初中代数公式
- 格式:docx
- 大小:19.50 KB
- 文档页数:7
初中数学公式大全总结一:代数:1、二次函数的标准方程:y=ax^2+bx+c;2、一元二次方程的解法:ax^2+bx+c=0,△=b^2-4ac,若△<0则无解;△=0时,有一个解x=-b/2a;△>0时,有两个解分别为x1=(-b+√△)/2a,x2=(-b-√△)/2a;3、三次函数的标准方程:y=ax^3+bx^2+cx+d ;4、二次函数的极值:在y=ax^2+bx+c中,极值点为(-b/2a,f(-b/2a));5、四次函数的标准方程:y=ax^4+bx^3+cx^2+dx+e;6、多项式乘法:(x+a)(x+b)=x^2+(a+b)x+ab;7、多项式除法:ax^2+bx+c/x+d=(ax+b)/d + c/d(x+d)^1;二:几何:1、三角形外接圆半径表达式:R=abc/(4S);2、立体三角形的表达式:V=1/3S(a+b+c)(a+b-c)(b+c-a)(a+c-b);3、直角三角形的勾股定理:a^2+b^2=c^2;4、外接圆的中心到三角形边长的距离表达式:h=(2R^2-a^2)/2R;5、三角形夹角内接圆半径表达式:r=2S/a;6、内接圆的中心到三角形顶点距离表达式:h=2r tanα/2;7、立体四面体的表达式:V=a(a^2+b^2+c^2-ab-ac-bc)^1/2/12;三:三角函数:1、正弦定理:a/sinA=b/sinB=c/sinC=2R;2、余弦定理:a^2=b^2+c^2-2bc cosA;3、正切定理:tanA/b = tanB/a = tanC/c;4、余切定理:cotA/cotB+cotC=1;5、锐角所对的外角的正切:tan2A=2tanA/(1-tan^2A);6、向量的叉积:A×B=|A||B|sin(A,B);7、三角函数相等关系:sin(-A)= -sinA,cos(-A) =cosA,tan(-A)=-tanA,cot(-A)=-cotA。
初中数学重要公式整理初中数学中常用的重要公式有很多,下面整理了一些常见的重要公式供你参考。
一、代数运算公式:1. 二次方差公式:(a+b)²=a²+2ab+b²2.一次方差公式:(a+b)(a-b)=a²-b²3.二次平方差公式:a²-b²=(a+b)(a-b)4. 二次立方差公式:a³-b³=(a-b)(a²+ab+b²)5. 一次立方差公式:a³+b³=(a+b)(a²-ab+b²)二、平方根公式:1.平方根的定义:如果a²=b,那么a叫做b的平方根,记作a=√b2.平方根的性质:非负数的平方根为非负数。
3.平方根求和、求差公式:a²+b²±2ab=(a±b)²a²-b²=(a+b)(a-b)三、等差数列常用公式:1. 前n项和公式:Sn=(a₁+an)×n/22. 通项公式:an=a₁+(n-1)d四、等比数列常用公式:1.前n项和公式:Sn=a₁(1-qⁿ)/(1-q)2. 通项公式:an=a₁×qⁿ⁻¹五、三角函数常用公式:1. sin²A+cos²A=12. 1+tan²A=sec²A、1+cot²A=csc²A3. sin(-A)=-sinA,cos(-A)=cosA4. sin(A±B)=sinAcosB±cosAsinB5. cos(A±B)=cosAcosB∓sinAsinB6. tan(A±B)=(tanA±tanB)/ (1∓tanAtanB)7. sin2A=2sinAcosA,cos2A=cos²A-sin²A=2cos²A-1=1-2sin²A六、平面几何常用公式:1.直角三角形勾股定理:c²=a²+b²2. 正弦定理:a/sinA=b/sinB=c/sinC=2R,其中R为三角形外接圆的半径3. 余弦定理:a²=b²+c²-2bc cosA4.面积公式:等腰三角形面积=S=1/2×底边×高5.等边三角形面积=S=√3/4×边长²6.圆的面积公式:S=πr²,其中r为圆的半径7.圆的周长公式:C=2πr,其中r为圆的半径以上只是初中数学中的一部分重要公式,掌握了这些公式,能够在解题过程中更加灵活运用,提高解题效率。
初中数学全套公式大全1.代数公式- 分配律:a(b+c) = ab + ac-结合律:(a+b)+c=a+(b+c)- 因式分解:ab+ac = a(b+c)-二次方差:(a+b)(a-b)=a^2-b^2- 三次方差:a^3 + b^3 = (a+b)(a^2-ab+b^2)- 一次方程求解:ax + b = 0 => x = -b/a- 二次方程求解:ax^2 + bx + c = 0 => x = (-b±√(b^2-4ac))/(2a)- 三次方程求解:ax^3 + bx^2 + cx + d = 0 => 需用牛顿法等等2.几何公式-周长:正方形周长=4×边长矩形周长=2×(长+宽)圆周长=π×直径-面积:正方形面积=边长×边长矩形面积=长×宽三角形面积=底×高/2圆面积=π×半径^2-体积:长方体体积=长×宽×高圆柱体积=圆面积×高圆锥体积=圆面积×高/3-相似三角形面积比:AB/CD=BC/EF=AC/DE-圆的性质:正切与切线垂直相等弧所对的圆心角是相等的相等弧的扇形所对的弧长和扇形的面积也相等3.