初中数学分类讨论问题专题.doc上课
- 格式:doc
- 大小:255.00 KB
- 文档页数:9
2014-03教学研究《义务教育数学课程标准》明确提出:“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验”。
把数学思想、方法作为基础知识的重要组成部分,在《义务教育数学课程标准》中明确提出来,这不仅是课标体现义务教育性质的重要表现,也是对学生实施创新教育、培训创新思维的重要保证。
由于初一学生刚升入初中,受小学数学思维定式的影响,往往对分类讨论的问题容易出错,得出的答案不全,这就需要我们教师逐步渗透分类讨论思想。
所谓分类讨论,就是当问题所给的对象不能进行统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结果,最后综合各类结果得到整个问题的解答。
实质上,分类讨论是“化整为零,各个击破,再积零为整”的数学策略。
分类讨论思想,贯穿于整个中学数学的全部内容中。
应用分类讨论,往往能使复杂的问题简单化。
分类的过程,可培养学生思考的周密性和条理性,而分类讨论,又促进学生研究问题、探索规律的能力。
分类讨论一般应遵循同一性原则、相称性原则、互斥性原则、层次性原则。
下面就七年级数学上册中引起分类讨论的一些常见情况作一归纳。
一、在定义中渗透分类思想有些数学概念是分类定义的,例如,对有理数进行分类。
将有理数按性质分为正有理数、零、负有理数,将有理数按定义分为整数、分数,让学生辨别不同分类的依据,初步体会分类要不重复,不遗漏,标准不同则分类不同的基本原则,所以应用这些概念解题时,就需进行分类讨论。
再如,“-a一定是负数吗?”启发学生分a>0,a=0,a<0三种情况考虑。
在学习绝对值的定义时,要有意识地启发学生从有理数分类进行认知的迁移,帮助学生概括a>0,a=0,a<0时应如何表示,并要求学生能做一些简单的化简题。
化简式子|4x-4|,就要考虑x>14、x=14、x<14三种情况来讨论。
分类讨论思想在初中数学解题教学中的运用探究一、分类讨论思想的基本概念分类讨论思想是指将问题或事物按某种特定的标准进行分类,然后依次讨论各个类别中的具体内容,最后综合分类的结果来得出结论的一种思维方法。
在数学解题中,分类讨论思想常常用于分析不同情况下的解题方法,进而得出最终的解题结论。
在解决一个较为复杂的数学问题时,我们可以先将问题进行分类,然后分别讨论各个类别中的解题方法,最后再将各个类别的解题结果进行合并,得出最终的解题结论。
1. 引导学生灵活分类在初中数学解题教学中,教师可以通过引导学生灵活分类来启发学生的思维,帮助他们更好地理解和掌握解题方法。
在解决“集合”的问题时,教师可以要求学生根据不同的条件将集合进行分类,然后分别讨论各个分类的特点和解题方法,最后再将各个分类的解题结果进行总结。
通过这种方式,学生可以更加清晰地理解集合的概念和解题方法,从而提高他们的解题能力。
2. 激发学生的探究兴趣3. 提高学生的综合分析能力4. 培养学生的逻辑思维能力三、思考与建议分类讨论思想在初中数学解题教学中的运用,为提高学生的解题能力和思维能力提供了有益的启示。
在实际教学中,教师们还需要注意以下几点:1. 灵活运用分类讨论思想在初中数学解题教学中,教师需要根据具体的教学内容和学生的实际情况,灵活运用分类讨论思想来解决数学问题。
只有灵活运用分类讨论思想,才能更好地激发学生的学习兴趣,提高他们的解题能力。
2. 注重引导学生分析问题3. 多种方式引导学生实践分类讨论思想在初中数学解题教学中的运用,有助于提高学生的解题能力和思维能力。
教师们需要灵活运用分类讨论思想,注重引导学生分析问题,通过多种方式引导学生实践,从而更好地提高学生的解题能力和思维能力。
相信随着教师们不断的探索和实践,分类讨论思想的应用将会为初中数学解题教学带来新的活力和效果。
中考数学专题复习——分类讨论问题一、教学目标使学生养成分类讨论思想,并掌握一定的分类技巧,以及常见题型的分类方法。
形成一定的分类体系,对待问题能有更严谨、缜密的思维。
二、教学重点对常见题型分类方法的掌握;能够灵活运用一般的分类技巧。
三、教学难点对于分类的“界点”、“标准”把握不准确,容易出现重复解、漏解等现象。
四、板书设计1:分式方程无解的分类讨论问题;2:“一元二次”方程系数的分类讨论问题;3:三角形、圆等几何图形相关量求解的分类讨论问题;4:分类问题在动点问题中的应用;4.1常见平面问题中动点问题的分类讨论;4.2组合图形(二次函数、一次函数、平面图形等组合)中动点问题的分类。
1:分式方程无解的分类讨论问题例题1:(2011武汉)=+=-+-a 349332无解,求x x ax x 解:去分母,得:1.6,801a 31-a 21-31-a 21-211-a )3(4)3(3=-==∴=-=-=-=⇒-=++a a a x x ax x 或者或或由已知)( 猜想:把“无解”改为“有增根”如何解? 68-==a a 或例题2:(2011郴州) ==--+a 2112无解,求x a x2:“一元二次”方程系数的分类讨论问题例题3:(2010上海)已知方程01)12(22=+++x m x m 有实数根,求m 的取值范围。
(1) 当02=m 时,即m=0时,方程为一元一次方程x+1=0,有实数根x=1-(2) 当02≠m 时,方程为一元二次方程,根据有实数根的条件得:41-m ,0144)12(22≥≥+=-+=∆即m m m ,且02≠m 综(1)(2)得,41-≥m 常见病症:(很多同学会从(2)直接开始而且会忽略02≠m 的条件)总结:字母系数的取值范围是否要讨论,要看清题目的条件。
一般设置问题的方式有两种(1)前置式,即“二次方程”;(2)后置式,即“两实数根”。
这都是表明是二次方程,不需要讨论,但切不可忽视二次项系数不为零的要求,本题是根据二次项系数是否为零进行讨论的。
“分类讨论”专题练习1.已知AB 是圆的直径,AC 是弦,AB =2,AC =2,弦AD =1,则∠CAD = .2. 若(x 2-x -1)x +2=1,则x =___________.3. 已知等腰三角形一腰上的中线将它的周长分为9和12两部分,则腰长为,底边长为_______.4.若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b(a>b),则此圆的半径为( ) A.2a b+ B.2a b- C.2a b +或2a b- D. a+b 或a-b5.同一平面上的四个点,过每两点画一直线,则直线的条数是( ) A.1 B.4 C.6 D.1或4或66. 若||3,||2,,( )a b a b a b ==>+=且则A .5或-1B .-5或1C .5或1D .-5或-1 7.已知抛物线y =ax 2+bx +c 经过点(1,2).(1)若a =1,抛物线顶点为A ,它与x 轴交于两点B 、C ,且△ABC 为等边三角形,求b 的值.(2)若abc =4,且a ≥b ≥c ,求|a |+|b |+|c |的最小值.8.长宽都为整数的矩形,可以分成边长都为整数的小正方形。
