06第09章磁场解读
- 格式:doc
- 大小:397.00 KB
- 文档页数:7
第2讲磁场对运动电荷的作用一、对洛伦兹力的理解1.洛伦兹力运动电荷在磁场中受到的力叫做洛伦兹力.2.洛伦兹力的方向(1)判定方法左手定则:掌心——磁感线垂直穿入掌心;四指——指向正电荷运动的方向或负电荷运动的反方向;拇指——指向洛伦兹力的方向.(2)方向特点:F⊥B,F⊥v,即F垂直于B和v决定的平面(注意:洛伦兹力不做功).3.洛伦兹力的大小(1)v∥B时,洛伦兹力F=0.(θ=0°或180°)(2)v⊥B时,洛伦兹力F=q v B.(θ=90°)(3)v=0时,洛伦兹力F=0.[深度思考]为什么带电粒子在电场力、重力和洛伦兹力共同作用下的直线运动只能是匀速直线运动?答案如果是变速,则洛伦兹力会变化,而洛伦兹力总是和速度方向垂直的,所以就不可能是直线运动.二、带电粒子在匀强磁场中的圆周运动1.匀速圆周运动的规律若v⊥B,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v做匀速圆周运动.(1)基本公式:q v B =m v 2R(2)半径R =m v Bq(3)周期T =2πR v =2πm qB2.圆心的确定(1)已知入射点、出射点、入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图1甲所示,P 为入射点,M 为出射点).图1(2)已知入射方向、入射点和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨迹的圆心(如图乙所示,P 为入射点,M 为出射点).3.半径的确定可利用物理学公式或几何知识(勾股定理、三角函数等)求出半径大小.4.运动时间的确定粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为θ时,其运动时间表示为t =θ2πT (或t =θR v ). 三、带电粒子在有界磁场中的运动1.带电粒子在有界磁场中运动的三种常见情形(1)直线边界(进出磁场具有对称性,如图2所示)图2(2)平行边界(存在临界条件,如图3所示)图3(3)圆形边界(沿径向射入必沿径向射出,如图4所示)图42.分析带电粒子在匀强磁场中运动的关键(1)画出运动轨迹;(2)确定圆心和半径;(3)利用洛伦兹力提供向心力列方程.[深度思考] 1.当带电粒子射入磁场时速度v大小一定,但射入方向变化时,如何确定粒子的临界条件?2.当带电粒子射入磁场的方向确定,但射入时的速度大小或磁场的磁感应强度变化时,又如何确定粒子的临界条件?答案 1.当带电粒子射入磁场时的速度v大小一定,但射入方向变化时,粒子做圆周运动的轨道半径R是确定的.在确定粒子运动的临界情景时,可以以入射点为定点,将轨迹圆旋转,作出一系列轨迹,从而探索出临界条件.2.当带电粒子射入磁场的方向确定,但射入时的速度v大小或磁场的磁感应强度B变化时,粒子做圆周运动的轨道半径R随之变化.可以以入射点为定点,将轨道半径放缩,作出一系列的轨迹,从而探索出临界条件.1.判断下列说法是否正确.(1)带电粒子在磁场中运动时一定会受到磁场力的作用.(×)(2)洛伦兹力的方向在特殊情况下可能与带电粒子的速度方向不垂直.(×)(3)洛伦兹力和安培力是性质完全不同的两种力.(×)(4)粒子在只受到洛伦兹力作用时运动的动能不变.(√)(5)带电粒子只要速度大小相同,所受洛伦兹力就相同.(×)2.(人教版选修3-1P98第1题改编)下列各图中,运动电荷的速度方向、磁感应强度方向和电荷的受力方向之间的关系正确的是()答案 B3.(人教版选修3-1P102第3题改编)如图5所示,一束质量、速度和电荷不全相等的离子,经过由正交的匀强电场和匀强磁场组成的速度选择器后,进入另一个匀强磁场中并分裂为A、B两束,下列说法中正确的是()图5A.组成A束和B束的离子都带负电B.组成A束和B束的离子质量一定不同C.A束离子的比荷大于B束离子的比荷D.速度选择器中的磁场方向垂直于纸面向外答案 C4.质量和电量都相等的带电粒子M 和N ,以不同的速率经小孔S 垂直进入匀强磁场,运行的半圆轨迹如图6中虚线所示,下列表述正确的是( )图6A .M 带负电,N 带正电B .M 的速率小于N 的速率C .洛伦兹力对M 、N 做正功D .M 的运行时间大于N 的运行时间答案 A解析 由左手定则可知,N 粒子带正电,M 粒子带负电,A 正确.又r N <r M ,由r =m v qB可得v N <v M ,B 错误.洛伦兹力与速度时刻垂直,不做功,C 错误.粒子在磁场中的运行时间t =θ2πT =T 2,又T =2πm qB,所以t M =t N ,D 错误.命题点一 对洛伦兹力的理解1.洛伦兹力的特点(1)洛伦兹力的方向总是垂直于运动电荷的速度方向和磁场方向共同确定的平面,所以洛伦兹力只改变速度的方向,不改变速度的大小,即洛伦兹力永不做功.(2)当电荷运动方向发生变化时,洛伦兹力的方向也随之变化.(3)用左手定则判断负电荷在磁场中运动所受的洛伦兹力时,要注意将四指指向电荷运动的反方向.2.洛伦兹力与安培力的联系及区别(1)安培力是洛伦兹力的宏观表现,二者是相同性质的力.(2)安培力可以做功,而洛伦兹力对运动电荷不做功.例1图7中a、b、c、d为四根与纸面垂直的长直导线,其横截面位于正方形的四个顶点上,导线中通有大小相同的电流,方向如图所示.一带正电的粒子从正方形中心O点沿垂直于纸面的方向向外运动,它所受洛伦兹力的方向是()图7A.向上B.向下C.向左D.向右①大小相同的电流;②向外运动.答案 B解析根据安培定则及磁感应强度的矢量叠加,可得O点处的磁场向左,再根据左手定则判断带电粒子受到的洛伦兹力向下.1.如图8所示,a是竖直平面P上的一点.P前有一条形磁铁垂直于P,且S极朝向a点,P后一电子在偏转线圈和条形磁铁的磁场的共同作用下,在水平面内向右弯曲经过a点.在电子经过a点的瞬间,条形磁铁的磁场对该电子的作用力的方向()图8A.向上B.向下C.向左D.