概率公式-事件的概率:P(A)=事件A发生的次数/总的样本空间次数-对立事件:P(A')=1-P(A)-全概率公式:事件B在事件A发生的条件下发生的概率为P(A)×P(B,A),而总概率为P(A)-乘法公式:两个同时发生的独立事件A和B的概率为P(A∩B)=P(A)×P(B)-加法公式:两个互不相容(即不能同时发生)的事件A和B的概率为P(A∪B)=P(A)+P(B)4.超越函数的公式- e^x、e^(-x)、ln(x)、log(x)等函数的展开公式-三角函数的和差化积公式和倍角公式-反三角函数的公式-指数函数、对数函数的性质及展开公式5.统计学公式-平均值:平均值=总和/总数-中位数:将数据从小到大排列,如果总数是奇数,则中位数为中间的那个数;如果总数是偶数,则中位数为中间两个数的平均值-众数:出现次数最多的数-极差:最大值-最小值-方差:各数据与平均数的差的平方和的均值-标准差:方差的平方根-相关系数:相关系数范围为-1到1,接近1表示正相关,接近-1表示负相关,接近0表示无关。
初中数学代数公式知识点代数是数学的一个重要分支,其中代数公式是解决代数问题的基础。
掌握常用的数学代数公式可以帮助我们更好地理解和解决数学问题。
本文将介绍一些初中数学中常用的代数公式知识点,希望能对同学们的数学学习有所帮助。
一、一元一次方程1. 一元一次方程的一般形式为:ax + b = 0,其中a和b是已知的数,x是未知数。
2. 解一元一次方程的步骤:a) 将方程中的项按照变量的次数排列;b) 合并同类项,得到形如ax + b = 0的方程;c) 移项,使方程变为ax = -b的形式;d) 求解方程,得出x的值。
3. 一元一次方程的常见公式:a) 解一元一次方程ax + b = 0,x = -b/a。
b) 解方程ax + b = cx + d,x = (d - b) / (a - c)。
二、二元一次方程组1. 二元一次方程组的一般形式为:{ ax + by = c{ dx + ey = f其中a、b、c、d、e、f是已知的数,x和y是未知数。
2. 解二元一次方程组的步骤:a) 消元,通过变换方程组使得其中一个未知数的系数相同或互为相反数;b) 求解,得到一个未知数的值;c) 回代,将求得的未知数的值代入另一个方程中,解得另一个未知数的值。
3. 二元一次方程组的常见公式:a) 利用变量相消法解方程组。
b) 利用代入法解方程组。
三、平方公式1. 平方公式是一种用来计算两个数(通常是代数式)相乘的公式。
2. 平方公式的一般形式为:(a + b)^2 = a^2 + 2ab + b^2。
3. 平方公式的应用:a) 它可以用来展开一个代数式的平方;b) 它可用于因式分解。
四、因式分解公式1. 因式分解是指将一个多项式分解为多个乘积形式的因式的过程。
2. 公式:a) 平方差公式:a^2 - b^2 = (a + b)(a - b);b) 二次三项式的因式分解公式:ax^2 + bx + c = 0,可通过求根公式来解。
初中数学必背公式全集初中数学是我们学习过程中非常重要的一门学科,其中的必背公式更是我们需要熟练掌握的知识点。
下面,我将为大家整理一份初中数学必背公式全集,希望对大家的学习有所帮助。
一、代数公式:1. 二次方程求根公式:对于一元二次方程ax^2+bx+c=0,它的根可以通过公式x=(-b±√(b^2-4ac))/(2a)来计算。
2. 平方差公式:(a+b)(a-b)=a^2-b^2,可以用于简化平方差的计算。
3. 一次方程求解公式:对于一元一次方程ax+b=0,它的解可以通过公式x=-b/a来求得。
二、几何公式:1. 三角形面积公式:对于已知三角形的底和高,可以使用面积公式S=1/2×底×高来计算三角形的面积。
2. 直角三角形勾股定理:直角三角形的两直角边的平方和等于斜边的平方,即a^2+b^2=c^2。
3. 圆的面积公式:对于已知圆的半径r,可以用面积公式S=πr^2来计算圆的面积。
4. 圆的周长公式:对于已知圆的半径r,可以用周长公式C=2πr来计算圆的周长。
三、数列公式:1. 等差数列通项公式:对于等差数列an=a1+(n-1)d,其中a1为首项,d为公差,可以用来计算数列中任意一项的值。
2. 等差数列前n项和公式:对于等差数列的前n项和Sn=n/2×(a1+an),可以用来计算等差数列前n项的和。
3. 等比数列通项公式:对于等比数列an=a1×q^(n-1),其中a1为首项,q为公比,可以用来计算数列中任意一项的值。
4. 等比数列前n项和公式:对于等比数列的前n项和Sn=a1×(q^n-1)/(q-1),可以用来计算等比数列前n项的和。
四、概率公式:1. 事件的概率:事件A发生的概率P(A)等于事件A发生的次数n(A)与总的可能性次数n的比值,即P(A)=n(A)/n。
2. 互斥事件的概率:对于互斥事件A和B,它们同时发生的概率为0,即P(A∩B)=0,那么事件A或事件B发生的概率为P(A∪B)=P(A)+P(B)。
初中数学全套公式初中数学是义务教育的基础学科,其公式和概念的学习是这门课程的核心部分。
以下是一套完整的初中数学公式,这些公式涵盖了初中数学的大部分内容,对于理解和应用数学概念具有重要意义。
