材料性能学作业与答案
- 格式:doc
- 大小:2.86 MB
- 文档页数:16
《材料性能学》习题1一.选择题(本题包括15小题,每小题只有一个合适选项,每小题2分,共30分)1. 断裂力学主要用来处理(d )方面的问题。
a) 低塑性材料抗断裂b) 高塑性材料抗断裂c) 含缺口材料抗断裂d) 含缺陷材料抗断裂2. 多晶体金属塑性变形的特点是(c )。
a) 同时性b) 不协调性c) 非同时性d) 独立性3. 细晶强化是非常好的强化方法,但不适用于(a )。
a) 高温b) 中温c) 常温d) 低温4. 表征脆性材料的力学性能的参量是(d )。
a) E, σ0.2b)σb , δc) ν, ψd) E, σb5. 应力状态柔度系数最大的是(a )。
a) 压b) 拉c) 扭d) 弯6. 与抗拉强度之间存在相互关系的是(a )。
a) 布氏硬度b) 洛氏硬度c) 显微硬度d) 肖氏硬度7. 下述断口哪一种是延性断口( d )。
a) 穿晶断口b) 沿晶断口c) 河流花样d) 韧窝断口8. 通常键强度高的材料,热膨胀系数;结构紧密的晶体,热膨胀系数(d)a)高小b)低小c)高大d)低大9. 疲劳裂纹最易在材料的什么部位产生( a )。
a) 表面b) 次表面c) 内部d) 不一定10. 韧性材料在什么样的条件下可能变成脆性材料(b )。
a) 增大缺口半径b) 增大加载速度c) 升高温度d) 减小晶粒尺寸11.在实用温度范围内,随温度的升高,热导率,对多晶氧化物材料,含有气孔的不密实材料(a )。
a) 减小增大b) 增大增大c) 减小减小d) 增大减小12. T为试验温度,T m为材料熔点,一般T/T m大于多少就属高温,就要考虑材料的高温力学性能(c )。
a) 0.2~0.3 b) 0.3~0.4 c) 0.4~0.5 d) 0.5~0.613. 下列不属于电介质的击穿形式有(c )。
a) 电击穿b) 热击穿c) 磁击穿d) 化学击穿14. 下列不属于铁磁性材料的是(b )。
a) Fe b) Cu c) Ni d) Co15. 陶瓷坯体的热膨胀系数和釉层的热膨胀系数满足下列哪种关系有利于提高其机械强度(a )。
材料性能学复习题及答案一、单项选择题1. 材料的弹性模量是指材料在受到外力作用时,应力与应变的比值。
下列哪种材料通常具有较高的弹性模量?A. 橡胶B. 木材C. 钢铁D. 塑料答案:C2. 材料的屈服强度是指材料在受到外力作用时,开始发生永久变形的应力值。
下列哪种情况下材料的屈服强度会降低?A. 提高温度B. 降低温度C. 增加材料的纯度D. 进行热处理答案:A3. 疲劳强度是指材料在反复加载和卸载过程中,能够承受的最大应力而不发生断裂的能力。
下列哪种材料通常具有较好的疲劳强度?A. 纯金属B. 合金C. 复合材料D. 陶瓷材料答案:B二、多项选择题1. 影响材料硬度的因素包括哪些?A. 材料的微观结构B. 材料的化学成分C. 材料的加工工艺D. 材料的表面处理答案:ABCD2. 材料的断裂韧性是指材料在受到外力作用时,抵抗裂纹扩展的能力。
下列哪些因素可以提高材料的断裂韧性?A. 增加材料的韧性B. 减少材料的缺陷C. 提高材料的硬度D. 改善材料的微观结构答案:ABD三、判断题1. 材料的塑性是指材料在受到外力作用时,能够发生永久变形而不断裂的性质。
(对)2. 材料的导热系数越高,其导热性能越好。
(对)3. 材料的抗拉强度和屈服强度是相同的概念。
(错)四、简答题1. 简述材料的疲劳破坏过程。
答:材料的疲劳破坏过程通常包括裂纹的萌生、扩展和最终断裂三个阶段。
在反复加载和卸载的过程中,材料内部的微裂纹逐渐扩展,当裂纹扩展到一定程度时,材料的承载能力下降,最终导致断裂。
