01 第1章 地球椭球体的基本公式
- 格式:ppt
- 大小:784.00 KB
- 文档页数:30
椭球体的面积公式(一)
椭球体的面积公式
椭球体及其性质
椭球体是一种三维几何体,它的表面由椭圆绕其较短的轴旋转一周而形成。
椭球体具有一些特殊的性质,如拥有两个焦点、长轴和短轴等。
椭球体的面积公式
椭球体的表面积可以由以下公式计算:
S = 4πab
其中,S表示椭球体的表面积,a和b分别表示椭球体的长轴和短轴的长度。
示例解释
假设有一个椭球体,其长轴长度为10cm,短轴长度为6cm。
现在我们来计算椭球体的表面积。
根据上述公式,我们可以计算得到:
S = 4π(10cm)(6cm) = 240π cm²
因此,该椭球体的表面积为240π平方厘米。
这个例子说明了如何使用椭球体的面积公式进行计算。
只需要知道椭球体的长轴和短轴长度,就可以快速计算出其表面积。
结论
椭球体的面积公式是一个简单而有效的工具,用于计算椭球体的表面积。
通过掌握这个公式,我们可以在实际问题中准确计算椭球体的表面积,为相关领域的研究和工程应用提供了便利。
高斯-克吕格投影与UTM投影高斯-克吕格(Gauss-Kruger)投影与UTM投影(Universal Transverse Mercator,通用横轴墨卡托投影)都是横轴墨卡托投影的变种,目前一些国外的软件或国外进口仪器的配套软件往往不支持高斯-克吕格投影,但支持UTM投影,因此常有把UTM投影当作高斯-克吕格投影的现象。
从投影几何方式看,高斯-克吕格投影是“等角横切圆柱投影”,投影后中央经线保持长度不变,即比例系数为1;UTM投影是“等角横轴割圆柱投影”,圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条割线上没有变形,中央经线上长度比0.9996。
从计算结果看,两者主要差别在比例因子上,高斯-克吕格投影中央经线上的比例系数为1, UTM投影为0.9996,高斯-克吕格投影与UTM投影可近似采用 X[UTM]=0.9996 * X[高斯],Y[UTM]=0.9996 * Y[高斯],进行坐标转换(注意:如坐标纵轴西移了500000米,转换时必须将Y 值减去500000乘上比例因子后再加500000)。
从分带方式看,两者的分带起点不同,高斯-克吕格投影自0度子午线起每隔经差6度自西向东分带,第1带的中央经度为3°;UTM投影自西经180°起每隔经差6度自西向东分带,第1带的中央经度为-177°,因此高斯-克吕格投影的第1带是UTM的第31带。
此外,两投影的东伪偏移都是500公里,高斯-克吕格投影北伪偏移为零,UTM北半球投影北伪偏移为零,南半球则为10000公里。
高斯-克吕格投影与UTM投影坐标系高斯- 克吕格投影与UTM投影是按分带方法各自进行投影,故各带坐标成独立系统。
以中央经线(L0)投影为纵轴X,赤道投影为横轴Y,两轴交点即为各带的坐标原点。
为了避免横坐标出现负值,高斯- 克吕格投影与UTM北半球投影中规定将坐标纵轴西移500公里当作起始轴,而UTM南半球投影除了将纵轴西移500公里外,横轴南移10000公里。
§7.1地球椭球的基本几何参数及相互关系7.1.1地球椭球的基本几何参数地球椭球参考椭球 具有一定的几何参数、定位及定向的用以代表某一地区大地水准面的地球椭球叫做参考椭球。
地面上一切观测元素都应归算到参考椭球面上,并在该面上进行计算,它是大地测量计算的基准面,同时又是研究地球形状和地图投影的参考面。
有关元素O 为椭球中心;NS 为旋转轴;a 为长半轴;b 为短半轴;子午圈(或径圈或子午椭圆);平行圈(或纬圈);赤道。
旋转椭球的形状和大小是由子午椭圆的五个基本几何参数(元素)来决定的,即:椭圆的长半轴: a椭圆的短半轴: b椭圆的扁率: α=-a b a (7-1)椭圆的第一偏心率: ab a e 22-= (7-2) 椭圆的第二偏心率: b b a e 22 -=' (7-3)其中:a 、b 称为长度元素;扁率α反映了椭球体的扁平程度,如α=0时,椭球变为球体;α=1时,则为平面。
e 和e /是子午椭圆的焦点离开中心的距离与椭圆半径之比,它们也反映了椭球体的扁平程度,偏心率越大,椭球愈扁。