向右答案 A解析条形磁铁的磁感线方向在a点为垂直P向外,电子在条形磁铁的磁场中向右运动,所以根据左手定则可得电子受到的洛伦兹力方向向上,A正确.命题点二带电粒子在匀强磁场中的圆周运动带电粒子在匀强磁场中做圆周运动的分析思路例2 (2016·全国Ⅲ·18)平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图9所示,平面OM 上方存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面向外.一带电粒子的质量为m ,电荷量为q (q >0).粒子沿纸面以大小为v 的速度从OM 的某点向左上方射入磁场,速度与OM 成30°角.已知该粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场.不计重力.粒子离开磁场的出射点到两平面交线O 的距离为( )图9A.m v 2qBB.3m v qBC.2m v qBD.4m v qB①速度与OM 成30°角;②运动轨迹与ON 只有一个交点.答案 D解析 带电粒子在磁场中做圆周运动的轨道半径为r =m v qB.轨迹与ON 相切,画出粒子的运动轨迹如图所示,知△AO ′D 为等边三角形,∠O ′DA =60°,而∠MON =30°,则∠OCD =90°,故CO ′D 为一直线,OD =CD sin 30°=2CD =4r =4m v qB,故D 正确.2.(多选)如图10所示,在水平虚线MN 边界的下方是一垂直纸面向里的匀强磁场,质子(11H)和α粒子(42He)先后从边界上的A 点沿与虚线成θ=45°角的方向射入磁场,两粒子均从B 点射出磁场.不计粒子的重力,则()图10A .两粒子在磁场中运动的轨迹相同B .两粒子在磁场中运动的速度大小之比为2∶1C .两粒子在磁场中运动的动能相同D .两粒子在磁场中运动的时间之比为2∶1答案 ABC解析 粒子在磁场中做匀速圆周运动,质子和α粒子从同一点沿相同的方向射入磁场,然后从同一点离开磁场,则它们在磁场中运动的轨迹相同,选项A 正确;两粒子的运动轨迹相同,则它们的轨道半径也一定相同,粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:q v B =m v 2r ,解得r =m v qB,设质子的质量为m 1,带电荷量为q 1,在磁场中运动的速度大小为v 1,α粒子的质量为m 2,带电荷量为q 2,在磁场中运动的速度大小为v 2,则有m 1v 1q 1B =m 2v 2q 2B ,即v 1v 2=m 2q 1m 1q 2=21,选项B 正确;设质子的动能为E 1,α粒子的动能为E 2,则有E 1E 2=12m 1v 2112m 2v 22=11,选项C 正确;两粒子在磁场中运动的轨迹相同,运动的速度大小之比为2∶1,则两粒子在磁场中运动时间之比为1∶2,选项D 错误.3.(多选)利用如图11所示装置可以选择一定速度范围内的带电粒子,图中板MN 上方是磁感应强度大小为B 、方向垂直纸面向里的匀强磁场,板上有两条宽度分别为2d 和d 的缝,两缝近端相距为L .一群质量为m 、电荷量为q ,具有不同速度的粒子从宽度为2d 的缝垂直于板MN 进入磁场,对于能够从宽度为d 的缝射出的粒子,下列说法正确的是( )图11A .粒子带正电B .射出的粒子的最大速度为qB (3d +L )2mC .保持d 和L 不变,增大B ,射出粒子的最大速度与最小速度之差增大D .保持d 和B 不变,增大L ,射出粒子的最大速度与最小速度之差增大答案 BC解析 由左手定则和粒子的偏转情况可以判断粒子带负电,选项A 错;根据洛伦兹力提供向心力q v B =m v 2r ,可得v =qBr m ,r 越大v 越大,由图可知r 最大值为r max =L +3d 2,代入v 的表达式可得v max =qB (3d +L )2m ,选项B 正确;又r 最小值为r min =L 2,将r max 、r min 分别代入v 的表达式后得出速度之差为Δv =3qBd 2m,可见选项C 正确、D 错误. 命题点三 带电粒子在有界磁场中的运动处理有界匀强磁场中的临界问题的技巧从关键词、语句找突破口,审题时一定要抓住题干中“恰好”“最大”“至少”“不脱离”等词语,挖掘其隐藏的规律.1.刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切,据此可以确定速度、磁感应强度、轨迹半径、磁场区域面积等方面的极值.2.当速度v 一定时,弧长(或弦长)越大,圆心角越大,则带电粒子在有界磁场中运动的时间越长(前提条件是弧是劣弧).3.当速率变化时,圆心角大的,运动时间长.4.在圆形匀强磁场中,当运动轨迹圆半径大于磁场区域圆半径时,则入射点和出射点为磁场直径的两个端点时,轨迹对应的偏转角最大(所有的弦长中直径最长).例3 (2016·全国Ⅱ·18)一圆筒处于磁感应强度大小为B 的匀强磁场中,磁场方向与筒的轴平行,筒的横截面如图12所示.图中直径MN 的两端分别开有小孔,筒绕其中心轴以角速度ω顺时针转动.在该截面内,一带电粒子从小孔M 射入筒内,射入时的运动方向与MN 成30°角.当筒转过90°时,该粒子恰好从小孔N 飞出圆筒.不计重力.若粒子在筒内未与筒壁发生碰撞,则带电粒子的比荷为()图12A.ω3BB.ω2BC.ωBD.2ωB①该粒子恰好从小孔N 飞出圆筒;②粒子在筒内未与筒壁发生碰撞.答案 A解析 画出粒子的运动轨迹如图所示,由洛伦兹力提供向心力得,q v B =m v 2r ,又T =2πr v ,联立得T =2πm qB由几何知识可得,轨迹的圆心角为θ=π6,在磁场中运动时间t =θ2πT ,粒子运动和圆筒运动具有等时性,则θ2πT =π2ω,解得q m =ω3B,故选项A 正确.4.