2. 描述材料的蠕变现象及其影响因素。
答:材料的蠕变现象是指在恒定应力作用下,材料发生持续的塑性变形。
影响蠕变的因素包括应力水平、温度、材料的微观结构和化学成分等。
高应力、高温和材料内部的缺陷都可能加速蠕变过程。
五、计算题1. 已知某材料的弹性模量为200 GPa,当受到100 MPa的应力时,计算其应变值。
答:根据弹性模量的定义,应变值可以通过应力除以弹性模量来计算。
第一章材料的弹性变形一、填空题:1.金属材料的力学性能是指在载荷作用下其抵抗变形或断裂的能力。
2. 低碳钢拉伸试验的过程可以分为弹性变形、塑性变形和断裂三个阶段。
3. 线性无定形高聚物的三种力学状态是玻璃态、高弹态、粘流态,它们的基本运动单元相应是链节或侧基、链段、大分子链,它们相应是塑料、橡胶、流动树脂(胶粘剂的使用状态。
二、名词解释1.弹性变形:去除外力,物体恢复原形状。
弹性变形是可逆的2.弹性模量:拉伸时σ=EεE:弹性模量(杨氏模数)切变时τ=GγG:切变模量3.虎克定律:在弹性变形阶段,应力和应变间的关系为线性关系。
4.弹性比功定义:材料在弹性变形过程中吸收变形功的能力,又称为弹性比能或应变比能,表示材料的弹性好坏。
三、简答:1.金属材料、陶瓷、高分子弹性变形的本质。
答:金属和陶瓷材料的弹性变形主要是指其中的原子偏离平衡位置所作的微小的位移,这部分位移在撤除外力后可以恢复为0。
对高分子材料弹性变形在玻璃态时主要是指键角键长的微小变化,而在高弹态则是由于分子链的构型发生变化,由链段移动引起,这时弹性变形可以很大。
2.非理想弹性的概念及种类。
答:非理想弹性是应力、应变不同时响应的弹性变形,是与时间有关的弹性变形。
表现为应力应变不同步,应力和应变的关系不是单值关系。
种类主要包括滞弹性,粘弹性,伪弹性和包申格效应。
3.什么是高分子材料强度和模数的时-温等效原理?答:高分子材料的强度和模数强烈的依赖于温度和加载速率。
加载速率一定时,随温度的升高,高分子材料的会从玻璃态到高弹态再到粘流态变化,其强度和模数降低;而在温度一定时,玻璃态的高聚物又会随着加载速率的降低,加载时间的加长,同样出现从玻璃态到高弹态再到粘流态的变化,其强度和模数降低。
时间和温度对材料的强度和模数起着相同作用称为时=温等效原理。
四、计算题:气孔率对陶瓷弹性模量的影响用下式表示:E=E0 (1—1.9P+0.9P2)E0为无气孔时的弹性模量;P为气孔率,适用于P≤50 %。
材料性能学考卷一、选择题(每题2分,共20分)1. 下列哪种材料的弹性模量最大?A. 钢铁B. 塑料C. 木材D. 橡胶2. 下列哪种材料的抗拉强度最高?A. 铝合金B. 玻璃纤维C. 碳钢D. 陶瓷3. 下列哪种材料的硬度最大?A. 黄铜B. 不锈钢C. 钨D. 铅4. 下列哪种材料的导热系数最高?A. 铜B. 铝C. 铁D. 硅胶5. 下列哪种材料的比热容最大?A. 水泥B. 橡胶C. 石墨D. 空气6. 下列哪种材料的密度最小?A. 聚乙烯B. 聚氨酯C. 聚氯乙烯D. 聚丙烯7. 下列哪种材料的断裂韧性最高?A. 玛瑙B. 玉石C. 钨钢D. 玻璃8. 下列哪种材料的耐磨性最好?A. 高铬铸铁B. 轴承钢C. 铸铝D. 粉末冶金9. 下列哪种材料的抗腐蚀性最好?A. 镍基合金B. 铜镍合金C. 铬镍合金D. 钛合金10. 下列哪种材料的磁导率最高?A. 铁B. 钴C. 镍D. 铅二、填空题(每题2分,共20分)1. 材料的弹性极限是指材料在受力后,去掉外力仍能恢复原状的______应力。
2. 材料的屈服强度是指材料在受力过程中,产生______变形时的应力。