例如一个边长2⨯4的矩形:可以分成三种情况: (1)(2)一个长宽为3⨯6的矩形,可以怎样分成小正方形,请画出你的不同分法。
9.已知(1)A m -,与(2B m +,是反比例函数ky x=图象上的两个点. (1)求k 的值;(2)若点(10)C -,,则在反比例函数ky x=图象上是否存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形?若存在,求出点D 的坐标;若不存在,请说明理由.分成两个正方形,面积分别为4,4分成8个正方形,面积每个都是1分成5个正方形,1个面积为4,4个面积是110.如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A C ,在坐标轴上,60cm OA =,80cm OC =.动点P 从点O 出发,以5cm/s 的速度沿x 轴匀速向点C 运动,到达点C 即停止.设点P 运动的时间为s t . (1)过点P 作对角线OB 的垂线,垂足为点T .求PT 的长y 与时间t 的函数关系式,并写出自变量t 的取值范围;(2)在点P 运动过程中,当点O 关于直线AP 的对称点O '恰好落在对角线OB 上时,求此时直线AP 的函数解析式; (3)探索:以A P T ,,三点为顶点的APT △的面积能否达到矩形OABC 面积的14?请说明理由.答案:1. 15°或105°2. 2、-1、0、-23. 腰长6底边9或腰长8底边54.C5.D6.C7. 解:⑴由题意,a +b +c =2, ∵a =1,∴b +c =1 抛物线顶点为A (-b 2,c -b 24)设B (x 1,0),C (x 2,0),∵x 1+x 2=-b ,x 1x 2=c ,△=b 2-4c >0 ∴|BC|=| x 1-x 2|=| x 1-x 2|2=(x 1+x 2)2-4 x 1x 2=b 2-4c ∵△ABC 为等边三角形,∴b 24 -c = 32b 2-4c即b 2-4c =23·b 2-4c ,∵b 2-4c >0,∴b 2-4c =2 3∵c =1-b , ∴b 2+4b -16=0, b =-2±2 5 所求b 值为-2±2 5⑵∵a ≥b ≥c ,若a <0,则b <0,c <0,a +b +c <0,与a +b +c =2矛盾. ∴a >0. ∵b +c =2-a ,bc =4a∴b 、c 是一元二次方程x 2-(2-a )x +4a =0的两实根.∴△=(2-a )2-4×4a≥0,∴a 3-4a 2+4a -16≥0, 即(a 2+4)(a -4)≥0,故a ≥4. ∵abc >0,∴a 、b 、c 为全大于0或一正二负.①若a 、b 、c 均大于0,∵a ≥4,与a +b +c =2矛盾; ②若a 、b 、c 为一正二负,则a >0,b <0,c <0, 则|a |+|b |+|c |=a -b -c =a -(2-a )=2a -2, ∵ a ≥4,故2a -2≥6当a =4,b =c =-1时,满足题设条件且使不等式等号成立. 故|a |+|b |+|c |的最小值为6. 8.分7种情况画图9.解:(1)由()332)1(+⋅=⋅-m m ,得m =-,因此k =(2)如图1,作BE x ⊥轴,E 为垂足,则3CE =,BE =,BC =因此30BCE =∠.由于点C 与点A 的横坐标相同,因此CA x ⊥轴,从而120ACB =∠. 当AC 为底时,由于过点B 且平行于AC 的直线与双曲线只有一个公共点B ,故不符题意.当BC 为底时,过点A 作BC 的平行线,交双曲线于点D , 过点A D ,分别作x 轴,y 轴的平行线,交于点F .由于30DAF =∠,设11(0)DF m m =>,则1AF ,12AD m =,由点(1A --,,得点11(1)D m --,.因此()()32323111=+-+-m m ,解之得1m =10m =舍去),因此点6D ⎛ ⎝⎭.此时的长度不等,故四边形ADBC 是梯形.如图2,当AB 为底时,过点C 作AB 的平行线,与双曲线在第一象限内的交点为D . 由于AC BC =,因此30CAB =∠,从而150ACD =∠.作DH x ⊥轴,H 为垂足, 则60DCH =∠,设22(0)CH mm =>,则2DH =,由点(10)C -,,得点22(1)D m -+, 因此()323122=⋅+-m m .解之得22m =(21m =-舍去),因此点(1D . 此时4CD =,与AB 的长度不相等,故四边形ABDC 是梯形.如图3,当过点C 作AB 同理可得,点(2D --,,四边形ABCD 是梯形. 综上所述,函数y x=图象上存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形,点D 的坐标为:6D ⎛ ⎝⎭或(1D 或(2D --,. 图1图2 图310.解:(1)在矩形OABC 中,60OA =,80OC =,100OB AC ∴===PT OB ⊥,Rt Rt OPT OBC ∴△∽△. PT OP BC OB ∴=,即560100PT t=,3y PT t ∴== 当点P 运动到C 点时即停止运动,此时t 的最大值为80165=.所以,t 的取值范围是016t ≤≤.(2)当O 点关于直线AP 的对称点O '恰好在对角线OB 上时,A T P ,,三点应在一条直线上(如答图2).AP OB ∴⊥,12∠=∠. Rt Rt AOP OCB ∴△∽△,OP AOCB OC∴=. 45OP ∴=.∴点P 的坐标为(450),设直线AP 的函数解析式为y kx b =+.将点(060)A ,和点(450)P ,代入解析式,得60045.a b k b =+⎧⎨=+⎩,解这个方程组,得4360.k b ⎧=-⎪⎨⎪=⎩, ∴此时直线AP 的函数解析式是4603y x =-+.(3)由(2)知,当4595t ==时,A T P ,,三点在一条直线上,此时点A T P ,, 不构成三角形.故分两种情况:(i )当09t <<时,点T 位于AOP △的内部(如答图3).过A 点作AE OB ⊥,垂足为点E ,由AO AB OB AE =可得48AE =.APT AOP ATO OTP S S S S ∴=--△△△△211160544843654222t t t t t t =⨯⨯-⨯⨯-⨯⨯=-+. 