如图13所示,在边长为2a 的正三角形区域内存在方向垂直于纸面向里的匀强磁场,一个质量为m 、电荷量为-q 的带电粒子(重力不计)从AB 边的中心O 以速度v 进入磁场,粒子进入磁场时的速度方向垂直于磁场且与AB 边的夹角为60°,若要使粒子能从AC 边穿出磁场,则匀强磁场的大小B 需满足()图13A .B >3m v 3aq B .B <3m v 3aqC .B >3m vaqD .B <3m vaq答案 B解析 若粒子刚好达到C 点时,其运动轨迹与AC 相切,如图所示,则粒子运动的半径为r 0=a tan 30°=3a .由r =m v qB 得,粒子要能从AC边射出,粒子运行的半径应满足r >r 0,解得B <3m v3aq,选项B 正确. 5.如图14所示,在足够大的屏MN 的上方有磁感应强度为B 的匀强磁场,磁场方向垂直纸面向里,P 为屏上一小孔,PC 与MN 垂直,一束质量为m 、电荷量为-q 的粒子(不计重力)以相同的速率v 从P 处射入磁场区域,粒子入射方向在与磁场垂直的平面里,且分散在与PC 夹角为θ的范围内,则在屏MN 上被粒子打中区域的长度为( )图14A.2m v q BB.2m v cos θqBC.2m v (1-sin θ)qBD.2m v (1-cos θ)qB答案 D解析 如图所示,ST 之间的距离为在屏MN 上被粒子打中区域的长度.粒子在磁场中运动的轨道半径R =m vqB ,则PS =2R cos θ=2m v cos θqBPT =2R =2m vqB ,所以ST =2m v (1-cos θ)qB.带电粒子在磁场中运动的多解问题1.带电粒子电性不确定形成多解:受洛伦兹力作用的带电粒子,由于电性不同,当速度相同时,正、负粒子在磁场中运动轨迹不同,形成多解.如图15甲所示,带电粒子以速度v垂直进入匀强磁场,如带正电,其轨迹为a,如带负电,其轨迹为b.图152.磁场方向不确定形成多解:有些题目只已知磁感应强度的大小,而不知其方向,此时必须要考虑磁感应强度方向不确定而形成的多解.如图乙所示,带正电粒子以速度v垂直进入匀强磁场,如B垂直纸面向里,其轨迹为a,如B垂直纸面向外,其轨迹为b.3.临界状态不唯一形成多解:带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧状,因此,它可能穿过磁场飞出,也可能转过180°从入射界面这边反向飞出,从而形成多解,如图16甲所示.图164.运动的周期性形成多解:带电粒子在部分是电场、部分是磁场的空间运动时,运动往往具有往复性,从而形成多解,如图乙所示.典例1(多选)如图17所示,垂直于纸面向里的匀强磁场分布在正方形abcd区域内,O点是cd边的中点.一个带正电的粒子仅在磁场力的作用下,从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t 0后刚好从c 点射出磁场.现设法使该带电粒子从O 点沿纸面以与Od 成30°角的方向,以大小不同的速率射入正方形内,那么下列说法中正确的是( )图17A .若该带电粒子在磁场中经历的时间是53t 0,则它一定从cd 边射出磁场B .若该带电粒子在磁场中经历的时间是23t 0,则它一定从ad 边射出磁场C .若该带电粒子在磁场中经历的时间是54t 0,则它一定从bc 边射出磁场D .若该带电粒子在磁场中经历的时间是t 0,则它一定从ab 边射出磁场 答案 AC解析 如图所示,作出刚好从ab 边射出的轨迹①、刚好从bc 边射出的轨迹②、从cd 边射出的轨迹③和刚好从ad 边射出的轨迹④.由从O 点沿纸面以垂直于cd 边的速度射入正方形内,经过时间t 0后刚好从c 点射出磁场可知,带电粒子在磁场中做圆周运动的周期是2t 0.可知,从ad 边射出磁场经历的时间一定小于13t 0;从ab 边射出磁场经历的时间一定大于等于13t 0,小于56t 0;从bc 边射出磁场经历的时间一定大于等于56t 0,小于43t 0;从cd 边射出磁场经历的时间一定是53t 0.典例2 如图18所示,在坐标系xOy 中,第一象限内充满着两个匀强磁场a 和b ,OP 为分界线,在磁场a 中,磁感应强度为2B ,方向垂直于纸面向里,在磁场b 中,磁感应强度为B ,方向垂直于纸面向外,P 点坐标为(4l,3l ).一质量为m 、电荷量为q 的带正电粒子从P 点沿y 轴负方向射入磁场b ,经过一段时间后,粒子恰能经过原点O ,不计粒子重力.求:图18(1)粒子从P 点运动到O 点的最短时间是多少? (2)粒子运动的速度可能是多少? 答案 (1)53πm 60qB (2)25qBl12nm(n =1,2,3,…)解析 (1)设粒子的入射速度为v ,用R a 、R b 、T a 、T b 分别表示粒子在磁场a 中和磁场b 中运动的轨道半径和周期,则有R a =m v 2qB ,R b =m v qB ,T a =2πm 2qB =πm qB ,T b =2πmqB当粒子先在磁场b 中运动,后进入磁场a 中运动,然后从O 点射出时,粒子从P 点运动到O 点所用的时间最短,如图所示.根据几何知识得tan α=3l 4l =34,故α=37°粒子在磁场b 和磁场a 中运动的时间分别为 t b =2×(90°-α)360°T b ,t a =2×(90°-α)360°T a故从P 点运动到O 点的时间为 t =t a +t b =53πm60qB(2)由题意及上图可知 n (2R a cos α+2R b cos α)=(3l )2+(4l )2解得v =25qBl12nm(n =1,2,3,…).题组1 对洛伦兹力的理解1.如图1是科学史上一张著名的实验照片,显示一个带电粒子在云室中穿过某种金属板运动的径迹.云室放置在匀强磁场中,磁场方向垂直照片向里.云室中横放的金属板对粒子的运动起阻碍作用.分析此运动轨迹可知粒子()图1A.带正电,由下往上运动B.带正电,由上往下运动C.带负电,由上往下运动D.带负电,由下往上运动答案 A解析由图可以看出,上方的轨迹半径小,说明粒子的速度小,所以粒子是从下方往上方运动;再根据左手定则,可以判定粒子带正电.2.