一、代数公式1、乘法公式:(a+b)(a-b)=a²-b²2、完全平方公式:a²+2ab+b²=(a+b)²3、平方差公式:a²-b²=(a+b)(a-b)4、立方和公式:a³+b³=(a+b)(a²-ab+b²)5、立方差公式:a³-b³=(a-b)(a²+ab+b²)6、两数和乘两数差:2(a+b)(a-b)=2a²-2b²7、两数平方和:a²+b²=(a+b)²-2ab8、两数和的平方:(a+b)²=a²+2ab+b²9、两数差的平方:(a-b)²=a²-2ab+b²10、幂的乘方:anbn=(ab)n11、积的乘方:anbn=(ab)n12、分式的约分:同时分子分母除以公因式。
13、提公因式法:一般地,如果想要提取一个多项式的公因式,我们把这个多项式的各项都含有的相同字母因式提到括号外面,将多项式化成积的形式,这种分解因式的方法叫做提公因式法。
14、运用公式法:如果一个式子的值等于几个其他式子的值乘积,那么这个式子就叫公式的原式,这几个其他式子就叫这个公式的因式。
如果把一个公式的所有因式分解出来,那么它们就都叫这个公式的因式分解。
二、几何公式1、勾股定理:在一个直角三角形中,斜边的平方等于两条直角边的平方和。
2、平行线间的距离公式:如果两条直线平行,那么一条直线上任意一点到另一条直线的距离相等。
3、三角形的面积公式:一个三角形的面积等于底边乘以高再除以2。
初中阶段数学公式总结大全以下是一些常见的初中阶段的数学公式总结:1. 代数公式:- 二元一次方程式:ax + by = c- 二元一次方程组:{ax + by = c, dx + ey = f}- 配方法:(a+b)² = a² + 2ab + b²- 差分平方法:(a-b)² = a² - 2ab + b²- 倒数公式:(a+b)(a-b) = a² - b²- 完全平方式:a² + b² = (a+b)² - 2ab2. 几何公式:- 三角形的面积:A = 1/2 * 底 * 高- 矩形的面积:A = 长 * 宽- 平行四边形的面积:A = 底 * 高- 梯形的面积:A = 1/2 * (上底 + 下底) * 高- 圆的面积:A = π * r²- 圆的周长:C = 2 * π * r3. 分数公式:- 分数加法:a/b + c/d = (ad + bc)/bd- 分数减法:a/b - c/d = (ad - bc)/bd- 分数乘法:a/b * c/d = ac/bd- 分数除法:a/b ÷ c/d = ad/bc4. 百分数公式:- 百分数到小数:百分数/100 = 小数- 小数到百分数:小数 * 100 = 百分数- 百分数与小数的互相转化5. 集合运算公式:- 并集:A ∪ B- 交集:A ∩ B- 差集:A - B6. 统计学公式:- 平均数(算术平均数):(数值的总和) / (数量)- 中位数:将数据按照从小到大的顺序排列,取中间数- 众数:出现频率最高的数- 范围:最大值 - 最小值这只是一部分初中阶段数学公式的总结,希望对您有所帮助。
如需更详细的总结,可以参考相关数学教材或参考资料。
初中数学所有公式初中数学公式:一、代数公式1. 二元一次方程:ax + by = c。
2. 平方差公式:(a + b)² = a² + 2ab + b²,(a - b)²= a² - 2ab + b²。
3. 平方根公式:√(a² + b²) = √a² + √b²。
4. 求根公式:x = (-b ± √(b² - 4ac)) / 2a。
5. 一次函数:y = kx + b。
6. 二次函数:y = ax² + bx + c。
二、几何公式1. 周长公式:正方形的周长=4a,长方形的周长=2(a+b)。
2. 面积公式:正方形的面积=a²,长方形的面积=a*b,三角形的面积=1/2*底*高。
3. 圆的周长公式:C=2πr,其中π为3.14。
4. 圆的面积公式:S=πr²。
三、比例与百分数公式1. 比例公式:a:b = c:d。
2. 百分数公式:百分数 = (部分 / 全体) * 100%。
3. 增长量与增长率:增长量 = 原值 * 增长率,增长率 = (增长量 / 原值) * 100%。
四、三角函数公式1. 正弦公式:sinA = 对边 / 斜边。
2. 余弦公式:cosA = 临边 / 斜边。
3. 正切公式:tanA = 对边 / 临边。
4. 正负角公式:sin(-A) = -sinA,cos(-A) = cosA。
五、概率与统计公式1. 概率公式:P(A) = 事件A发生的次数 / 总次数。
2. 组合公式:C(n, m) = n! / (m! * (n - m)!),其中n表示总数,m表示选取的个数。
3. 平均数公式:平均数 = (数据之和) / (数据个数)。
六、等价变换公式1. 分配律:a(b + c) = ab + ac。
2. 结合律:(a + b) + c = a + (b + c)。
初中数学代数公式归纳在初中数学的学习中,代数是一个重要的部分,而掌握代数公式则是学好代数的关键。
下面就为大家归纳一下初中数学中常见的代数公式。