若14APT OABC S S =△矩形,则应有26541200t t -+=,即292000t t -+=.此时,2(9)412000--⨯⨯<,所以该方程无实数根.所以,当09t <<时,以A P T ,,为顶点的APT △的面积不能达到矩形OABC 面积的14.(答图2)(答图1)(ii )当916t <≤时,点T 位于AOP △的外部.(如答图4)此时2654APT ATO OTP AOP S S S S t t =+-=-△△△△.若14APT OABC S S =△矩形,则应有26541200t t -=,即292000t t --=.解这个方程,得192t +=,2902t -=<(舍去).由于288162525>=,991722t +∴=>=.而此时916t <≤,所以92t +=也不符合题意,故舍去. 所以,当916t <≤时,以A P T ,,为顶点的APT △的面积也不能达到矩形OABC 面积的14. 综上所述,以A P T ,,为顶点的APT △的面积不能达到矩形OABC 面积的14.。
分类讨论有一类数学题,我们在解答时,需要根据研究对象性质的差异将它分为不同的情况加以分析考查.这一类试题,我们称之为分类讨论题.解决分类讨论题首先要弄清分类的方法和原则,分类时要考虑研究对象的相同点和差异点,将它划分为不同种类加以分析和研究.分类时必须遵循以下原则:(1) 分类中的每个分支是相互独立的,不能有重复情况出现;(2) 分类时标准要统一,不能有遗漏情况出现;(3) 分类讨论应逐级进行.解决分类讨论题的基本方法和步骤是:(1) 确定研究对象的全体范围;(2) 确定分类标准,合理地进行分类;(3) 逐级对所分类别进行讨论,获取阶段性结果;(4) 综合各级结果,得出最终结论.分类讨论的类型:1、 概念分类讨论① a ≥0 , |a |=a⑴ 绝对值② a <0 , |a |=-a【例1】(2009·孝感)若m n n m -=-,且4m =,3n =,则2()m n += .⑵ 等腰三角形的底角和顶角 ⑶ 等腰三角形的底边和腰 ⑷ 直角三角形的直角边和斜边 ⑸ 平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的弧(①优弧;②劣弧)⑹ 点与弦的位置关系2、 性质型分类有一些数学定理、公式以及性质等等具有使用范围或者是分类给出的,这就要求我们在运用它们时一定要分情况讨论【例2】(2008·威海)已知二次函数c bx ax y ++=2的图象过点A (1,2),B (3,2),C (5,7).若点M (-2,y 1),N (-1,y 2),K (8,y 3)也在二次函数c bx ax y ++=2的图象上,则下列结论正确的是 ( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 2【例3】(2008·株州)已知函数1y x=的图象如下,当1x ≥-时,y 的取值范围是( )A .1y <-B .1y ≤-C .1y ≤- 或O -1-1X0y >D .1y <-或0y ≥3、 参数型分类讨论解答含有字母系数(参数)的题目时,需要根据字母(参数)的不同取值范围进行讨论【例4】(2009·凉山州)若0ab <,则正比例函数y ax =与反比例函数b y x=在同一坐标系中的大致图象可能是( )【例5】(2008·贵阳)对任意实数x ,点2(2)P x x x -,一定不在..( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【例6】(2009·荆门)关于x 的方程ax 2-(a +2)x +2=0只有一解(相同解算一解),则a 的值为 ( )(A)a =0. (B)a =2. (C)a =1. (D)a =0或a =2.4、 解集型分类讨论求一元二次不等式及分式不等式的解集时,可以利用有理的乘(除)法法则“两数相乘(除),同号得正,异号得负”来分类,把它们转化为几个一元一次不等式组来求解【例7】(2009·深圳)先阅读理解下面的例题,再按要求解答:例题:解一元二次不等式290x ->.解:∵29(3)(3)x x x -=+-,∴(3)(3)0x x +->.由有理数的乘法法则“两数相乘,同号得正”,有(1)3030x x +>⎧⎨->⎩ (2)3030x x +<⎧⎨-<⎩解不等式组(1),得3x >,解不等式组(2),得3x <-,故(3)(3)0x x +->的解集为3x >或3x <-,即一元二次不等式290x ->的解集为3x >或3x <-.问题:求分式不等式51023x x +<-的解集. 5、 统计型分类讨论有一类问题在求一组数据的平均数、众数或中位数时,由于题设的不确定性,往往需要分类讨论才能获得完整的答案.【例8】(2009·牡丹江)已知三个不相等的正整数的平均数、中位数都是3,则这三个数分别为 .6、 方案设计型分类讨论在日常生活中,针对同一问题,借助于分类讨论的思想往往可以得出不同的解决方案【例9】(2009·绥化)一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,且每个房间都住满,租房方案有 ( ) y x O yx Oy x O y x O B .。
例析初一数学中的分类讨论问题
分类讨论作为一种教学方式,是初中阶段数学教学中最重要的教学形式之一,其教学内容涉及几何、基本运算、有理数与无理数等。
分类讨论能让学生们深入地探究数学知识,例如,以几何中关于根据两个点之间的距离来推断出一条直线上的其他点,它其实是在分类讨论中被提出并进行更深入分析来加深学习的一个重点问题。
在初一数学中,分类讨论是学生将学习到的数学知识联系起来、思考回答问题的一种非常重要的教学方式。
通过分类讨论的方式,学生们可以将之前学习过的内容,按照类别联系起来,例如:初一数学中,物体绕着图形旋转时发生的变化情况,这种现象其实是多类问题的总称,包括椭圆、圆形、抛物线等,分类讨论是通过将其进行分类分析,再根据每类的特点来提出正确的结论的一个重点。
另外,也可以将初一数学学习的数与比联系起来,即“分式”,这一概念也是分类讨论的重点,学生们可以将概念分为一元分式、二元分式以及分式运算等几大类,根据不同类别的情况,来推断出正确的结果。
因此,分类讨论是学习初一数学最重要的教学设计之一,它涉及到从数学概念到数学应用的多个方面,有利于学生提升数学素养以及科学思维能力。
同时,分类讨论还可以激发学生们学习数学的兴趣,增强学生们对数学学科的钟爱之情,从而拥有一个深刻而系统的数学知识体系。
初中数学分类讨论专题
1. 哎呀呀,初中数学的分类讨论可太有意思啦!就说解不等式的时候吧,比如x²-5x+6>0,我们是不是得考虑各种情况来求解呀!这就像走迷宫,
得找对每条路才行呢!