3. 材料的断裂韧性是指材料抵抗______裂纹扩展的能力。
4. 材料的疲劳极限是指材料在______循环应力作用下,不发生疲劳破坏的最大应力。
5. 材料的导热系数是指在稳态热传导条件下,单位时间内通过单位面积、单位厚度的材料,温度梯度为1K时传递的______。
6. 材料的比热容是指单位质量的材料温度升高1K所需吸收的______。
7. 材料的密度是指单位体积的______。
8. 材料的硬度是指材料抵抗______变形的能力。
9. 材料的耐磨性是指材料在______过程中抵抗磨损的能力。
10. 材料的抗腐蚀性是指材料在______环境中抵抗腐蚀的能力。
三、简答题(每题10分,共30分)1. 请简要介绍材料性能学的研究内容。
2. 请解释弹性模量、屈服强度和断裂韧性三个力学性能指标的区别。
第一章材料的弹性变形一、填空题:1.金属材料的力学性能是指在载荷作用下其抵抗变形或断裂的能力。
2. 低碳钢拉伸试验的过程可以分为弹性变形、塑性变形和断裂三个阶段。
3. 线性无定形高聚物的三种力学状态是玻璃态、高弹态、粘流态,它们的基本运动单元相应是链节或侧基、链段、大分子链,它们相应是塑料、橡胶、流动树脂(胶粘剂的使用状态。
二、名词解释1.弹性变形:去除外力,物体恢复原形状。
弹性变形是可逆的2.弹性模量:拉伸时σ=EεE:弹性模量(杨氏模数)切变时τ=GγG:切变模量3.虎克定律:在弹性变形阶段,应力和应变间的关系为线性关系。
4.弹性比功定义:材料在弹性变形过程中吸收变形功的能力,又称为弹性比能或应变比能,表示材料的弹性好坏。
三、简答:1.金属材料、陶瓷、高分子弹性变形的本质。
答:金属和陶瓷材料的弹性变形主要是指其中的原子偏离平衡位置所作的微小的位移,这部分位移在撤除外力后可以恢复为0。
对高分子材料弹性变形在玻璃态时主要是指键角键长的微小变化,而在高弹态则是由于分子链的构型发生变化,由链段移动引起,这时弹性变形可以很大。
2.非理想弹性的概念及种类。
答:非理想弹性是应力、应变不同时响应的弹性变形,是与时间有关的弹性变形。
表现为应力应变不同步,应力和应变的关系不是单值关系。
种类主要包括滞弹性,粘弹性,伪弹性和包申格效应。
3.什么是高分子材料强度和模数的时-温等效原理?答:高分子材料的强度和模数强烈的依赖于温度和加载速率。
加载速率一定时,随温度的升高,高分子材料的会从玻璃态到高弹态再到粘流态变化,其强度和模数降低;而在温度一定时,玻璃态的高聚物又会随着加载速率的降低,加载时间的加长,同样出现从玻璃态到高弹态再到粘流态的变化,其强度和模数降低。
时间和温度对材料的强度和模数起着相同作用称为时=温等效原理。
四、计算题:气孔率对陶瓷弹性模量的影响用下式表示:E=E0(1—1.9P+0.9P2) E0为无气孔时的弹性模量;P为气孔率,适用于P≤50 %。
共 4 页 第 页1. 通过静载拉伸实验可以测定材料的 弹性极限、屈服极限、 抗拉强度、断裂强度、比例极限等(答对3个即可)强度指标,及 延伸率 、 断面收缩率 等塑性指标。
2.按照断裂中材料的宏观塑性变形程度,断裂可分为脆性断裂和韧性断裂;按照晶体材料断裂时裂纹扩展的途径(断裂方式),可分为穿晶断裂和沿晶断裂;按照微观断裂机理,可分为解理断裂和剪切断裂3. 单向拉伸条件下的应力状态系数为 0.5 ;而扭转和单向压缩下的应力状态系数分别为 0.8 和 2.0 。
应力状态系数越大,材料越容易产生 (塑性) 断裂。
为测量脆性材料的塑性,长采用压缩的试验方法4.在扭转试验中,塑性材料的断裂面与试样轴线 垂直 ;脆性材料的断裂面与试样轴线 成450角。
