离散数学-2-2 命题函数与量词
- 格式:ppt
- 大小:139.50 KB
- 文档页数:19
离散数学作业册第一章命题逻辑1.1 命题与逻辑联结词1.判断下列语句是否是命题,不是划“×”,是划“√”,且指出它的真值.(1)所有的素数都是奇数. ( ) 其真值( )(2)明天有离散数学课吗? ( ) 其真值( )(3)326+>. ( ) 其真值( )(4)实践出真知. ( ) 其真值( )(5)这朵花真好看呀! ( ) 其真值( )(6)5x=. ( ) 其真值( )(7)太阳系外有宇宙人. ( ) 其真值( )2.将下列命题符号化.(1)如果天下雨,那么我不去图书馆.(2)若地球上没有水和空气,则人类无法生存.(3)我们不能既划船又跑步.(4)大雁北回,春天来了.3.将下列复合命题分解成若干个原子命题,并找出适当的联结词.(1)天下雨,那么我不去图书馆.(2)若地球上没有水和空气,则人类无法生存.1.2 命题公式1. 判断下列各式是否是命题公式,不是的划“×”,是的划“√”.(1)(Q→R∧S). ( )(2)((R→(Q→R)→(P→Q)). ( )(3) (P∨QR)→S. ( )(4)((?P→Q)→(Q→P)). ( )2.写出五个常用命题联结词的真值表.1.3 真值表与等价公式1.指出下列命题的成真赋值与成假赋值.(1)?(P∨?Q).(2)?P→(Q→P).2.构造真值表,判断下列公式的类型.(1)(P∧Q)∧?(P∨Q).(2) P→(P∧┑Q))∨R.3.用等值演算法验证下列各等价式.(1) ((P→Q)∧(Q→R))→(P→R)?T.(2)P→(Q∧R)?(P→Q)∧(P→R).(3)?(P∨Q)∨(?P∧Q)??P.1.4 蕴涵式及其他联结词1.试证明下列各式为重言式.(1)(P→Q)∧(Q→R)?(P→R).(2) (P→Q)→Q?P∨Q.(3)?(P↓Q)??P↑?Q.2.将下列公式化成与之等价且仅含{┑,∨}中联结词的公式.(1) (P∨Q)∧┑P(2) (P→(Q∨┑R))∧(┑P∧Q)3.证明{?,∧}是最小全功能联结词组.4.设A、B、C为任意的三个命题公式,试问下面的结论是否正确?(1)若A∧C?B∧C,则A?B.(2)若?A??B,则A?B.(3)若A→C?B→C,则A?B.1.6 对偶与范式1.试给出下列命题公式的对偶式.(1)T∨(P∧Q).(2)?(P∧Q)∧(?P∨Q).2.试求下列各公式的主析取范式和主合取范式.(1) (P→(Q∧R))∧(┑P→(┑Q→R)).(2)(?(P→Q)∧Q)∨R.(3)(P→(Q∨R))∧(?P∨(Q?R)).3.试用将公式化为主范式的方法,证明下列各等价式.(1) (┑P∨Q)∧(P→R)?P→(Q∧R)(2) ┑(P?Q)?(P∧┑Q)∨(┑P∧Q)1.7 推理理论1.试用推理规则,论证下列各式.(1) ┑(P∧┑Q),┑Q∨R,┑R?┑P(2) P∨Q,Q→R,P→S,┑S?R∧(P∨Q)(3) ┑P∨Q,┑Q∨R,R→S?P→S(4) P∨Q,P→R,Q→S?R∨S第二章谓词逻辑2.1 词的概念与表示1.用谓词表达写出下列命题.(1)高斯是数学家,但不是文学家.(2)小王既是运动员也是大学生.(3)张宁和李强都是三好学生.(4)若是x奇数,则2x不是奇数.2.2 命题函数与量词1.用谓词表达式写出下列命题.(1)每个计算机系的学生都学离散数学.(2)直线A平行于直线B当且仅当直线A不相交于直线B.(3)不存在既是奇数又是偶数的自然数.(4)没有运动员不是强壮的.(5)有些有理数是实数但不是整数.(6)所有学生都钦佩某些教师.2.3 谓词公式与变元的约束1.利用谓词公式翻译下列命题. (1)没有一个奇数是偶数.(2)一个整数是奇数,如果它的平方是奇数.2. 设个体域为自然数集N ,令P(x):x 是素数;E(x):x 是偶数;O(x):x 是奇数;D(x ,y):x 整除y .将下列各式译成汉语.(1)?x(E(x)∧D(x ,6)).(2)?x(O(x)→?y(P(x)→?D(x ,y))).3.指出下列表达示中的自由变元和约束变元,并指明量词的辖域.(1)()()(,)()()x F x Q x y xP x R x ?∧→?∨.(2)?x(P(x ,y)∨Q(z))∧?y(R(x ,y)→ ?zQ(z)).4.设个体域为A ={a ,b ,c},消去公式?xP(x)∧?xQ(x)中的量词.2.4 谓词演算的等价式与蕴含式1.试证下列等价式或蕴涵式,其中A(x),B(x)表示含x自由变量的公式,A,B 表示不含变量x(不论是自由的还是约束的)的公式.(1)(?x A(x)→B)?(?x(A(x)→B)).(2)(?x A(x)→B)??x(A(x)→B).2.试将下列公式化成等价的前束范式.(1)?x((┑?yP(x,y))→(?zQ(z)→R(x))).(2)?x(F(x)→G(x))→(?xF(x)→?xG(x)).2.5 谓词演算的推理理论1.证明下列推理.(1)所有有理数都是实数,某些有理数是整数。