2. 嘿,你知道吗?图形的分类讨论也超有趣!像判断等腰三角形的时候,到底是哪两条边相等呢?这可得仔细琢磨呀,就如同在玩找不同的游戏一样!
3. 哇塞,分类讨论在函数问题中也常常出现呢!假如已知一个函数图像,要确定解析式,那可得把不同情况都考虑进去呀,这难道不是像拼凑一幅神秘的拼图吗?
4. 哟呵,在几何证明中,分类讨论也是必不可少的!比如点的位置不确定时,那证明的思路可能完全不同哦,这就好比在选择不同的冒险路线!
5. 嘿呀,计算概率的时候也得分类讨论呢!比如说扔骰子出现不同情况的概率,是不是得一种一种算呀,这多像在收集各种宝贝呀!
6. 哎呀,方程有时候也需要分类讨论呢!比如含绝对值的方程,得根据绝对值里面的正负情况来分别求解,这就像在解开一团乱麻!
7. 哇哦,角度的分类讨论可不能忽视呀!像三角形中锐角、直角、钝角的情况,都得考虑到呢,这多像在整理一个多彩的调色盘!
8. 嘿,动点问题更是分类讨论的典型啦!那个点动起来,情况可就复杂啦,就像在看一场刺激的赛车比赛!
9. 总之呀,初中数学的分类讨论专题真的超级重要呢!它能让我们的思维变得更加灵活,解题更加得心应手!就像是给我们的大脑加上了一对翅膀,能在数学的天空中自由翱翔!。
专题14 动点在四边形中的分类讨论【专题说明】动点问题是中考中非常重要的一类问题,也是中考中的热点问题。
动点问题体现了数学中变化的思想,分类讨论的思想,对学生综合运用知识的能力要求非常高。
四边形中的动点问题是一类非常重要的问题,它将三角形和平行四边形、矩形、菱形、正方形结合在一起进行考察。
一、解题基本思路解决动点问题的思路,要注意以下几点:1、设出未知数动点问题一般都是求点的运动时间,通常设运动时间为t2、动点的运动路径就是线段长度题目通常会给动点的运动速度例如每秒两个单位,那么运动路程就是2t个单位。
而2t也就是这个点所运动的线段长。
进而能表示其他相关线段的长度。
所以我们在做动点问题的时候,第一步就是把图形中的线段都用含t的代数式来表示。
3、方程思想求出时间动点问题通常都是用方程来解决,根据题目找到线段之间的等量关系,然后用含有t的代数式表示出来,列出方程求解出t的值。
4、难点是找等量关系这种题的难点是找到等量关系。
这个等量关系往往不是题目中用语言叙述出来的,而是同学们根据题型自己挖掘出来的等量关系,所以对同学们图形分解的能力以及灵活运用知识的能力要求非常高。
5、注意分类讨论因为点的运动的位置不同,形成的图形就不同,符合结论的情况可能就不止一种,所以做动点问题要注意分类讨论。
【精典例题】1、如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,x ),则AP=2x cm,CM=3x cm,DN=x2cm.若BQ=x cm(0(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x 为何值时,以P ,Q ,M ,N 为顶点的四边形是平行四边形;(3)以P ,Q ,M ,N 为顶点的四边形能否为等腰梯形?如果能,求x 的值;如果不能,请说明理由.【解析】(1)当点P 与点N 重合或点Q 与点M 重合时,以PQ ,MN 为两边,以矩形的边(AD 或BC )的一部分为第三边可能构成一个三角形. ①当点P 与点N 重合时,(舍去).因为BQ +CM =,此时点Q 与点M 不重合.所以符合题意. ①当点Q 与点M 重合时,.此时,不符合题意.故点Q 与点M 不能重合.所以所求x 的值为.(2)由(1)知,点Q 只能在点M 的左侧,①当点P 在点N 的左侧时,由,解得. 当x =2时四边形PQMN 是平行四边形.①当点P 在点N 的右侧时,由, 解得.当x =4时四边形NQMP 是平行四边形.所以当时,以P ,Q ,M ,N 为顶点的四边形是平行四边形.(3)过点Q ,M 分别作AD 的垂线,垂足分别为点E ,F .由于2x >x ,所以点E 一定在点P 的左侧. 若以P ,Q ,M ,N 为顶点的四边形是等腰梯形, 则点F 一定在点N 的右侧,且PE =NF , 即.解得.由于当x =4时, 以P ,Q ,M ,N 为顶点的四边形是平行四边形,所以,以P ,Q ,M ,N 为顶点的四边形不能为等腰梯形2、如图1,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (1, 0)、C (3, 0)、D (3, 4).以A 为顶点的抛212220211211x x x x +==-=--由,得,34(211)20x x +=-<211x =-320,5x x x +==由得22520DN x ==>211-220(3)20(2)x x x x -+=-+120()2x x ==舍去,220(3)(2)20x x x x -+=+-1210()4x x =-=舍去,24x x ==或223x x x x -=-120()4x x ==舍去,ABDCPQ MN物线y =ax 2+bx +c 过点C .动点P 从点A 出发,沿线段AB 向点B 运动,同时动点Q 从点C 出发,沿线段CD 向点D 运动.点P 、Q 的运动速度均为每秒1个单位,运动时间为t 秒.过点P 作PE ①AB 交AC 于点E .(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)过点E 作EF ①AD 于F ,交抛物线于点G ,当t 为何值时,①ACG 的面积最大?最大值为多少? (3)在动点P 、Q 运动的过程中,当t 为何值时,在矩形ABCD 内(包括边界)存在点H ,使以C 、Q 、E 、H 为顶点的四边形为菱形?请直接写出t 的值.图1 思路点拨1.把①ACG 分割成以GE 为公共底边的两个三角形,高的和等于AD . 2.