5. 低温脆性常发生在具有 体心立方或密排六方 结构的金属及合金中,而在 面心立方 结构的金属及合金中很少发现。
6. 材料截面上缺口的存在,使得缺口根部产生 应力集中 和 双(三)向应力或应力状态改变 ,试样的屈服强度 不变,塑性 降低 。
7.根据磨损面损伤和破坏形式(磨损机理),磨损可分为4类:粘着磨损、磨料磨损、腐蚀磨损和麻点疲劳磨损(接触疲劳)8.典型的疲劳断口有3个特征区:疲劳源、疲劳裂纹扩展区和瞬断区。
疲劳裂纹扩展区最典型的特征是贝纹线9. 在典型金属与陶瓷材料的蠕变曲线上,蠕变过程常由 减速蠕变 ,恒速蠕变 和 加速蠕变 三个阶段组成。
10.根据材料磁化后对磁场所产生的影响,可以把材料分为3类:抗磁性材料、顺磁性材料和铁磁性材料11.一般情况下,温度升高,金属材料的屈服强度下降;应变速率越大,金属材料的屈服应力越高。
12.温度对金属材料的力学性能影响很大,在高温下材料易发生沿晶断裂。
13. 拉伸试样的直径一定,标距越长则测出的断后伸长率会越小14.宏观断口一般呈杯锥装,由纤维区、放射区和剪切唇3个区域组成。
材料强度越高,塑性降低,则放射区比例增大。
3、说明K I和K IC的异同。
对比K IC和K C的区别,说明K I和K IC中的I的含义。
(6分)
K Ic代表的是材料的断裂力学性能指标,是临界应力场强度因子,取决于材料的成分、组织结构等内在因素。
K I是力学参量,表示裂纹尖端应力场强度的大小,取决于外加应力、尺寸和裂纹类型,与材料无关。
(3分)
K Ic称为平面应变的断裂韧性,K c为平面应力的断裂韧性。
对于同一材料而言,K Ic<K c,平面应变状态更危险,通常以前者衡
量材料的断裂韧性。
K
IC 中的I代表平面应变,K
I
的I表示I型裂纹。
2
2
22
2)1(23
12
13
12
3)
121121()112112(21
1
12)1
12112(1231)1
21121(112R w w w w w
w R
w w n n n n n n n n w w R n n w w -=⨯=-=+-=+-=+--=-=+--=分)
五、证明题(共8分)
一入射光以较小的入射角内i 和折射角r 穿过一透明玻璃板。
证明透过后的光强系数为(1-R )2。
设玻璃对光的衰减不变。
设空气为介质1,透明玻璃为介质2,光进入到玻璃之前的能量为W1,进入到玻璃之后光的能量为W2,再次进入到空气中后的能量为W3,则透过后的光强系数应为w3/w1(2分)。
则有
(1分) (1分) (1分) (1分) (1分) (1分)。
材料性能期末考试题及答案一、选择题(每题2分,共20分)1. 材料的弹性模量是指材料在弹性范围内,应力与应变的比值,其单位是:A. MPaB. GPaC. N/m²D. Pa2. 材料的硬度通常用来描述材料的:A. 韧性B. 强度C. 耐久性D. 抗划伤能力3. 材料的热膨胀系数是指材料在温度变化时,体积或长度的相对变化率,其单位是:A. °C⁻¹B. K⁻¹C. °F⁻¹D. 1/°C4. 材料的屈服强度是指材料在受到外力作用时,开始发生永久变形的应力值,通常用下列哪个单位表示:A. MPaB. GPaC. N/m²D. Pa5. 材料的疲劳强度是指材料在循环载荷作用下,发生疲劳破坏的应力值,通常与下列哪个因素无关:A. 材料的微观结构B. 载荷的频率C. 材料的密度D. 环境温度二、填空题(每空2分,共20分)6. 材料的________是指材料在受到外力作用时,能够承受的最大应力值而不发生断裂。
7. 材料的________是指材料在受到外力作用时,能够承受的最小应力值而不发生永久变形。
8. 材料的________是指材料在受到外力作用时,能够承受的最小应力值而不发生塑性变形。