五个参数中,若知道其中的两个参数就可决定椭球的形状和大小,但其中至少应已知一个长度元素(如a 或b ),人们习惯于用a 和α表示椭球的形状和大小,便于级数展开。
引入下列符号:ba c 2= tgB t =B e 222cos '=η (7-4)式中B 为大地纬度,c 为极曲率半径(极点处的子午线曲率半径), 两个常用的辅助函数,W 第一基本纬度函数,V 第二基本纬度函数,B e V B e W 2222cos 1sin 1'+=-= (7-5)传统大地测量利用天文大地测量和重力测量资料推求地球椭球的几何参数,自1738年(法国)布格推算出第一个椭球参数以来,200多年间各国大地测量工作者根据某一国或某一地区的资料,求出了数目繁多,数值各异的椭球参数。
由于卫星大地测量的发展,使推求总地球椭球体参数成为可能,自1970年以后的椭球参数都采用了卫星大地测量资料。
地球椭球体的基本要素和公式麻辣GIS 地球椭球体的基本要素分为:长半径a(赤道半径)短半径b(极轴半径)扁率α第一偏心率和第二偏心率e, e’数学公式:α=(a−b)/a=1−b/ae2=(a2−b2)/a2=1−b2/a2e′2=(a2−b2)/b2=a2−b2−1e2=e′2/(1+e′2)e′2=e2/(1−e2)e2≈2α扁率和偏心率反映地球椭球体的扁平程度。
2.子午圈曲率半径和卯酉圈曲率半径法截面设过椭球面上任一点A作法线AL,通过A点法线的平面所截成的截面。
主法截面通过AL两个相互垂直法截面。
含有极值意义的两个主法截面是: 子午圈截面(AE1P1EP) 卯酉圈截面(QAW)如图:计算公式:M=a(1−e2)/(1−e2sin2ϕ)3/2N=a/(1−e2sin2ϕ)1/2上述公式中:a:长半径 e:第一偏心率 ϕ:纬度当椭球体选定后,a,e为常数;M,N随纬度的变化而变化。
当ϕ=00时M0=a(1−e2)N0=a当ϕ=900时M90=a/(1−e2)1/2N90=a/(1−e2)1/23.平均曲率半径和纬圈半径平均曲率半径(R)主法截面曲率半径的几何中数。
R=(M∗N)1/2=a(1−e2)1/2/(1−e2sin2ϕ)纬圈半径(r)r=Ncosϕ=acosϕ/(1−e2sin2ϕ)1/2在赤道上,ϕ=00,r=N=a在两极,ϕ=900,r=04.子午线弧长和纬线弧长子午线弧长:就是椭圆的弧长。
¯¯¯¯¯¯¯¯¯AA′=ds=Mdϕ=a(1−e2)dϕ/(1−e2sin2ϕ)3/2纬线(平行圈)的弧长:由于纬线为圆弧,故可应用圆周弧长的公式。
结论1. 同纬差的子午线弧长由赤道向两极逐渐增加,例如纬差 10的子午线弧长在赤道为110576米,而在两极为111695米;2. 同经差的纬线弧长则由赤道向两极缩短。
地球椭球体(Ellipsoid)、大地基准面(Datum)及地图投影(Projection)三者的基本概念地球椭球体(Ellipsoid)众所周知我们的地球表面是一个凸凹不平的表面,而对于地球测量而言,地表是一个无法用数学公式表达的曲面,这样的曲面不能作为测量和制图的基准面。
假想一个扁率极小的椭圆,绕大地球体短轴旋转所形成的规则椭球体称之为地球椭球体。
地球椭球体表面是一个规则的数学表面,可以用数学公式表达,所以在测量和制图中就用它替代地球的自然表面。
因此就有了地球椭球体的概念。
地球椭球体有长半径和短半径之分,长半径(a)即赤道半径,短半径(b)即极半径。
f=(a-b)/a为椭球体的扁率,表示椭球体的扁平程度。
由此可见,地球椭球体的形状和大小取决于a、b、f 。
因此,a、b、f被称为地球椭球体的三要素。
对地球椭球体而言,其围绕旋转的轴叫地轴。
地轴的北端称为地球的北极,南端称为南极;过地心与地轴垂直的平面与椭球面的交线是一个圆,这就是地球的赤道;过英国格林威治天文台旧址和地轴的平面与椭球面的交线称为本初子午线。
以地球的北极、南极、赤道和本初子午线等作为基本要素,即可构成地球椭球面的地理坐标系统(A geographic coordinate system (GCS) uses a threedimensional spherical surface to define locations on the earth.A GCS includes an angular unit of measure, a prime meridian,and a datum (based on a spheroid).)。