用含有t 的式子把图形中能够表示的线段和点的坐标都表示出来.3.构造以C 、Q 、E 、H 为顶点的平行四边形,再用邻边相等列方程验证菱形是否存在. 满分解答(1)A (1, 4).因为抛物线的顶点为A ,设抛物线的解析式为y =a (x -1)2+4,代入点C (3, 0),可得a =-1.所以抛物线的解析式为y =-(x -1)2+4=-x 2+2x +3. (2)因为PE //BC ,所以2AP AB PE BC ==.因此1122PE AP t ==.所以点E 的横坐标为112t +. 将112x t =+代入抛物线的解析式,y =-(x -1)2+4=2144t -.所以点G 的纵坐标为2144t -.于是得到2211(4)(4)44GE t t t t =---=-+.因此22111()(2)1244ACG AGE CGE S S S GE AF DF t t t ∆∆∆=+=+=-+=--+. 所以当t =1时,①ACG 面积的最大值为1.(3)2013t =或20t =-考点伸展第(3)题的解题思路是这样的:因为FE //QC ,FE =QC ,所以四边形FECQ 是平行四边形.再构造点F 关于PE 轴对称的点H ′,那么四边形EH ′CQ 也是平行四边形.再根据FQ =CQ 列关于t 的方程,检验四边形FECQ 是否为菱形,根据EQ =CQ 列关于t 的方程,检验四边形EH ′CQ 是否为菱形.1(1,4)2E t t +-,1(1,4)2F t +,(3,)Q t ,(3,0)C .如图2,当FQ =CQ 时,FQ 2=CQ 2,因此2221(2)(4)2t t t -+-=.整理,得240800t t -+=.解得120t =-220t =+. 如图3,当EQ =CQ 时,EQ 2=CQ 2,因此2221(2)(42)2t t t -+-=.整理,得213728000t t -+=.(1320)(40)0t t --=.所以12013t =,240t =(舍去).图2 图33、如图1,在Rt①ABC 中,①C =90°,AC =6,BC =8,动点P 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度运动,动点Q 从点C 开始沿边CB 向点B 以每秒2个单位长度的速度运动,过点P 作PD //BC ,交AB 于点D ,联结PQ .点P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t 秒(t ≥0).(1)直接用含t 的代数式分别表示:QB =_______,PD =_______;(2)是否存在t 的值,使四边形PDBQ 为菱形?若存在,求出t 的值;若不存在,说明理由,并探究如何改变点Q 的速度(匀速运动),使四边形PDBQ 在某一时刻为菱形,求点Q 的速度; (3)如图2,在整个运动过程中,求出线段PQ 的中点M 所经过的路径长.图1 图2思路点拨1.菱形PDBQ 必须符合两个条件,点P 在①ABC 的平分线上,PQ //AB .先求出点P 运动的时间t ,再根据PQ //AB ,对应线段成比例求CQ 的长,从而求出点Q 的速度.2.探究点M 的路径,可以先取两个极端值画线段,再验证这条线段是不是点M 的路径. 满分解答(1)QB =8-2t ,PD =43t .(2)如图3,作①ABC 的平分线交CA 于P ,过点P 作PQ //AB 交BC 于Q ,那么四边形PDBQ 是菱形.过点P 作PE ①AB ,垂足为E ,那么BE =BC =8.在Rt①ABC 中,AC =6,BC =8,所以AB =10. 在Rt①APE 中,23cos 5AE A AP t ===,所以103t =.当PQ //AB 时,CQ CP CB CA =,即106386CQ-=.解得329CQ =.所以点Q 的运动速度为3210169315÷=.(3)以C 为原点建立直角坐标系.如图4,当t =0时,PQ 的中点就是AC 的中点E (3,0). 如图5,当t =4时,PQ 的中点就是PB 的中点F (1,4). 直线EF 的解析式是y =-2x +6.如图6,PQ 的中点M 的坐标可以表示为(62t -,t ).经验证,点M (62t -,t )在直线EF 上.所以PQ 的中点M 的运动路径长就是线段EF 的长,EF =25.图3图4 图5 图6考点伸展第(3)题求点M 的运动路径还有一种通用的方法是设二次函数: 当t =2时,PQ 的中点为(2,2).设点M 的运动路径的解析式为y =ax 2+bx +c ,代入E (3,0)、F (1,4)和(2,2),得930,4,42 2.a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩解得a =0,b =-2,c =6. 所以点M 的运动路径的解析式为y =-2x +6.4、如图1,在平面直角坐标系中,抛物线y =ax 2-2ax -3a (a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),经过点A 的直线l :y =kx +b 与y 轴负半轴交于点C ,与抛物线的另一个交点为D ,且CD =4AC .(1)直接写出点A 的坐标,并求直线l 的函数表达式(其中k 、b 用含a 的式子表示); (2)点E 是直线l 上方的抛物线上的动点,若①ACE 的面积的最大值为54,求a 的值; (3)设P 是抛物线的对称轴上的一点,点Q 在抛物线上,以点A 、D 、P 、Q 为顶点的四边形能否成为矩形?若能,求出点P 的坐标;若不能,请说明理由.图1 备用图 思路点拨1.过点E 作x 轴的垂线交AD 于F ,那么①AEF 与①CEF 是共底的两个三角形.2.