一、整式运算公式1、同底数幂的乘法:$a^m \times a^n = a^{m+n}$(其中$m$、$n$都是正整数)同底数幂相乘,底数不变,指数相加。
例如:$2^3 \times 2^4 = 2^{3+4} = 2^7 = 128$2、幂的乘方:$(a^m)^n = a^{mn}$(其中$m$、$n$都是正整数)幂的乘方,底数不变,指数相乘。
例如:$(3^2)^3 = 3^{2×3} = 3^6 = 729$3、积的乘方:$(ab)^n = a^n b^n$(其中$n$是正整数)积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。
例如:$(2×3)^2 = 2^2 × 3^2 = 4×9 = 36$4、同底数幂的除法:$a^m ÷a^n =a^{mn}$($a≠0$,$m$、$n$都是正整数,且$m>n$)同底数幂相除,底数不变,指数相减。
例如:$5^5 ÷ 5^3 = 5^{5-3} = 5^2 = 25$5、单项式乘以单项式:系数相乘,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
例如:$2x^2y × 3xy^2 =(2×3)×(x^2×x)×(y×y^2) = 6x^3y^3$6、单项式乘以多项式:用单项式乘以多项式的每一项,再把所得的积相加。
例如:$2x(3x^2 4x + 5) = 2x×3x^2 2x×4x + 2x×5 = 6x^3 8x^2 + 10x$7、多项式乘以多项式:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
例如:$(x + 2)(x 3) = x×x 3×x + 2×x 2×3 = x^2 x 6$8、平方差公式:$(a + b)(a b) = a^2 b^2$两个数的和与这两个数的差的积,等于这两个数的平方差。
初中数学代数公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA) 有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
初中数学代数公式归纳代数公式是数学中经常使用的工具,它们可以帮助我们简化数学运算,解决各种问题。
在初中数学中,学习代数公式是非常重要的一部分。
本文将回顾和归纳一些初中数学中常用的代数公式,以帮助读者更好地理解和运用它们。
1. 一次方程的解:一次方程是指次数最高为1的方程,形如ax + b = 0。
它的解可以通过以下公式求得:x = -b/a其中a和b分别为方程中的系数。
2. 二次方程的解:二次方程是指次数最高为2的方程,形如ax² + bx + c = 0。
它的解可以通过以下公式求得:x = (-b ± √(b² - 4ac))/(2a)其中a、b、c分别为方程中的系数。
如果判别式D = b² - 4ac大于0,则方程有两个不相等的实根;如果D等于0,则方程有两个相等的实根;如果D小于0,则方程没有实根,但有两个共轭复根。
3. 平方差公式:平方差公式是用于求两个数平方之差的公式,可以表示为:a² - b² = (a+b)(a-b)4. 完全平方公式:完全平方公式用于将一个二次多项式表示为一个完全平方,可以表示为:a² + 2ab + b² = (a+b)²其中a和b可以是任意实数。
5. 两数之和的平方:将两个数的和的平方展开可以得到:(a + b)² = a² + 2ab + b²6. 两数之差的平方:将两个数的差的平方展开可以得到:(a - b)² = a² - 2ab + b²7. a³ - b³的因式分解:a³ - b³可以因式分解为:a³ - b³ = (a - b)(a² + ab + b²)8. 二次四项式求和公式:对于一个二次四项式ax² + bx + c,可以通过以下公式求得其和:x = -b/2a其中a、b、c分别为方程中的系数。
初中数学全部公式初中数学常用公式:一、代数公式:1.两数相加的和等于它们反过来相加的和:a+b=b+a2.两数相减的差等于它们反过来相减的差:a-b≠b-a3.两数相乘的积等于它们反过来相乘的积:a×b=b×a4.两数相除的商等于它们分子、分母反过来相除的商:a÷b≠b÷a5. 两个数之和的平方等于它们的平方和加上两倍的它们的积:(a +b)² = a² + 2ab + b²6. 平方差公式:(a - b)² = a² - 2ab + b²7. 平方和公式:a² + b² = (a +b)² - 2ab8.两个平方差的乘积等于两个数之和与差的平方差:(a+b)(a-b)=a²-b²9.一次方差公式:(a+b)×(a-b)=a²-b²10. 完全平方公式:(a + b)² = a² + 2ab + b²11. 平方完全差公式:(a - b)² = a² - 2ab + b²12.两个完全平方的乘积等于两个数之和与差的平方差:(a+b)(a-b)=a²-b²13.四平方定理:任何一个正整数都可以表示成不超过四个正整数的平方之和。