(多选)如图2所示,空间有一垂直纸面向外的磁感应强度为0.5 T的匀强磁场,一质量为0.2 kg且足够长的绝缘木板静止在光滑水平面上,在木板左端放置一质量为0.1 kg、带电荷量q=+0.2 C的滑块,滑块与绝缘木板之间的动摩擦因数为0.5,滑块受到的最大静摩擦力可认为等于滑动摩擦力.现对木板施加方向水平向左、大小为0.6 N的恒力,g取10 m/s2,则()图2A.木板和滑块一直做加速度为2 m/s2的匀加速运动B.滑块开始做匀加速直线运动,然后做加速度减小的变加速运动,最后做匀速运动C.最终木板做加速度为2 m/s2的匀加速直线运动,滑块做速度为10 m/s的匀速直线运动D.最终木板做加速度为3 m/s2的匀加速直线运动,滑块做速度为10 m/s的匀速直线运动答案BD解析由于动摩擦因数为0.5,静摩擦力能提供的最大加速度为5 m/s2,所以当0.6 N的恒力作用于木板时,系统一起以a =F M +m =0.60.2+0.1 m/s 2=2 m/s 2的加速度一起运动,当滑块获得向左运动的速度以后磁场对其有竖直向上的洛伦兹力,当洛伦兹力等于重力时滑块与木板之间的弹力为零,此时有Bq v =mg ,解得v =10 m/s ,此时摩擦力消失,滑块做匀速直线运动,而木板在恒力作用下做匀加速直线运动,a ′=FM =3 m/s 2,所以B 、D 正确.题组2 带电粒子在匀强磁场中的运动3.(2016·四川理综·4)如图3所示,正六边形abcdef 区域内有垂直于纸面的匀强磁场.一带正电的粒子从f 点沿fd 方向射入磁场区域,当速度大小为v b 时,从b 点离开磁场,在磁场中运动的时间为t b ,当速度大小为v c 时,从c 点离开磁场,在磁场中运动的时间为t c ,不计粒子重力.则( )图3A .v b ∶v c =1∶2,t b ∶t c =2∶1B .v b ∶v c =2∶1,t b ∶t c =1∶2C .v b ∶v c =2∶1,t b ∶t c =2∶1D .v b ∶v c =1∶2,t b ∶t c =1∶2 答案 A解析 带正电粒子在匀强磁场中做匀速圆周运动,洛伦兹力提供向心力,运动轨迹如图所示,由几何关系得,r c =2r b ,θb =120°,θc =60°,由q v B =m v 2r 得,v =qBr m ,则v b ∶v c =r b ∶r c =1∶2, 又由T =2πm qB ,t =θ2πT 和θb =2θc 得t b ∶t c =2∶1,故选项A 正确,B 、C 、D 错误. 4.(多选)有两个匀强磁场区域Ⅰ和Ⅱ,Ⅰ中的磁感应强度是Ⅱ中的k 倍.两个速率相同的电子分别在两磁场区域做圆周运动.与Ⅰ中运动的电子相比,Ⅱ中的电子( ) A .运动轨迹的半径是Ⅰ中的k 倍B .加速度的大小是Ⅰ中的k 倍C .做圆周运动的周期是Ⅰ中的k 倍D .做圆周运动的角速度与Ⅰ中的相等 答案 AC解析 设电子的质量为m ,速率为v ,电荷量为q ,B 2=B ,B 1=kB 则由牛顿第二定律得:q v B =m v 2R ①T =2πR v ②由①②得:R =m v qB ,T =2πm qB ,所以R 2R 1=k ,T 2T 1=k根据a =v 2R ,ω=v R 可知a 2a 1=1k ,ω2ω1=1k所以选项A 、C 正确,选项B 、D 错误.5.如图4所示,圆形区域内有一垂直纸面的匀强磁场,P 为磁场边界上的一点.有无数带有同样电荷、具有同样质量的粒子在纸面内沿各个方向以相同的速率通过P 点进入磁场.这些粒子射出边界的位置均处于边界的某一段圆弧上,这段圆弧的弧长是圆周长的13.将磁感应强度的大小从原来的B 1变为B 2,结果相应的弧长变为原来的一半,则B 2B 1等于( )图4A. 2B. 3 C .2 D .3 答案 B解析 当轨道半径小于或等于磁场区半径时,粒子射出圆形磁场的点离入射点最远距离为轨迹直径.如图所示,当粒子从13圆周射出磁场时,粒子在磁场中运动的轨道直径为PQ ,粒子都从圆弧PQ 之间射出,因此轨道半径r 1=R cos 30°=32R ;若粒子射出的圆弧对应弧长为“原来”的一半,即16周长,对应的弦长为R ,即粒子运动轨迹直径等于磁场区半径R ,半径r 2=R 2,由r =m v qB 可得B 2B 1=r 1r 2= 3.题组3 带电粒子在有界磁场中的运动6.如图5所示,边界OA 与OC 之间分布有垂直纸面向里的匀强磁场,边界OA 上有一个粒子源S .某一时刻,从S 平行于纸面向各个方向发射出大量带正电的同种粒子(不计粒子的重力及粒子间的相互作用),所有粒子的初速度大小相同,经过一段时间有大量粒子从边界OC 射出磁场.已知∠AOC =60°,从边界OC 射出的粒子在磁场中运动的最短时间等于T6(T为粒子在磁场中运动的周期),则从边界OC 射出的粒子在磁场中运动的最长时间为( )图5A.T 3B.T 2C.2T 3D.5T 6 答案 B解析 由左手定则可知,粒子在磁场中做逆时针方向的圆周运动.由粒子速度大小都相同,故轨迹弧长越小,粒子在磁场中运动时间就越短;而弧长越小,弦长也越短,所以从S 点作OC 的垂线SD ,则SD 为最短弦,可知粒子从D 点射出时运行时间最短,如图所示,根据最短时间为T6,可知△O ′SD 为等边三角形,粒子圆周运动半径R =SD ,过S 点作OA 的垂线交OC 于E 点,由几何关系可知SE =2SD ,SE 为圆弧轨迹的直径,所以从E 点射出,对应弦最长,运行时间最长,且t =T2,故B 项正确.7.如图6所示,直径分别为D 和2D 的同心圆处于同一竖直面内,O 为圆心,GH 为大圆的水平直径.两圆之间的环形区域(Ⅰ区)和小圆内部(Ⅱ区)均存在垂直圆面向里的匀强磁场.间距为d 的两平行金属极板间有一匀强电场,上极板开有一小孔.一质量为m 、电荷量为+q 的粒子由小孔下方d2处静止释放,加速后粒子以竖直向上的速度v 射出电场,由H 点紧靠大圆内侧射入磁场.不计粒子的重力.图6(1)求极板间电场强度的大小;(2)若粒子运动轨迹与小圆相切,求Ⅰ区磁感应强度的大小. 