以AD 为分类标准讨论矩形,当AD 为边时,AD 与QP 平行且相等,对角线AP =QD ;当AD 为对角线时,AD 与PQ 互相平分且相等.满分解答(1)由y=ax2-2ax-3a=a(x+1)(x-3),得A(-1, 0).由CD=4AC,得x D=4.所以D(4, 5a).由A(-1, 0)、D(4, 5a),得直线l的函数表达式为y=ax+a.(2)如图1,过点E作x轴的垂线交AD于F.设E(x, ax2-2ax-3a),F(x, ax+a),那么EF=y E-y F=ax2-3ax-4a.由S①ACE=S①AEF-S①CEF=11()() 22E A E C EF x x EF x x---=1()2C AEF x x-=21(34)2ax ax a--=21325()228a x a--,得①ACE的面积的最大值为258a-.解方程25584a-=,得25a=-.(3)已知A(-1, 0)、D(4, 5a),x P=1,以AD为分类标准,分两种情况讨论:①如图2,如果AD为矩形的边,那么AD//QP,AD=QP,对角线AP=QD.由x D-x A=x P-x Q,得x Q=-4.当x=-4时,y=a(x+1)(x-3)=21a.所以Q(-4, 21a).由y D-y A=y P-y Q,得y P=26a.所以P(1, 26a).由AP2=QD2,得22+(26a)2=82+(16a)2.整理,得7a2=1.所以a=P(1,.①如图3,如果AD为矩形的对角线,那么AD与PQ互相平分且相等.由x D+x A=x P+x Q,得x Q=2.所以Q(2,-3a).由y D+y A=y P+y Q,得y P=8a.所以P(1, 8a).由AD2=PQ2,得52+(5a)2=12+(11a)2.整理,得4a2=1.所以12a=-.此时P(14)-,.图1 图2 图3考点伸展第(3)题也可以这样解.设P(1,n).①如图2,当AD时矩形的边时,①QPD=90°,所以AM DNMD NP=,即5553a na-=-.解得235ana+=.所以P235(1,)aa+.所以Q3(4,)a-.将Q3(4,)a-代入y=a(x+1)(x-3),得321aa=.所以a=.①如图3,当AD为矩形的对角线时,先求得Q(2,-3a).由①AQD=90°,得AG QKGQ KD=,即32335aa a-=--.解得12a=-.5、如图1,已知抛物线C:y=-x2+bx+c经过A(-3,0)和B(0, 3)两点.将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.(1)求抛物线C的表达式;(2)求点M的坐标;(3)将抛物线C平移到抛物线C′,抛物线C′的顶点记为M′,它的对称轴与x轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?图1思路点拨1.抛物线在平移的过程中,M′N′与MN保持平行,当M′N′=MN=4时,以点M、N、M′、N′为顶点的四边形就是平行四边形.2.平行四边形的面积为16,底边MN=4,那么高NN′=4.3.M′N′=4分两种情况:点M′在点N′的上方和下方.4.NN′=4分两种情况:点N′在点N的右侧和左侧.满分解答(1)将A (-3,0)、B (0, 3)分别代入y =-x 2+bx +c ,得 930,3.b c c --+=⎧⎨=⎩解得b =-2,c =3. 所以抛物线C 的表达式为y =-x 2-2x +3.(2)由y =-x 2-2x +3=-(x +1)2+4,得顶点M 的坐标为(-1,4).(3)抛物线在平移过程中,M′N′与MN 保持平行,当M′N′=MN =4时,以点M 、N 、M ′、N ′为顶点的四边形就是平行四边形.因为平行四边形的面积为16,所以MN 边对应的高NN′=4.那么以点M 、N 、M ′、N ′为顶点的平行四边形有4种情况:抛物线C 直接向右平移4个单位得到平行四边形MNN ′M ′(如图2); 抛物线C 直接向左平移4个单位得到平行四边形MNN ′M ′(如图2);抛物线C 先向右平移4个单位,再向下平移8个单位得到平行四边形MNM ′N ′(如图3); 抛物线C 先向左平移4个单位,再向下平移8个单位得到平行四边形MNM ′N ′(如图3).图2 图3考点伸展本题的抛物线C 向右平移m 个单位,两条抛物线的交点为D ,那么①MM ′D 的面积S 关于m 有怎样的函数关系?如图4,①MM ′D 是等腰三角形,由M (-1,4)、M ′(-1+m , 4),可得点D 的横坐标为22m -. 将22m x -=代入y =-(x +1)2+4,得244m y =-+.所以DH =244m -.所以S =2311(4)2248m m m m -=-.图4。
分类讨论思想在初中数学解题教学中的运用探究1. 引言1.1 研究背景通过分类讨论思想,学生可以将一个复杂的数学问题拆分成若干个简单的子问题,然后逐个解决,最终将所有子问题的解合并起来得到原问题的解。
这种思维方式不仅有助于提高学生的逻辑思维能力和问题解决能力,也可以帮助他们培养自主学习的能力。
在初中数学解题教学中,分类讨论思想的应用具有重要意义。
目前对于分类讨论思想在初中数学解题教学中的具体应用以及效果尚未有系统的研究和总结。
有必要对分类讨论思想在初中数学解题教学中的运用进行深入探讨,以期能够更好地指导和促进学生的数学学习。
1.2 研究意义分类讨论思想在初中数学解题教学中的应用具有重要的理论和实践意义。
分类讨论思想是数学思维的重要组成部分,能够帮助学生提高逻辑思维能力和解决问题的能力。
通过研究分类讨论思想在初中数学解题中的应用,可以有效促进学生的思维发展和学习兴趣,提高学生的数学学习成绩。
分类讨论思想在数学解题中的重要性不容忽视。
在解决数学问题时,通过分类讨论思想可以将复杂的问题分解为简单的子问题,从而更好地理解和解决问题。