可以看出地理坐标系统是球面坐标系统,以经度/维度(通常以十进制度或度分秒(DMS)的形式)来表示地面点位的位置。
地理坐标系统以本初子午线为基准(向东,向西各分了1800)之东为东经其值为正,之西为西经其值为负;以赤道为基准(向南、向北各分了900)之北为北纬其值为正,之南为南纬其值为负。
椭球体的面积公式椭球体是一种三维图形,它是一个既不完全平坦也不完全圆滑的物体,由于其形状与椭圆类似,所以称之为椭球体。
椭球体在空间几何中起着重要的作用,具有广泛的应用,如地理学、天文学和力学等领域。
在数学中,椭球体的面积是通过计算其表面积来确定的。
椭球体的表面积可以通过两种方法进行计算:数学公式和数值逼近法。
在本文中,我们将讨论这两种方法。
1.数学公式:椭球体的表面积公式可以通过计算其每个点的表面积元素之和来确定。
下面是椭球体的表面积公式:S = 4πa² + 2πab其中S表示椭球体的表面积,a和b分别是椭球体的长半轴和短半轴。
2.数值逼近法:数值逼近法是通过将椭球体分割成许多小的表面元素,并对每个元素的面积进行计算,最后将其求和来确定椭球体的表面积。
这种方法通常使用数值积分技术来求解。
我们可以将椭球体分割成许多小的表面元素,例如使用球坐标系,通过选择合适的角度和区域来确定每个表面元素的位置和大小。
然后,我们可以使用数值积分方法,如数值微积分或数值逼近,对每个表面元素的面积进行计算。
在计算每个表面元素的面积时,我们可以使用微小椭球体的表面积公式来进行逼近。
微小椭球体的表面积可以通过近似视为一个与球体表面相切的球冠的表面积来计算。
然后,通过将所有微小椭球体的表面积求和,我们可以得到整个椭球体的表面积。
除了数学公式和数值逼近法以外,还有一种直观的方法来估算椭球体的表面积,即通过将椭球体切割成多个小的平面形状,例如长方形或三角形,并计算每个平面形状的表面积,然后将其求和。
然而,这种方法通常只适用于近似计算,结果可能不是非常精确。
综上所述,椭球体的表面积可以通过数学公式、数值逼近法或直观的切割法来计算。
每种方法都有其应用场景和适用范围,在实际问题中应根据具体情况选择合适的方法来求解椭球体的表面积。
椭球面坐标与大地测量的转换方法与公式椭球面坐标是地球表面上的一种坐标系统, 它将地球视为一个近似椭球体, 提供了一种测量和计算地球上点的方法。
在实际的测量和定位任务中, 经常需要将椭球面坐标转换为其他坐标系统, 或者反过来。
这就需要使用一些转换方法和公式。
一、椭球面坐标系统椭球面坐标系统是大地测量学中常用的一种坐标系统。
它使用经度、纬度和高程来描述地球上的点。
其中,经度表示点在东西方向上的位置,纬度表示点在南北方向上的位置,而高程表示点相对于基准面的高度。
在椭球面坐标系统中,常用的参考椭球体包括WGS84、CGCS2000等。
二、椭球面坐标与地心坐标的转换将椭球面坐标转换为地心坐标是大地测量中常见的任务。
地心坐标是以地球质心为原点的坐标系统,它与椭球体的长短轴、扁率等参数有关。
在转换过程中,需要考虑到椭球体的参数,包括椭球体的半长轴a、扁率f等。
常用的转换方法包括勒让德多项式展开法、球面三角法等。
三、椭球面坐标与笛卡尔坐标的转换将椭球面坐标转换为笛卡尔坐标是另一个常见的任务。
笛卡尔坐标是三维坐标系,它使用直角坐标系来表示地球上的点。
在转换过程中,需要考虑到椭球体的参数,包括椭球体的半长轴a、扁率f等。
常用的转换方法包括克里金插值法、最小二乘法等。
四、大地测量中的应用椭球面坐标与大地测量的转换方法和公式在实际测量和定位任务中发挥着重要的作用。
它们被广泛应用于地理信息系统、导航定位、地质勘探等领域。
例如,在导航定位中,利用椭球面坐标与笛卡尔坐标的转换,可以实现卫星导航系统的精确定位。
在地质勘探中,利用椭球面坐标与地心坐标的转换,可以确定地下矿藏的位置和分布。
总结:椭球面坐标与大地测量的转换方法与公式是地球科学中的重要内容。
通过了解和掌握这些方法和公式,我们可以更好地进行地球测量和定位任务。
椭球面坐标系统提供了一种描述地球表面上点的方式,而转换方法和公式则是实现不同坐标系统之间转换的关键。
在实际应用中,我们需要根据具体任务的要求选择适当的转换方法和公式,以保证测量和定位的精度和准确性。