答案 (1)m v 2qd (2)4m v qD 或4m v3qD解析 (1)设极板间电场强度的大小为E ,对粒子在电场中的加速运动,由动能定理得qE ·d2=12m v 2① 由①式得E =m v 2qd②(2)设Ⅰ区磁感应强度的大小为B ,粒子做圆周运动的半径为R ,由牛顿第二定律得q v B =m v 2R③如图所示,粒子运动轨迹与小圆相切有两种情况.若粒子轨迹与小圆外切,由几何关系得R =D 4④联立③④式得B =4m vqD⑤ 若粒子轨迹与小圆内切,由几何关系得R =3D4⑥ 联立③⑥式得B =4m v3qD⑦8.为了进一步提高回旋加速器的能量,科学家建造了“扇形聚焦回旋加速器”.在扇形聚焦过程中,离子能以不变的速率在闭合平衡轨道上周期性旋转.扇形聚焦磁场分布的简化图如图7所示,圆心为O 的圆形区域等分成六个扇形区域,其中三个为峰区,三个为谷区,峰区和谷区相间分布.峰区内存在方向垂直纸面向里的匀强磁场,磁感应强度为B ,谷区内没有磁场.质量为m ,电荷量为q 的正离子,以不变的速率v 旋转,其闭合平衡轨道如图中虚线所示.图7(1)求闭合平衡轨道在峰区内圆弧的半径r ,并判断离子旋转的方向是顺时针还是逆时针; (2)求轨道在一个峰区内圆弧的圆心角θ,及离子绕闭合平衡轨道旋转的周期T ;(3)在谷区也施加垂直纸面向里的匀强磁场,磁感应强度为B ′,新的闭合平衡轨道在一个峰区内的圆心角θ变为90°,求B ′和B 的关系.已知:sin (α±β )=sin αcos β±cos αsin β,cos α=1-2sin 2α2.答案 (1)m v qB 逆时针 (2)2π3 (2π+33)mqB(3)B ′=3-12B 解析 (1)离子在峰区内做匀速圆周运动,由牛顿第二定律得q v B =m v 2r峰区内圆弧半径r =m vqB21 由正离子的运动轨迹结合左手定则知,旋转方向为逆时针方向(2)如图甲,由对称性,峰区内圆弧的圆心角θ=2π3每个圆弧的弧长l =2πr 3=2πm v3qB每段直线长度L =2r cos π6=3r =3m vqB周期T =3(l +L )v代入得T =(2π+33)mqB(3)如图乙,谷区内的圆心角θ′=120°-90°=30°谷区内的轨道圆弧半径r ′=m vqB ′由几何关系r sin θ2=r ′sin θ′2由三角关系sin 30°2=sin 15°=6-24代入得B ′=3-12B .。
第九章 电磁感应知识点七:单杆问题(与电阻结合)(水平单杆、斜面单杆(先电后力再能量))1、发电式(1)电路特点:导体棒相当于电源,当速度为v 时,电动势E =Blv(2)安培力特点:安培力为阻力,并随速度增大而增大(3)加速度特点:加速度随速度增大而减小(4)运动特点:加速度减小的加速运动(5)最终状态:匀速直线运动(6)两个极值①v=0时,有最大加速度:②a=0时,有最大速度:(7)能量关系 (8)动量关系 (9)变形:摩擦力;改变电路;改变磁场方向;改变轨道解题步骤:解决此类问题首先要建立“动→电→动”的思维顺序,可概括总结为:(1)找”电源”,用法拉第电磁感应定律和楞次定律求解电动势的大小和方向;(2)画出等效电路图,求解回路中的电流的大小及方向;(3)分析安培力对导体棒运动速度、加速度的动态过程,最后确定导体棒的最终运动情况;(4)列出牛顿第二定律或平衡方程求解.2、阻尼式(1)电路特点:导体棒相当于电源。
(2)安培力的特点:安培力为阻力,并随速度减小而减小。
(3)加速度特点:加速度随速度减小而减小 (4)运动特点:加速度减小的减速运动(5)最终状态:静止 (6)能量关系:动能转化为焦耳热 (7)动量关系(8)变形:有摩擦力;磁场不与导轨垂直等1.(多选)如图所示,MN 和PQ 是两根互相平行竖直放置的光滑金属导轨,已知导轨足够长,且电阻不计.有一垂直导轨平面向里的匀强磁场,磁感应强度为B ,宽度为L ,ab 是一根不但与导轨垂直而且始终与导轨接触良好的金属杆.开始,将开关S 断开,让ab 由静止开始自由下落,过段时间后,再将S 闭合,若从S 闭合开始计时,则金属杆ab 的速度v 随时间t 变化的图象可能是( ).答案 ACD FN M m F mga m μ-=22-+=()()m F mg R r v B l μ212E mFs Q mgS mv μ=++0m Ft BLq mgt mv μ--=-22()B F B l v a m m R r ==+22B B l v F BIl R r ==+20102mv Q-=00BIl t mv -⋅∆=-0mv q Bl =Bl s q n R r R r φ∆⋅∆==++2、(单选)如图所示,足够长平行金属导轨倾斜放置,倾角为37 °,宽度为0.5 m ,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN 垂直于导轨放置,质量为0.2 kg ,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T .将导体棒MN 由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN 的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10 m/s 2,sin 37°=0.6)( ).答案 BA .2.5 m/s 1 WB .5 m/s 1 WC .7.5 m/s 9 WD .15 m/s 9 W3.(多选)如图所示,水平固定放置的足够长的U 形金属导轨处于竖直向上的匀强磁场中,在导轨上放着金属棒ab ,开始时ab 棒以水平初速度v 0向右运动,最后静止在导轨上,就导轨光滑和导轨粗糙的两种情况相比较,这个过程( ).答案 ACA .安培力对ab 棒所做的功不相等B .电流所做的功相等C .产生的总内能相等D .通过ab 棒的电荷量相等4.(单选)如图,足够长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中( ).答案 BA .运动的平均速度大小为12vB .