分类讨论思想可以帮助学生建立起正确的解题思路,提高解题的效率和准确性。
研究分类讨论思想在初中数学解题教学中的运用实例,可以为教师提供更多的教学方法和策略,帮助他们更好地引导学生学习数学,促进教学质量的提升。
分类讨论思想的应用也可以激发学生的学习兴趣,使数学教学更加生动有趣。
研究分类讨论思想在初中数学解题教学中的应用具有重要的意义,有助于提高学生的数学学习能力和素养,对于促进数学教育的发展具有积极的推动作用。
1.3 研究方法对于研究方法的选择,本研究将采用文献研究和案例分析相结合的方式。
通过文献研究的方式,我们将梳理和分析分类讨论思想在初中数学解题教学中的应用现状、相关理论和实践经验,深入了解其在教学实践中的具体表现和影响。
通过案例分析的方法,我们将选取一些典型的学生解题案例,分析其中的分类讨论思想运用情况,探讨其在解题过程中的作用和价值,以及可能存在的问题和改进空间。
中考数学专题复习——分类讨论问题教学目标1.掌握常见题型分类方法;能够灵活运用一般的分类技巧。
2.明确分类的“界点”、“标准”。
一、 热点再练1.等腰三角形的一个角是80°,则它顶角的度数是( ) A. 80° B. 80°或20° C. 80°或50° D. 20°2.已知三角形相邻两边长分别为13cm 和15 cm ,第三边上的高为 12 cm ,则此三角形的面积为________cm 2A 84B 24C 84或24D 543.在直角坐标系中,O 为坐标原点,已知 A (1,1),在x 轴上确定点P ,使得△AOP 为等腰三角形,则符合条件的P 点共有 个。
4.半径为5的圆中,有弦AB平行CD,AB=8,CD=6,则AB与CD之间的距离_______5.在半径为1的圆中,弦AB 、AC 的长分别是 2 、3 ,则∠BAC 的度数是 。
6. 已知方程01)12(22=+++x m x m 有实数根,则m 的取值范围 。
知识点:1.等腰三角形的角有_____和______其中的底角可以是____________.(按角的类型进行分类)2.三角形的高可以在________也可以在_______________(按图形的形状进行)2p 3.圆是轴对称图形,相等的弦,如平行弦,从一个顶点出发的弦会在对称抽的两侧(按图形的性质)4.初中阶段的方程有_______,__________.__________(按定义分类)二、规律剖析例1正方形ABCD 的边长为10cm ,一动点P 从点A 出发,以2cm/秒的速度沿正方形的边逆时针匀速运动。
如图,回到A 点停止,求点P 运动t 点间的距离。
总结:本题从运动的观点,考查了动点P 与定点D 之间的距离,应根据P 点的不同位置构造出不同的几何图形,关键找出分界点。
练习:例2.如图,已知⊙O的半径为6 cm,射线PM经过点O,OP=10 cm,射线PN与⊙O相切于点Q.A、B两点同时从点P出发,点A以5 cm/s的速度沿射线PM 方向运动,点B以4 cm/s的速度沿射线PN方向运动.设运动时间为t (s).(1)求PQ的长;(2)当t为何值时,直线AB与⊙O相切?课堂检测:1.若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为()A. 5B.7C.5或7D.62.在平面直角坐标系中,三点坐标分别是(0,0)(4,0)(3,2),以三点为顶点画平行四边形,则第四个顶点不可能在()。
A 、第一象限B 、第二象限C 、第三象限D 、第四象限3.如图,在矩形ABCD中,AB=10,AD=4,点P是边AB上一点,若△APD与△BPC相似,则满足条件的点P有个.4.若等腰三角形的两个角度的比是1:2,则这个三角形的顶角为()度。
A30B60C30或90D605.若直线y=-x+b 与两坐标轴围成的三角形的面积是2,则b的值为;6.已知关于x的一元二次方程0-xxm有实数根,则m的取值范围是:+1)1(2=+_______总结:运动与数形结合进行分类四、板书设计1:分式方程无解的分类讨论问题;2:“一元二次”方程系数的分类讨论问题;3:三角形、圆等几何图形相关量求解的分类讨论问题;4:分类问题在动点问题中的应用;4.1常见平面问题中动点问题的分类讨论;4.2组合图形(二次函数、一次函数、平面图形等组合)中动点问题的分类。
1:分式方程无解的分类讨论问题例题1:(2011武汉)=+=-+-a 349332无解,求x x ax x解:去分母,得:1.6,801a 31-a 21-31-a 21-211-a )3(4)3(3=-==∴=-=-=-=⇒-=++a a a x x ax x 或者或或由已知)( 猜想:把“无解”改为“有增根”如何解? 68-==a a 或例题2:(2011郴州) ==--+a 2112无解,求x ax2:“一元二次”方程系数的分类讨论问题例题3:(2010上海)已知方程01)12(22=+++x m x m 有实数根,求m 的取值范围。
(1) 当02=m 时,即m=0时,方程为一元一次方程x+1=0,有实数根x=1-(2) 当02≠m 时,方程为一元二次方程,根据有实数根的条件得:41-m ,0144)12(22≥≥+=-+=∆即m m m ,且02≠m综(1)(2)得,41-≥m常见病症:(很多同学会从(2)直接开始而且会忽略02≠m 的条件)总结:字母系数的取值范围是否要讨论,要看清题目的条件。
一般设置问题的方式有两种(1)前置式,即“二次方程”;(2)后置式,即“两实数根”。
这都是表明是二次方程,不需要讨论,但切不可忽视二次项系数不为零的要求,本题是根据二次项系数是否为零进行讨论的。
例题4:(2011益阳)当m 是什么整数时,关于x 的一元二次方程0442=+-x mx 与0544422=--+-m m mx x 的根都是整数。