9. 材料的________是指材料在受到外力作用时,能够承受的最大应力值而不发生永久变形。
10. 材料的________是指材料在受到外力作用时,能够承受的最大应力值而不发生塑性变形。
三、简答题(每题10分,共30分)11. 简述材料的疲劳破坏机理。
12. 解释什么是材料的蠕变现象,并简述其影响因素。
13. 描述材料的断裂韧性及其在工程应用中的重要性。
四、计算题(每题15分,共30分)14. 某材料的弹性模量为200 GPa,当其受到100 MPa的应力作用时,计算其应变值。
15. 假设有一块材料的屈服强度为300 MPa,若在循环载荷作用下,该材料的疲劳强度降低到200 MPa,计算其疲劳强度降低的百分比。
本学期材料性能学作业及答案第一次作业P36-37第一章1名词解释4、决定金属屈服强度的因素有哪些?答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。
外在因素:温度、应变速率和应力状态。
10、将某材料制成长50mm,直径5mm的圆柱形拉伸试样,当进行拉伸试验时塑性变形阶段的外力F与长度增量ΔL的关系为:F/N 6000 8000 10000 12000 14000ΔL 1 2.5 4.5 7.5 11.5求该材料的硬化系数K及应变硬化指数n。
解:已知:L0=50mm,r=2.5mm,F与ΔL如上表所示,由公式(工程应力)σ=F/A0,(工程应变)ε=ΔL/L0,A0=πr2,可计算得:A0=19.6350mm2σ1= 305.5768,ε1=0.0200,σ2=407.4357 ,ε2=0.0500,σ3= 509.2946,ε3=0.0900,σ4= 611.1536,ε4=0.1500,σ5= 713.0125,ε5=0.2300,又由公式(真应变)e=ln(L/L0)=ln(1+ε),(真应力)S=σ(1+ε),计算得:e1=0.0199,S1=311.6883,e2=0.0489,S2=427.8075,e3=0.0864,S3=555.1311,e4=0.1402,S4=702.8266,e5=0.2076,S5=877.0053,又由公式S=Ke n,即lgS=lgK+nlge,可计算出K=1.2379×103,n=0.3521。
11、试述韧性断裂与脆性断裂的区别。
为什么脆性断裂最危险?答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。
韧性断裂:是断裂前产生明显宏观塑性变形的断裂特征:断裂面一般平行于最大切应力与主应力成45度角。
断口成纤维状(塑变中微裂纹扩展和连接),灰暗色(反光能力弱)。
断口三要素:纤维区、放射区、剪切唇这三个区域的比例关系与材料韧断性能有关。
脆性断裂:断裂前基本不发生塑性变形的,突发的断裂。
特征:断裂面与正应力垂直,断口平齐而光滑,呈放射状或结晶状。
注意:脆性断裂也产生微量塑性变形。
断面收缩率小于5%为脆性断裂,大于5%为韧性断裂。
14、通常纯铁的r s=2J/m2,E=2×105MPa,a0=2.5×10-10m,试求其理论断裂强度σm。
解:由公式σm=(Er s/a0)1/2,可得σm=4.0×104MPa。
15、若一薄板内有一条长3mm的裂纹,且a0=3×10-8mm,试求脆性断裂时断裂应力σc(设σm=E/10=2×105MPa)。
解:由公式σm/σc=(a/a0)1/2,a为σc对应的裂纹半长度,即a=1.5mm,σc=28.2845MPa17、断裂强度σc与抗拉强度σb有何区别?答:σc是材料裂纹产生失稳扩展的断裂强度,在应力应变曲线上为断裂时的强度值。