下滑的位移大小为qR BLC .产生的焦耳热为qBLvD .受到的最大安培力大小为B 2L 2v R sin θ5.(多选)如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R ,匀强磁场垂直于导轨平面,磁感应强度为B .将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P ,导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g .下列选项正确的是( ).答案 ACA .P =2mgv sin θB .P =3mgv sin θC .当导体棒速度达到v 2时加速度大小为g 2sin θD .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功6、(单选)如图所示,两光滑平行导轨水平放置在匀强磁场中,磁场垂直导轨所在平面,金属棒ab 可沿导轨自由滑动,导轨一端连接一个定值电阻R ,金属棒和导轨电阻不计.现将金属棒沿导轨由静止向右拉,若保持拉力F 恒定,经时间t 1后速度为v ,加速度为a 1,最终以速度2v 做匀速运动;若保持拉力的功率P 恒定,棒由静止经时间t 2后速度为v ,加速度为a 2,最终也以速度2v 做匀速运动,则( ).答案 BA .t 2=t 1B .t 1>t 2C .a 2=2a 1D .a 2=5a 17. (多选)如图所示,足够长的光滑导轨倾斜放置,其下端连接一个定值电阻R ,匀强磁场垂直于导轨所在平面,将ab 棒在导轨上无初速度释放,当ab 棒下滑到稳定状态时,速度为v ,电阻R 上消耗的功率为P .导轨和导体棒电阻不计.下列判断正确的是( ).A .导体棒的a 端比b 端电势低 答案 BDB .ab 棒在达到稳定状态前做加速度减小的加速运动C .若磁感应强度增大为原来的2倍,其他条件不变,则ab 棒下滑到稳定状态时速度将变为原来的12D .若换成一根质量为原来2倍的导体棒,其他条件不变,则ab 棒下滑到稳定状态时的功率将变为原来的4倍8.(单选)如图所示,足够长的光滑金属导轨MN 、PQ 平行放置,且都倾斜着与水平面成夹角θ.在导轨的最上端M 、P 之间接有电阻R ,不计其他电阻.导体棒ab 从导轨的最底端冲上导轨,当没有磁场时,ab 上升的最大高度为H ;若存在垂直导轨平面的匀强磁场时,ab 上升的最大高度为h .在两次运动过程中ab 都与导轨保持垂直,且初速度都相等.关于上述情景,下列说法正确的是( ).A .两次上升的最大高度相比较为H <hB .有磁场时导体棒所受合力的功等于无磁场时合力的功C .有磁场时,电阻R 产生的焦耳热为12mv 20D .有磁场时,ab 上升过程的最小加速度大于g sin θ 答案 B9.如图所示,两根平行金属导轨固定在同一水平面内,间距为l ,导轨左端连接一个电阻.一根质量为m 、电阻为r 的金属杆ab 垂直放置在导轨上.在杆的右方距杆为d 处有一个匀强磁场,磁场方向垂直于轨道平面向下,磁感应强度为B .对杆施加一个大小为F 、方向平行于导轨的恒力,使杆从静止开始运动,已知杆到达磁场区域时速度为v ,之后进入磁场恰好做匀速运动.不计导轨的电阻,假定导轨与杆之间存在恒定的阻力.求(1)导轨对杆ab 的阻力大小f ;(2)杆ab 中通过的电流及其方向;(3)导轨左端所接电阻的阻值R .答案 (1)F -mv 22d (2)mv 22Bld a →b (3)2B 2l 2d mv -r(1)杆进入磁场前做匀加速运动,有① ② 解得导轨对杆的阻力③ (2)杆进入磁场后做匀速运动,有④ 杆ab 所受的安培力⑤ 解得杆ab 中通过的电流⑥ 杆中的电流方向自a 流向b⑦ (3)杆产生的感应电动势⑧ 杆中的感应电流⑨解得导轨左端所接电阻阻值⑩ 10.如图甲所示.一对平行光滑轨道放置在水平面上,两轨道间距l =0.20 m ,电阻R =1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻皆可忽略不计,整个装置处于磁感应强度B =0.5 T 的匀强磁场中,磁场方向垂直轨道面向下.现在一外力F 沿轨道方向拉杆,使之做匀加速运动,测得力F 与时间t 的关系如图乙所示.求杆的质量m 和加速度a .答案 0.1 kg 10 m/s 2解:导体杆在轨道上做匀加速直线运动,用表示其速度,t 表示时间,则有:①杆切割磁力线,将产生感应电动势:② 在杆、轨道和电阻的闭合回路中产生电流③杆受到的安培力的④ 根据牛顿第二定律,有⑤ 联立以上各式,得⑥ 由图线上取两点代入⑥式,可计算得出:,答:杆的质量为,其加速度为.11、如图所示,质量m1=0.1 kg,电阻R1=0.3 Ω,长度l=0.4 m的导体棒ab横放在U型金属框架上.框架质量m2=0.2 kg,放在绝缘水平面上,与水平面间的动摩擦因数μ=0.2.相距0.4 m的MM′、NN′相互平行,电阻不计且足够长.电阻R2=0.1 Ω的MN垂直于MM′.整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5 T.垂直于ab施加F=2 N的水平恒力,ab从静止开始无摩擦地运动,始终与MM′、NN′保持良好接触.当ab运动到某处时,框架开始运动.设框架与水平面间最大静摩擦力等于滑动摩擦力,g取10 m/s2.(1)求框架开始运动时ab速度v的大小;(2)从ab开始运动到框架开始运动的过程中,MN上产生的热量Q=0.1 J,求该过程ab位移x的大小.答案(1)6 m/s(2)1.1 m(1)ab对框架的压力① 框架受水平面的支持力②依题意,最大静摩擦力等于滑动摩擦力,则框架受到最大静摩擦力③ab中的感应电动势④ MN中电流⑤MN受到的安培力⑥ 框架开始运动时⑦ 由上述各式代入数据解得⑧(2)闭合回路中产生的总热量⑨ 由能量守恒定律,得⑩代入数据解得⑪12、如图甲所示,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5 T.