
FM Modulator Passband(频带频率调制器)的主要参数
Signal Generator(信号发生器)的主要参数
Spectrum Scope(频谱仪)的主要参数
Amplitude scaling(幅度刻度)
magnitude
Sample time of original from input
(输入采样时间)
2.5e-4
Minimum Y-limit(Y轴最小刻度) -2
Maximum Y-limit(Y轴最大刻度)25 系统仿真框图:
相关模块的参数设置:
结果显示:
FM频率调制后频域图:
FM调制后时域图:
3.PM相位调制
PM相位调制从输入的实信号实施相位调制。
假设输入信号为u(t),则输出信号y(t)的频率随着输入信号u(t)的幅度变化而变化,两者之间满足关系式:
参数设置:
FM Modulator Passband(频带频率调制器)的主要参数
参数名称参数值
Carrier frequency(载波频率) 1000
Initial phase(rad)(初始相位) 0
Modulation Constant(调制常数) 2
Symple interval(s)(符号间隔) inf
系统仿真框图:
相关模块参数设置:
实验结果:
PM相位调制后频域图:
PM相位调制后时域图:。