14.二项式定理:(a+b)ⁿ=C(n,0)aⁿ+C(n,1)aⁿ⁻¹b+C(n,2)aⁿ⁻²b²+...+a(b+a)ⁿ⁻¹bⁿ⁻¹+bⁿ15.幂运算的乘法法则:aⁿ×aᵐ=aⁿ⁺ᵐ16.幂运算的除法法则:aⁿ÷aᵐ=aⁿ⁻ᵐ二、几何公式:1.线段等分点公式:已知线段AB,M为AB的中点,则AM=MB=AB/22.垂直平分线公式:已知线段AB,O为线段AB的中点,则AO⊥OB,并且AO=OB=AB/23.线段外一点到线段的距离公式:已知线段AB和一点C,以A、B为两端点作线段AB的垂直平分线,交垂直平分线于点D,则CD为点C到线段AB的距离。
初中数学代数公式总结代数是数学中的一个重要分支,通过符号和字母来表示未知数和运算关系,是数学推理和问题解决的基础。
在初中数学学习中,代数公式是不可或缺的工具。
下面将给出初中数学代数公式的总结。
一、基本公式1. 两个相反数相加等于零对于任意实数a,有a + (-a) = 0。
2. 加法、减法交换律对于任意实数a和b,有a + b = b + a;a - b = -b + a。
3. 加法、减法结合律对于任意实数a、b和c,有(a + b) + c = a + (b + c);(a - b) - c = a - (b + c)。
4. 乘法、除法交换律对于任意实数a和b,有ab = ba(乘法交换律);a/b = b/a,其中a和b均不为零(除法交换律)。
5. 乘法、除法结合律对于任意实数a、b和c,有(ab)c = a(bc)(乘法结合律);(a/b)/c = a/(bc),其中a、b和c均不为零(除法结合律)。
6. 分配律对于任意实数a、b和c,有a(b + c) = ab + ac(左分配律);(b + c)a = ba + ca (右分配律)。
7. 幂运算对于任意实数a和正整数n,有a^n = a × a × ... × a(n个a的积),a称为底数,n称为指数。
二、一次方程一次方程是代数学中最简单的方程形式,即形如ax + b = 0的方程。
1. 解一次方程对于一次方程ax + b = 0,其中a和b是已知实数,a ≠ 0,它的解是x = -b/a。
在解一次方程时,可以通过移项和消元的方法求解。
2. 解一次方程组含有多个一次方程的方程组称为一次方程组。
求解一次方程组的方法主要有消元法、代入法和加减法。
三、二次方程二次方程是课程进度中较为复杂的代数公式形式,即形如ax^2 + bx + c = 0的方程,其中a、b和c是已知实数,且a ≠ 0。
1. 求二次方程的解对于二次方程ax^2 + bx + c = 0,其中a、b和c是已知实数,且a ≠ 0,可以通过求根公式来求解。
1. 代数公式加法交换律:a + b = b + a加法结合律:(a + b) + c = a + (b + c)乘法交换律:a × b = b × a乘法结合律:(a × b) × c = a × (b × c)乘法分配律:a × (b + c) = a × b + a × c2. 平方差公式(a + b)(a b) = a^2 b^23. 完全平方公式(a + b)^2 = a^2 + 2ab + b^2(a b)^2 = a^2 2ab + b^24. 分式公式a/b × c/d = ac/bda/b ÷ c/d = ad/bc(a/b + c/d) = (ad + bc)/bd5. 一元一次方程ax + b = 0,其中a ≠ 0,解为 x = b/a6. 一元二次方程ax^2 + bx + c = 0,其中a ≠ 0,解为x = (b ± √(b^2 4ac)) / 2a7. 三角函数公式正弦函数:sin(θ) =对边/斜边余弦函数:cos(θ) = 邻边/斜边正切函数:tan(θ) = 对边/邻边8. 平面几何公式圆的周长:C = 2πr圆的面积:A = πr^2三角形面积:A = (底× 高) / 29. 立体几何公式长方体体积:V = 长× 宽× 高球体体积:V = (4/3)πr^3圆柱体积:V = πr^2h1. 平行线性质如果两条直线被第三条直线所截,那么同位角相等,内错角相等,同旁内角互补。
2. 相似三角形相似三角形的对应角相等,对应边成比例。
3. 毕达哥拉斯定理在直角三角形中,斜边的平方等于其他两边的平方和,即a^2 + b^2 = c^2。
4. 分数的加减乘除分数的加法:(a/b) + (c/d) = (ad + bc) / bd分数的减法:(a/b) (c/d) = (ad bc) / bd分数的乘法:(a/b) × (c/d) = ac / bd分数的除法:(a/b) ÷ (c/d) = ad / bc5. 平均数平均数是一组数据之和除以数据的个数。
初中代数公式代数公式是数学中的基本概念之一。
它是用来表示数学关系以及进行数值运算的表达式,是数学中的重要工具之一。
初中代数公式是指在初中阶段学习的代数知识中所涉及的公式。
下面将详细介绍其中的一些常见的初中代数公式。
1. 一次方程的求解公式:一次方程的一般形式为ax + b = 0,其中a和b为已知数,x为未知数。
一次方程的求解公式为x = -b/a。
这个公式可以帮助我们求解一次方程的根。
2. 二次方程的求解公式:二次方程的一般形式为ax² + bx + c = 0,其中a、b和c为已知数,x为未知数。