质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为r.现从静止释放杆ab,测得其在下滑过程中的最大速度为v m.改变电阻箱的阻值R,得到v m与R的关系如图乙所示.已知轨道间距为L=2 m,重力加速度g取10 m/s2,轨道足够长且电阻不计.(1)当R=0时,求杆ab匀速下滑过程中产生的感应电动势E的大小及杆中电流的方向;(2)求杆ab的质量m和阻值r;(3)当R=4 Ω时,求回路瞬时电功率每增加1 W的过程中合外力对杆做的功W.答案(1)2 V b→a(2)0.2 kg 2 Ω(3)0.6 J解:(1)由图可以知道,当时,杆最终以匀速运动,产生电动势由右手定则判断得知,杆中电流方向从(2)设最大速度为v,杆切割磁感线产生的感应电动势由闭合电路的欧姆定律:杆达到最大速度时满足计算得出:由图象可以知道:斜率为,纵截距为, 得到:计算得出:,(3)根据题意:,得,则由动能定理得联立得代入计算得出13.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ=30°角固定,两轨道间距为L =1 m .质量为m 的金属杆ab 垂直放置在轨道上,其阻值忽略不计.空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B =0.5 T .P 、M 间接有阻值为R 1的定值电阻,Q 、N 间接电阻箱R .现从静止释放ab ,改变电阻箱的阻值R ,测得最大速度为v m ,得到1v m 与1R 的关系如图乙所示.若轨道足够长且电阻不计,重力加速度g 取10 m/s 2.求: (1)金属杆的质量m 和定值电阻的阻值R 1; (2)当电阻箱R 取4 Ω时,且金属杆ab 运动的加速度为12g sin θ时,此时金属杆ab 运动的速度;(3)当电阻箱R 取4 Ω时,且金属杆ab 运动的速度为v m 2时,定值电阻R 1消耗的电功率.解析 (1)总电阻为R 总=R 1R /(R 1+R ),电路的总电流I =BLv /R 总 当达到最大速度时金属棒受力平衡,有mg sin θ=BIL =B 2L 2v m R 1R (R 1+R ),1v m =B 2L 2mgR sin θ+B 2L 2mgR 1sin θ,根据图象代入数据,可以得到金属杆的质量m =0.1 kg ,R 1=1 Ω. (2)金属杆ab 运动的加速度为12g sin θ时,I ′=BLv ′/R 总 根据牛顿第二定律得mg sin θ-BI ′L =ma即mg sin θ-B 2L 2v ′R 1R (R 1+R )=12mg sin θ,代入数据,得到v ′=0.8 m/s. (3)当电阻箱R 取4 Ω时,根据图象得到v m =1.6 m/s ,则v =v m 2=0.8 m/s ,P =E 2R 1=B 2L 2v 2R 1=0.16 W.14.如图所示,竖直平面内有无限长,不计电阻的两组平行光滑金属导轨,宽度均为L =0.5 m ,上方连接一个阻值R =1 Ω的定值电阻,虚线下方的区域内存在磁感应强度B =2 T 的匀强磁场.完全相同的两根金属杆1和2靠在导轨上,金属杆与导轨等宽且与导轨接触良好,电阻均为r =0.5 Ω.将金属杆1固定在磁场的上边缘(仍在此磁场内),金属杆2从磁场边界上方h 0=0.8 m 处由静止释放,进入磁场后恰做匀速运动.(g 取10 m/s 2)(1)求金属杆的质量m 为多大?(2)若金属杆2从磁场边界上方h 1=0.2 m 处由静止释放,进入磁场经过一段时间后开始做匀速运动.在此过程中整个回路产生了1.4 J 的电热,则此过程中流过电阻R 的电荷量q 为多少?解析 (1)金属杆2进入磁场前做自由落体运动,则v m =2gh 0=4 m/s金属杆2进入磁场后受两个力而处于平衡状态,即mg =BIL ,且E =BLv m ,I =E 2r +R解得m =B 2L 2v m 2r +R g =22×0.52×42×0.5+1×10kg =0.2 kg. (2)金属杆2从下落到再次匀速运动的过程中,设金属杆2在磁场内下降h 2,由能量守恒定律得 mg (h 1+h 2)=12mv 2m +Q 解得h 2=12mv 2m +Q mg -h 1=0.2×42+2×1.42×0.2×10 m -0.2 m =1.3 m 金属杆2进入磁场到匀速运动的过程中,感应电动势和感应电流的平均值分别为E =BLh 2t 2,I =E 2r +R 故流过电阻R 的电荷量q =It 2 联立解得q =BLh 22r +R =2×0.5×1.32×0.5+1C =0.65 C.15.如图12(a)所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上.在区域Ⅰ内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b)所示.t =0时刻在轨道上端的金属棒ab 从如图所示位置由静止开始沿导轨下滑,同时下端的另一金属棒cd 在位于区域Ⅰ内的导轨上由静止释放.在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好.已知cd棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g .求:(1)通过cd 棒电流的方向和区域Ⅰ内磁场的方向;(2)当ab 棒在区域Ⅱ内运动时cd 棒消耗的电功率;(3)ab 棒开始下滑的位置离EF 的距离;(4)ab 棒从开始下滑至EF 的过程中回路中产生的热量.解析 (1)由楞次定律知通过cd 棒的电流方向为d →c 区域Ⅰ内磁场方向为垂直于纸面向上.