σb是韧性金属试样拉断过程中最大力所对应的应力。
第二次作业(P54)第二章1.解释下列名词2.说明下列力学性能指标的意义3.简述缺口三效应(1)造成应力集中(2)改变了缺口前方的应力状态,使平板中的材料所受应力由原来的单向拉伸变为两向或三向拉伸(3)缺口使塑性材料得到强化9.说明下列工件选用何种硬度试验法解:(1)渗碳层的硬度分布:HK或HV(2)淬火钢:HRC(3)灰铸铁:HB(4)硬质合金:HRA(5)鉴别钢中的隐晶马氏体与残余奥氏体:HV或HK(8)氮化层:HV(10)高速钢刀具:HRC10. 在294.3N(30kgf)载荷下测定某钢材的维氏硬度。
测得压痕对角线长度为0.454mm,试计算该钢材的维氏硬度值,并推算这种钢的抗拉强度值σb(抗拉强度不需要算)。
解:HV=1854.4F/d2,式中F以gf为单位,d以um为单位。
HV=269.9063第三章1解释下列名词2说明下列力学性能指标的意义5下列3组试验方法中,请举出每一组中哪种试验方法测得t K的较高?为什么?(1)拉伸和扭转;(2)缺口静弯曲和缺口扭转弯曲;(3)光滑试样拉伸和缺口试样拉伸。
答:材料的脆性越大,t K越高;同一种材料的脆性则随试验条件而定;(1)拉伸测出的t K比扭转测出的t K高,因为扭转条件下,材料容易产生塑性变形,材料的脆性小。
(2)缺口冲击弯曲测出的t K比缺口静弯曲测出的t K高,因为冲击试验时,加荷速度增加使变形速度增加,结果使塑性变形受到抑制,从而使材料的脆性增加。
(3)缺口试样拉伸测出的t K比光滑试样拉伸测出的t K高,因为缺口使材料的脆性增加。
第三次作业(P84)第四章1.名词解释2.说明下列符号的名称和含义3.说明K I和K IC的异同。
(答案:P68页第四自然段)11.有一构件加工时,出现表面半椭圆裂纹,若a=1mm,a/c=0.3,在σ=1000MPa的应力下工作,对下列材料应选哪一种?(P80页例1类似)σ0.2/MPa 1100 1200 1300 1400 1500110 95 75 60 55K IC/(MPa·m1/2)解:(1)σ/σ0.2=1000/1100= 0.9091>=0.6~0.7,所以必须考虑塑性区的修正问题。
采用下列公式计算K I:其中由第二类椭圆积分:当a/c=0.3时,查表得Ф2=1.19。
将有关数据代入上式,得:K I1=61.2(MPa·m1/2)<K IC1=110(MPa·m1/2)由此可见,K I1<K IC1,说明使用材料1不会发生脆性断裂,可以选用。
由此类推:(2)K I2=60.4(MPa·m1/2)<K IC2=95(MPa·m1/2)由此可见,K I<K IC,说明使用材料2不会发生脆性断裂,可以选用。
(2)K I3=57.9(MPa·m1/2)<K IC3=75(MPa·m1/2)由此可见,K I<K IC,说明使用材料3不会发生脆性断裂,可以选用。
(2)K I4=59.3(MPa·m1/2)≈K IC4=60(MPa·m1/2)由此可见,K I4≈K IC4,说明使用材料4可能会发生脆性断裂,不可以选用。
(2)K I5=58.9(MPa·m1/2)>K IC5=55(MPa·m1/2)由此可见,K I5>K IC5,说明使用材料5会发生脆性断裂,不可以选用。
第四次作业(P108)第五章1.名词解释2.解释下列性能指标的意义4.试述疲劳宏观断口和微观断口的特征及其形成过程或模型。