二次方程的求解公式为x = (-b ± √(b²-4ac))/(2a)。
这个公式可以帮助我们求解二次方程的根。
3. 因式分解公式:因式分解是将一个多项式拆分成若干个更简单的因式相乘的过程。
常见的因式分解公式有:平方差公式(a²-b² = (a+b)(a-b))、平方差和公式(a³+b³ = (a+b)(a²-ab+b²))、立方差公式(a³-b³ = (a-b)(a²+ab+b²))等。
这些公式可以帮助我们进行因式分解,简化计算过程。
4. 平方根公式:平方根公式是求解二次方程根的一种方法。
对于二次方程ax² + bx + c = 0,其中a、b和c为已知数,欲求解该方程的根x。
平方根公式为x = (-b ± √(b²-4ac))/(2a)。
在使用平方根公式时,首先要判断方程的判别式(b²-4ac)的正负,进而确定方程的根的情况。
5. 贝祖等式:贝祖等式是初中代数中一个非常重要的公式。
它表述了两个数的最大公约数与最小公倍数之间的关系。
对于两个正整数a和b,贝祖等式为 gcd(a,b) * lcm(a,b) = a * b。
其中gcd(a,b) 表示a和b的最大公约数,lcm(a,b) 表示a和b的最小公倍数。
初中数学基本公式大全1. 代数基本公式:- 二次方程的根公式:如果二次方程 ax^2 + bx + c = 0 (其中a ≠ 0) 的判别式 D = b^2 - 4ac 大于等于0,那么该方程的根为 x = (-b ± √D) / (2a)。
- 因式分解公式:a^2 - b^2 = (a + b)(a - b)。
- 完全平方公式:(a + b)^2 = a^2 + 2ab + b^2;(a - b)^2 = a^2 - 2ab + b^2。
- 二次完全平方公式:a^2 + 2ab + b^2 = (a + b)^2;a^2 - 2ab + b^2 = (a - b)^2。
- 三角形三边关系公式:cosC = (a^2 + b^2 - c^2) / (2ab),sinC =2sin(A/2)sin(B/2)/cos((A-B)/2)。
- 二项式定理:(a + b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + ... + C(n,n-1)ab^(n-1) + C(n,n)b^n。
2. 几何基本公式:- 周长公式:长方形周长 = 2(长 + 宽),正方形周长 = 4边长,三角形周长 = 边长之和。
- 面积公式:长方形面积 = 长× 宽,正方形面积 = 边长^2,三角形面积 = 底× 高 / 2。
- 圆的周长与面积公式:周长= 2πr,面积= πr^2,其中π 可取近似值3.14。
- 三角形面积公式:海伦公式:设三角形的三边分别为a、b、c,则其面积S =√[s(s-a)(s-b)(s-c)],其中 s 是三角形的半周长,即s = (a+b+c)/2。
- 直角三角形三边关系公式:勾股定理:c^2 = a^2 + b^2,其中c为斜边,a、b为直角边。
3. 比例关系公式:- 直线两点间距离公式:设两点 A(x1, y1) 和 B(x2, y2),则两点间的距离 d =√[(x2 - x1)^2 + (y2 - y1)^2]。
小学初中高中数学公式大全_数学基础知识一、初中数学公式(1)代数:1、两个数的积:a*b2、二次方程的一般解:x=(-b±√(b²-4ac))/2a3、三角函数的基本公式:sin A=opp/hyp;cos A=adj/hyp;tan A=opp/adj4、比例公式:a/b=c/d(2)几何:1、直角三角形的勾股定理:a²+b²=c²2、三角形的面积公式:S=1/2a×b×sin A3、平行四边形的面积公式:S=ab4、圆的面积公式:S=πr²5、球体的面积公式:S=4πr²6、棱柱和圆柱的体积公式:V=sh7、球体的体积公式:V=4/3πr³二、高中数学公式(1)代数:1、一次函数的一般解:y=ax+b2、二次函数的一般解:y=ax²+bx+c(2)几何:1、体积:V=Ah(A为底面积,h为高)2、交叉体积:V=p(a+b+c+d+…)3、几何体的表面积公式:S=2πrh+ 2πr²4、共轭矩形的面积:S=2ab5、球的表面积公式:S=4πr²6、椭圆的面积公式:S=πab三、中学数学公式(1)代数:1、一次函数的一般解:y=ax+b2、二次函数的一般解:y=ax²+bx+c3、指数函数的一般解:y=a·bⁿ4、对数函数的一般解:y=a·logbx(2)几何:1、正方形的面积公式:S=a²2、正方体的体积公式:V=a³3、长方形的面积公式:S=ab4、圆柱的体积公式:V=πr²h5、椭圆的面积公式:S=πab。
初中数学代数公式归纳〔1〕实数实数的性质:①实数a的相反数是—a,实数a的倒数是〔a≠0〕;②实数a的绝对值:③正数大于0,负数小于0,两个负实数,绝对值大的反而小。