命题函数与量词知识点总结一、命题函数命题函数是数学中一个重要的概念。
在逻辑学和数学中,命题函数是将每个元素对应至精确一个命题的函数。
1.1 命题函数的定义命题函数通常被定义为一个函数,其定义域是一个集合,而值域是命题集合的一个子集。
对于每个特定的输入值,该函数将返回一个命题。
一个命题函数可以有一个或多个自变量。
当只有一个自变量时,该命题函数也可以看做是命题逻辑中真值函数的一个实例。
1.2 命题函数的性质命题函数具有以下性质:- 定义域:每个命题函数都有一个定义域,即输入值的集合。
- 值域:每个命题函数都有一个值域,即可能的命题集合的子集。
- 真值:对于每个定义域中的元素,命题函数都具有一个真值。
1.3 命题函数的应用命题函数的主要应用在逻辑学、离散数学、集合论、概率论等领域。
在这些领域中,命题函数被用来描述符合各种逻辑规则的关系,以及描述各种可能性事件。
在计算机科学中,命题函数也经常被用来表示逻辑表达式。
二、量词量词是经常用来表达命题中的全称和存在等概念的逻辑符号。
在数理逻辑中,量词是被用来表示一个命题在一个特定范围内的所有元素。
常见的量词包括全称量词和存在量词。
2.1 全称量词全称量词通常用符号∀来表示。
对于一个集合中的所有元素,全称量词都可以用来描述它们都满足某个条件。
2.2 存在量词存在量词通常用符号∃来表示。
存在量词用来描述在一个集合中存在某个元素,满足某个条件。
2.3 量词的运用量词在数理逻辑中被广泛运用。
它们可以帮助我们清晰地表达复杂的逻辑关系,并帮助我们做出一些定量的推断。
量词也在数学、计算机科学和其他领域中有广泛的应用。
三、命题函数与量词的关系在逻辑学和数学中,命题函数和量词经常结合使用,以帮助我们描述和推断一些复杂的逻辑关系。
命题函数可以帮助我们描述一些命题的关系,而量词可以帮助我们描述这些关系在一个范围内的适用情况。
3.1 命题函数和全称量词当我们需要表达一个命题函数对定义域中所有的元素都成立时,我们可以使用全称量词。
离散数学知识点总结离散数学是数学中的一个分支,研究离散对象及其关系的数学理论。
它与连续数学形成鲜明的对比,连续数学主要研究连续对象和其性质。
离散数学在计算机科学、信息科学、电子工程等领域具有重要的应用价值。
下面将对离散数学的主要知识点进行总结。
1.命题逻辑:命题逻辑研究由命题符号组成的复合命题及其逻辑关系。
其中命题是一个陈述性的语句,可以是真或假。
命题逻辑包括命题的逻辑运算、真值表、命题的等价、充分必要条件等。
2.谓词逻辑:谓词逻辑是对命题逻辑的扩充,引入了量词、谓词和项。
它的研究对象是命题函数,可以表示个体之间的关系。
谓词逻辑包括谓词的运算、量词的运算、公理化和推理规则等。
3.集合论:集合论是研究集合及其操作的数学分支。
集合是一种由确定的对象组成的整体。
集合论包括集合的基本运算(交、并、差、补)、集合的关系(包含、相等、子集、真子集)以及集合的运算律和推导定理等。
5.组合数学:组合数学是研究物体的组合与排列问题的数学分支。
它包括排列、组合、分配、生成函数等内容,经常应用于计数和概率问题中。
6.图论:图论是用来描述物体间其中一种关系的图形结构的数学理论。
它研究的对象是由顶点和边构成的图,包括无向图、有向图、带权图等。
图论研究的内容包括图的性质、连通性、路径、回路、树、图的着色等。
7.代数系统:代数系统是一种由一组元素及其相应的运算规则构成的数学结构。
常见的代数系统有群、环、域、格等,它们分别研究了集合上的不同运算规律和结构。
8.布尔代数:布尔代数是一种应用于逻辑和计算机的代数系统。
它以真和假为基础,通过逻辑运算(与、或、非)构成了布尔代数。
布尔代数在计算机硬件设计和逻辑推理中广泛应用。
9.图的同构与图的着色:图的同构是指两个图在结构上相同,也就是说,它们具有相同的顶点和边的连接关系。
图的同构判断是一个NP难问题,需要借助于图的着色等方法来判断。
图的着色是给图的顶点分配颜色,使得相邻顶点的颜色不同。