(P88页)答:(一)疲劳宏观断口(1)具有三个明显特征区:1)疲劳源区:一般较平整和光滑,源区越多,反映外加应力越高,应力集中位置越多或应力集中系数越大,多源断口的源区存在台阶,比较粗糙;2)疲劳裂纹扩展区:常形成海滩花样或贝壳花样,出现疲劳弧线,疲劳源位于疲劳弧线凹的一方;3)瞬断区:视材料塑性显示韧性断裂斜断口或脆性断裂平断口。
(2)形成过程:1)疲劳裂纹萌生疲劳裂纹由不均匀滑移和显微开裂引起,主要方式有:表面滑移带开裂;第二相、夹杂物与基体界面或夹杂物本身开裂;晶界或亚晶界处开裂。
循环载荷作用下,形成驻留滑移带,随着滑移带在表面加宽的过程出现挤出脊和侵入沟,引起应力集中。
2)疲劳裂纹扩展疲劳裂纹萌生后便开始扩展,分为两个阶段,即扩展一阶段是沿着最大切应力方向向内扩展,扩展二阶段是沿垂直拉应力方向向前扩展形成主裂纹,直至最后形成剪切唇。
3)断裂(二)疲劳微观断口(1)特征:1)疲劳辉纹(或疲劳条带):是略呈弯曲并相互平行的沟槽状花样,与裂纹扩展方向相垂直,是裂纹扩展时留下的微观痕迹。
每一条辉纹表示该循环下疲劳裂纹扩展前沿在前进过程中瞬时微观位置,辉纹的数目与载荷循环次数相等。
断裂三阶段的疲劳辉纹略有差异,从疲劳源区到终断区依次是弱波浪条纹、细条纹和深条纹。
2)轮胎压痕(2)形成过程:L-S模型,即刚开始时,裂纹处于闭合状态,随着拉应力的增加到最大值时,裂纹张开至最大,裂尖钝化,向前扩展一段距离;当转入压应力半周期时,滑移沿相反方向进行,原裂纹和新扩展的裂纹表面被压合,裂纹尖端被弯折成一对耳状切口;最大压应力时,裂纹表面完全被压合,裂尖变成一对尖角,向前再扩展一段距离,并在断口上留下一条疲劳条带。
可见在循环应力的作用下,裂纹尖端的钝锐交替变化,反复进行,使新的条带不断形成,疲劳裂纹也就不断向前扩展。
F-R模型,即裂纹扩展是断续的,通过主裂纹前方萌生新裂纹核,长大并与主裂纹连接起来实现。
5.疲劳失效过程可分为哪几个阶段?简述各阶段的机制及提高材料疲劳抗力的主要方法。
答:(1)疲劳失效过程可分为两个阶段,即裂纹萌生、裂纹扩展以及断裂。
(2)裂纹萌生的机理:疲劳裂纹由不均匀滑移和显微开裂引起,主要方式有:表面滑移带开裂;第二相、夹杂物与基体界面或夹杂物本身开裂;晶界或亚晶界处开裂。
循环载荷作用下,形成驻留滑移带,随着滑移带在表面加宽的过程出现挤出脊和侵入沟,引起应力集中。
裂纹扩展的机理:分为两个阶段,即扩展一阶段是沿着最大切应力方向向内扩展,扩展二阶段是沿垂直拉应力方向向前扩展形成主裂纹,直至最后形成剪切唇。
(3)提高疲劳抗力的主要方法:①将材料进行次载锻炼和间歇效应,降低温度,减少腐蚀,可提高材料的疲劳强度,延长疲劳寿命;②表面应仔细加工,尽量减少刀痕、擦伤或大的缺陷,以及尽量降低尺寸效应;③提高机件表面塑性抗力(强度和硬度),降低表面的有效拉应力,如采用表面喷丸及滚压、表面热处理和化学热处理、符合强化等措施,可抑制材料表面疲劳裂纹的萌生和扩展有效的提高疲劳强度。
④进行固溶强化、细晶强化、弥散强化处理,减少非金属夹杂物及冶金缺陷,提高组织均匀性,可提高材料形变抗力和疲劳强度。
8.试述应力集中和应力比对疲劳寿命和疲劳强度的影响规律。
答:应力集中处是机件最薄弱的地方,易形成裂纹,是疲劳源的萌生处。
应力集中越大,材料疲劳强度越低,疲劳寿命也就越短;反之,应力集中越小,材料疲劳强度越高,疲劳寿命也就越长。
应力比r=σmin/σmax。
疲劳强度随应力比的增加而增加,疲劳寿命也之增长。
第五次作业(P122)第六章1 名词解释2磨损有哪几种类型?举例说明它们产生的条件、磨损过程及表面损伤形貌。
答:磨损可分为4类:粘着磨损、磨料磨损、腐蚀磨损及麻点疲劳磨损(接触疲劳)。
(1)粘着磨损1)产生条件:摩擦副相对滑动速度小,接触面氧化薄膜脆弱,润滑条件差,以及接触应力大的滑动摩擦条件下。