二次根式:①积与商的方根的运算性质:〔a≥0,b≥0〕;〔a≥0,b>0〕;②二次根式的性质:〔2〕整式与分式①同底数幂的乘法法那么:同底数幂相乘,底数不变,指数相加,即〔m、n为正整数〕;②同底数幂的除法法那么:同底数幂相除,底数不变,指数相减,即〔a≠0,m、n为正整数,mn〕;③幂的乘方法那么:幂的乘方,底数不变,指数相乘,即〔n为正整数〕;④零指数:〔a≠0〕;⑤负整数指数:〔a≠0,n为正整数〕;⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即;⑦完全平方公式:两数和〔或差〕的平方,等于它们的平方和,加上〔或减去〕它们的积的2倍,即;分式①分式的基本性质:分式的分子和分母都乘以〔或除以〕同一个不等于零的整式,分式的值不变,即;,其中m是不等于零的代数式;②分式的乘法法那么:;③分式的除法法那么:;④分式的乘方法那么:〔n为正整数〕;⑤同分母分式加减法那么:;⑥异分母分式加减法那么:;2.方程与不等式①一元二次方程(a≠0〕的求根公式:②一元二次方程根的.判别式:叫做一元二次方程〔a≠0〕的根的判别式:方程有两个不相等的实数根;方程有两个相等的实数根;方程没有实数根;③一元二次方程根与系数的关系:设、是方程〔a≠0〕的两个根,那么+=,=;不等式的基本性质:①不等式两边都加上〔或减去〕同一个数或同一个整式,不等号的方向不变;②不等式两边都乘以〔或除以〕同一个正数,不等号的方向不变;③不等式两边都乘以〔或除以〕同一个负数,不等号的方向转变;3.函数一次函数的图象:函数y=k*+b(k、b是常数,k≠0)的图象是过点〔0,b〕且与直线y=k*平行的一条直线;一次函数的性质:设y=k*+b〔k≠0〕,那么当k0时,y 随*的增大而增大;当k0,y随*的增大而减小;正比例函数的图象:函数的图象是过原点及点〔1,k〕的一条直线。
初中代数几何公式和基本计算方法一、初中代数公式:1. 一元二次方程的求解公式:对于一元二次方程ax^2 + bx + c = 0,其求解公式为x = (-b ± √(b^2 - 4ac))/(2a)。
2. 因式分解公式:对于一个二次三项式ax^2 + bx + c,可以将其因式分解为(x - m)(x - n),其中m和n为满足m + n = -b/a和mn =c/a的两个实数。
3. 平方差公式:(a + b)^2 = a^2 + 2ab + b^2,(a - b)^2 = a^2- 2ab + b^24. 立方差公式:(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3,(a -b)^3 = a^3 - 3a^2b + 3ab^2 - b^35. 二次完全平方公式:a^2 + 2ab + b^2 = (a + b)^2,a^2 - 2ab+ b^2 = (a - b)^26.一元一次方程求解方法:通过移项、合并同类项、除以未知数系数,将方程化为x=a的形式,其中a为实数。
7.等比数列通项公式:对于等比数列an = a1 * r^(n-1),其中a1为首项,r为公比。
二、初中几何公式:1.三角形面积公式:对于已知三角形的底边长度b和对应的高h,其面积S=(1/2)*b*h。
2.三角形面积公式(海伦公式):对于已知三角形的三条边长a、b、c,其面积S=√(p*(p-a)*(p-b)*(p-c)),其中p=(a+b+c)/23.任意三角形外接圆半径公式:对于已知三角形的三个顶点坐标(x1,y1),(x2,y2),(x3,y3),其外接圆半径R=√(((x1-x2)^2+(y1-y2)^2)*((x1-x3)^2+(y1-y3)^2)*((x2-x3)^2+(y2-y3)^2))/(4*S),其中S为三角形的面积。
4.任意三角形内切圆半径公式:对于已知三角形的三个边长a、b、c,其内切圆半径r=S/p,其中S为三角形的面积,p=(a+b+c)/25.圆周长公式:对于已知圆的半径r,其周长C=2πr。
初中代数公式代数是初中数学的一个重要的运算理论和方法,它最早在1859年被使用。
下面是店铺给大家整理的初中代数公式,供大家参阅!初中代数公式乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b2-4ac=0 注:方程有两个相等的实根b2-4ac>0 注:方程有两个不等的实根b2-4ac<0 注:方程没有实根,有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h代数的起源与发展初等代数是更古老的算术的推广和发展。
在古代,当算术里积累了大量的,关于各种数量问题的解法后,为了寻求有系统的、更普遍的方法,以解决各种数量关系的问题,就产生了以解方程的原理为中心问题的初等代数。
代数是由算术演变来的,这是毫无疑问的。
至于什么年代产生的代数学这门学科,就很不容易说清楚了。
比如,如果你认为“代数学”是指解bx+k=0这类用符号表示的方程的技巧。
那么,这种“代数学”是在十六世纪才发展起来的。
如果我们对代数符号不是要求象现在这样简练,那么,代数学的产生可上溯到更早的年代。
西方人将公元前三世纪古希腊数学家刁藩都看作是代数学的鼻祖。
而在中国,用文字来表达的代数问题出现的就更早了。
“代数”作为一个数学专有名词、代表一门数学分支在中国正式使用,最早是在1859年。