解:因为是一元二次方程,所以二次项系数不为0,即02≠m ,0≠m , 1.m ,01≤≥∆解得同理,.45m ,02-≥≥∆解得1m 45≤≤-∴且0≠m ,又因为m 为整数.11或取-∴m (1)当m=—1时,第一个方程的根为222±-=x 不是整数,所以m=—1舍去。
A C AB1pCD2p4p3p(2)当m=1时,方程1、2的根均为整数,所以m=1.练习:已知关于x的一元二次方程01)1(2=++-x x m 有实数根,则m的取值范围是:1m 45001≠≤⇒⎩⎨⎧≥∆≠-且m m3:三角形、圆等几何图形相关量求解的分类讨论问题例题:5:(2011青海)方程01892=+-x x 的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A 12 B 12或15 C 15 D 不能确定例题6:(2011武汉)三角形一边长AB 为13cm ,另一边AC 为15cm ,BC 上的高为12cm,求此三角形的面积。
(54或84)例题8:(2011四校联考)一条绳子对折后成右图A 、B, A.B 上一点C ,且有BC=2AC,将其从C 点剪断,得到的线段中最长的一段为40cm,请问这条绳子的长度为:60cm 或120cm 4:动点问题的分类分类讨论问题4.1:常见平面问题中动点问题的分类讨论;例题9:(2011永州)正方形ABCD 的边长为10cm ,一动点P 从点A 出发,以2cm/秒的速度沿正方形的边逆时针匀速运动。
如图,回到A 点停止,求点P 运动t 秒时, P ,D 两点间的距离。
解:点P 从A 点出发,分别走到B ,C ,D ,A 所用时间是秒,秒,秒,秒,即5秒,10秒,15秒,20秒。
∴(1)当0≤t<5时,点P 在线段AB 上,|PD|=|P 1D|=(cm)(2)当5≤t<10时,点P 在线段BC 上,|PD|=|P 2D|=(3)当10≤t<15时,点P 在线段CD 上,|PD|=|P 3D|=30-2t (4)当15≤t ≤20时,点P 在线段DA 上,|PD|=|P 4D|=2t-30MEA BCD N 综上得:|PD|=总结:本题从运动的观点,考查了动点P 与定点D 之间的距离,应根据P 点的不同位置构造出不同的几何图形,将线段PD 放在直角三角形中求解或直接观察图形求解。
4.2:组合图形(一次函数、二次函数与平面图形等组合)中动点问题的分类。
例题10:(2010福建)已知一次函数3333+-=x y 与x 轴、y 轴的交点分别为A 、B ,试在x 轴上找一点P ,使△PAB 为等腰三角形。
分析:本题中△PAB 由于P 点位置不确定而没有确定,而且等腰三角形中哪两条是腰也没有确定。
△PAB 是等腰三角形有几种可能?我们可以按腰的可能情况加以分类:(1)PA=PB ;(2)PA=AB ;(3)PB=AB 。
先可以求出B 点坐标()033,,A 点坐标(9,0)。
设P 点坐标为)0(,x ,利用两点间距离公式可对三种分类情况分别列出方程,求出P 点坐标有四解,分别为)0369()0369()03()09(,、,、,、,-+-。
(不适合条件的解已舍去)总结:解答本题极易漏解。
解答此类问题要分析清楚符合条件的图形的各种可能位置,紧扣条件,分类画出各种符合条件的图形。
另外,由点的运动变化也会引起分类讨论。
由于运动引起的符合条件的点有不同位置,从而需对不同位置分别求其结果,否则漏解。
例11:(2010湖北)如图,正方形ABCD 的边长是2,BE=CE ,MN=1,线段MN 的两端在CD 、AD 上滑动.当DM= 时,△ABE 与以D 、M 、N 为项点的三角形相似。
分析与解答 勾股定理可得5ABE 与以D 、M 、N 为项点的三角形相似时,DM 可以与BE 是对应边,也可以与AB 是对应边,所以本题分两种情况:(1) 当DM 与BE 是对应边时,DM MNAB AE=,即515DM DM =.(2)当DM 与AB 是对应边时,DM MNAB AE=,即2525DM DM =故DM 525例题12:(2011湘潭)如图,直线y=3x+3交x 轴于A 点,交y 轴于B 点,过A,B 两点的抛物线交x 轴于另一点C (3,0).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点Q ,使三角形ABQ 是等腰三角形?若存在,求出符合条件的Q 点坐标;若不存在,请说明理由。
说明 从以上各例可以看出,分灯思想在几何中的较为广泛.这类试题的解题思路是:对具有位置关系的几何图形,要有分类讨论的意识,在熟悉几何问题所需要的基础知识的前提下,正确应用分类思想方法,恰当地选择分类标准,是准确全面求解的根本保证.解析:(1)抛物线解析式的求法:1,三点式;2,顶点式(h,k );3,交点式。
易得:32)3,0()3)(1(2++-=∴-+=x x y B x x a y 在抛物线上再结合点(2) 依题意得10=AB ,抛物线的对称轴为x=1,设Q(1,y)1) 以AQ 为底,则有AB=QB,及22)3(110-+=y 解得,y=0或y=6,又因为点(1,6)在直线AB 上(舍去),所以此时存在一点Q(1,0)2) 以BQ 为底,同理则有AB=AQ,解的Q(1,6) Q(1,6-) 3) 以AB 为底,同理则有QA=QB,存在点Q(1,1).综上,共存在四个点分别为:(1,0)、(1,1)、(1,6) 、(1,6-)【作业训练】1.已知等腰△ABC 的周长为18㎝,BC=8㎝.若△ABC ≌△A ′B ′C ′,则△A ′B ′C ′中一定有一定有条边等于( )A .7㎝B .2㎝或7㎝C .5㎝D .2㎝或7㎝2.(2010衡阳)若等腰三角形的两个角度的比是1:2,则这个三角形的顶角为( )度。