那年,清代数学家里李善兰和英国人韦列亚力共同翻译了英国人棣么甘所写的一本书,译本的名称就叫做《代数学》。
当然,代数的内容和方法,中国古代早就产生了,比如《九章算术》中就有方程问题。
初等代数的内容中心内容初等代数是研究数字和文字的代数运算理论和方法,更确切的说,是研究实数和复数,以及以它们为系数的多项式的代数运算理论和方法的数学分支学科。
初等代数是更古老的算术的推广和发展。
在古代,当算术里积累了大量的,关于各种数量问题的解法后,为了寻求有系统的、更普遍的方法,以解决各种数量关系的问题,就产生了以解方程的原理为中心问题的初等代数。
代数是由算术演变来的,这是毫无疑问的。
至于什么年代产生的代数学这门学科,就很不容易说清楚了。
比如,如果你认为“代数学”是指解ax2+bx+c=0这类用符号表示的方程的技巧。
那么,这种“代数学”是在十六世纪才发展起来的。
如果我们对代数符号不是要求象现在这样简练,那么,代数学的产生可上溯到更早的年代。
西方人将公元前三世纪古希腊数学家刁藩都看作是代数学的鼻祖。
而在中国,用文字来表达的代数问题出现的就更早了。
那年,清代数学家里李善兰和英国人韦列亚力共同翻译了英国人棣么甘所写的一本书,译本的名称就叫做《代数学》。
当然,代数的内容和方法,中国古代早就产生了,比如《九章算术》中就有方程问题。
初等代数的中心内容是解方程,因而长期以来都把代数学理解成方程的科学,数学家们也把主要精力集中在方程的研究上。
它的研究方法是高度计算性的。
要讨论方程,首先遇到的一个问题是如何把实际中的数量关系组成代数式,然后根据等量关系列出方程。
所以初等代数的一个重要内容就是代数式。
由于事物中的数量关系的不同,大体上初等代数形成了整式、分式和根式这三大类代数式。
代数式是数的化身,因而在代数中,它们都可以进行四则运算,服从基本运算定律,而且还可以进行乘方和开方两种新的运算。
通常把这六种运算叫做代数运算,以区别于只包含四种运算的算术运算。
在初等代数的产生和发展的过程中,通过解方程的研究,也促进了数的概念的进一步发展,将算术中讨论的整数和分数的概念扩充到有理数的范围,使数包括正负整数、正负分数和零。
这是初等代数的又一重要内容,就是数的概念的扩充。
有了有理数,初等代数能解决的问题就大大的扩充了。
但是,有些方程在有理数范围内仍然没有解。
于是,数的概念在一次扩充到了实数,进而又进一步扩充到了复数。
那么到了复数范围内是不是仍然有方程没有解,还必须把复数再进行扩展呢?数学家们说:不用了。
这就是代数里的一个著名的定理—代数基本定理。
这个定理简单地说就是n次方程有n个根。
1742年12月15日瑞士数学家欧拉曾在一封信中明确地做了陈述,后来另一个数学家、德国的高斯在1799年给出了严格的证明。
把上面分析过的内容综合起来,组成初等代数的基本内容就是:三种数——有理数、无理数、复数三种式——整式、分式、根式中心内容是方程——整式方程、分式方程、根式方程和方程组。
初等代数的内容大体上相当于现代中学设置的代数课程的内容,但又不完全相同。
比如,严格地说,数的概念、排列和组合应归入算术的内容;函数是分析数学的内容;不等式的解法有点像解方程的方法,但不等式作为一种估算数值的方法,本质上是属于分析数学的范围;坐标法是研究解析几何的……。
这些都只是历史上形成的一种编排方法。
初等代数是算术的继续和推广,初等代数研究的对象是代数式的运算和方程的求解。
代数运算的特点是只进行有限次的运算。
全部初等代数总起来有十条规则。
这是学习初等代数需要理解并掌握的要点。
这十条规则是:五条基本运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、分配律;两条等式基本性质:等式两边同时加上一个数,等式不变;等式两边同时乘以一个非零的数,等式不变;三条指数律:同底数幂相乘,底数不变指数相加;指数的乘方等于底数不变指数想乘;积的乘方等于乘方的积。
初等代数学进一步的向两个方面发展,一方面是研究未知数更多的一次方程组;另一方面是研究未知数次数更高的高次方程。
这时候,代数学已由初等代数向着高等代数的方向发展了初等代数的中心内容是解方程,因而长期以来都把代数学理解成方程的科学,数学家们也把主要精力集中在方程的研究上。
它的研究方法是高度计算性的。
中心内容是方程——整式方程、分式方程、根式方程和方程组。
要讨论方程,首先遇到的一个问题是如何把实际中的数量关系组成代数式,然后根据等量关系列出方程。
所以初等代数的一个重要内容就是代数式。
代数式的定义是:由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子。
例如:ax+2b,-2/3等。
由于事物中的数量关系的不同,大体上初等代数形成了整式、分式和根式这三大类代数式。
代数式是数的化身,因而在代数中,它们都可以进行四则运算,服从基本运算定律,而且还可以进行乘方和开方两种新的运算。
通常把这六种运算叫做代数运算,以区别于只包含四种运算的算术运算。
基本内容在初等代数的产生和发展的过程中,通过解方程的研究,也促进了数的概念的进一步发展,将算术中讨论的整数和分数的概念扩充到有理数的范围,使数包括正负整数、正负分数和零。