(2)对cd 棒:F 安=BIl =mg sin θ,所以通过cd 棒的电流大小I =mg sin θBl 当ab 棒在区域Ⅱ内运动时cd 棒消耗的电功率 P =I 2R =m 2g 2R sin 2θB 2l 2. (3)ab 棒在到达区域Ⅱ前做匀加速直线运动,加速度a =g sin θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得ΔΦΔt =Blv t ,即B ·2l ·l t x =Blg sin θt x ,所以t x =2l g sin θ ab 棒在区域Ⅱ中做匀速直线运动的速度v t =2gl sin θ 则ab 棒开始下滑的位置离EF 的距离h =12at 2x +2l =3l . (4)ab 棒在区域Ⅱ中运动的时间t 2=2l v t=2lg sin θ ab 棒从开始下滑至EF 的总时间t =t x +t 2=22lg sin θ,E =Blv t =Bl 2gl sin θ ab 棒从开始下滑至EF 的过程中闭合回路产生的热量Q =EIt =4mgl sin θ.16.如图所示,两根正对的平行金属直轨道MN 、M ´N ´位于同一水平面上,两轨道之间的距离l=0.50m .轨道的MM ´端之间接一阻值R=0.40Ω的定值电阻,NN ´端与两条位于竖直面内的半圆形光滑金属轨道NP 、N ´P ´平滑连接,两半圆轨道的半径均为R 0=0.50m .直轨道的右端处于竖直向下、磁感应强度B=0.64 T 的匀强磁场中,磁场区域的宽度d=0.80m ,且其右边界与NN ´重合.现有一质量m =0.20kg 、电阻r =0.10Ω的导体杆ab 静止在距磁场的左边界s=2.0m 处.在与杆垂直的水平恒力F=2.0N 的作用下ab 杆开始运动,当运动至磁场的左边界时撤去F ,结果导体杆ab 恰好能以最小速度通过半圆形轨道的最高点PP ´.已知导体杆ab 在运动过程中与轨道接触良好,且始终与轨道垂直,导体杆ab 与直轨道之间的动摩擦因数μ=0.10,轨道的电阻可忽略不计,取g =10m/s 2,求:⑴导体杆刚进入磁场时,通过导体杆上的电流大小和方向;⑵导体杆穿过磁场的过程中通过电阻R 上的电荷量;⑶导体杆穿过磁场的过程中整个电路中产生的焦耳热.解:(1)设导体杆在F 的作用下运动至磁场的左边界时的速度为,根据动能定理则有:导体杆刚进入磁场时产生的感应电动势为:此时通过导体杆上的电流大小为:(或 根据右手定则可以知道,电流方向为由b 向a (2)设导体杆在磁场中运动的时间为t,产生的感应电动势的平均值为,则有: 通过电阻R 的感应电流的平均值为:通过电阻R 的电荷量为:(或 (3)设导体杆离开磁场时的速度大小为,运动到圆轨道最高点的速度为,因导体杆恰好能通过半圆形轨道的最高点,根据牛顿第二定律对导体杆在轨道最高点时有:对于导体杆从运动至的过程,根据机械能守恒定律有:计算得出:导体杆穿过磁场的过程中损失的机械能为:此过程中电路中产生的焦耳热为:知识点八:单杆问题(与电容器结合)电容有外力充电式(1)电路特点:导体为发电边;电容器被充电。
八年级下册物理知识点总结:第九章文章摘要:磁铁能够吸引铁性物质,指南针能够指南,这些现象中所蕴含的物理道理这一章将进行讲解。
本章的难点在于对磁场的理解,以及如何描述磁场。
知道磁和电的相互转化,在实际的生活中关于磁与电的运用,知道几种利用电磁原理制作的机械设备的原理。
…磁铁能够吸引铁性物质,指南针能够指南,这些现象中所蕴含的物理道理这一章将进行讲解。
本章的难点在于对磁场的理解,以及如何描述磁场。
知道磁和电的相互转化,在实际的生活中关于磁与电的运用,知道几种利用电磁原理制作的机械设备的原理。
新知归纳:一、磁现象●磁性:磁铁吸引铁、钴、镍等物质的性质。
●磁体:具有磁性的物体,磁体具有吸铁性和指向性。
●磁极:磁体上磁性最强的部分(两个磁极)。
南极:自由转动的小磁针静止时指南(地理南极)的磁极(S);北极:静止时指北的磁极(N)。
●磁极间的相互作用:同名磁极互相排斥,异名磁极互相吸引。
●磁化:使原来没有磁性的物体获得磁性的过程。
二、磁场●磁场:磁体周围存在着看不见、摸不到的,能对磁体产生力的作用的物质。
磁体周围存在着磁场,磁极间的相互作用就是通过磁场发生的。
●磁场的基本性质:对入其中的磁体产生磁力的作用。
●磁场的方向:在磁场中的某一点,小磁针静止时北极所指的方向就是该点的磁场方向。
●磁感线:描述磁场的强弱和方向而假想的带箭头曲线。
磁体周围的磁感线是从它北极出来,回到南极。
(磁感线是不存在的,用虚线表示,且不相交,磁体内部,磁感线是从南极到北极)磁场中某点的磁场方向、磁感线方向、小磁针静止时北极指的方向相同。
地磁场:地球周围空间存在的磁场。
地磁的北极在地理位置的南极附近;而地磁的南极则在地理位置的北极附近。
三、电生磁●电流的磁效应:通电导线的周围存在磁场,磁场的方向跟电流的方向有关。
●通电螺线管的磁场:(做成螺线管线圈,各条导线产生的磁场叠加一起,磁场就会强很多)。
①通电螺线管外部的磁场和条形磁铁一样。
②安培定则:用右手握螺线管,让四指弯向螺线管中电流方向,则大拇指所指的那端就是螺线管的北极(N极)。
一、磁场一、磁场1•相关概念磁性:物质具有吸引铁、钴、镍等物质的性质。
磁体:具有磁性的物体。
小磁针的指南指北表明地球是一个大磁体。
磁体周围空间存在磁场;电流周围空间也存在磁场。
磁极:磁体的各部分磁性强弱不同,磁性最强的区域叫磁极。
2•磁体间的相互作用,磁场①磁体与磁体②磁体与通电导体施项河电徹件用③通电导体与通电导体磁场:磁体与磁体之间,磁体与通电导体之间,以及通电导体与通电导体之间的相互作用都是通过磁场发生的。
磁场和电场一样,是物质存在的另一种形式,是客观存在。
电流周围空间存在磁场,电流是大量运动电荷形成的,所以运动电荷周围空间也有磁场。
静止电荷周围空间没有磁场。
磁场存在于磁体、电流、运动电荷周围的空间。
磁场是物质存在的一种形式。
磁场对磁体、电流都有磁力作用。
与用检验电荷检验电场存在一样,可以用小磁针来检验磁场的存在。
如图所示为证明通电导线周围有磁场存在一—奥斯特实验,以及磁场对电流有力的作用实验。
3•地磁场:地球本身是一个磁体,附近存在的磁场叫地磁场,地磁的南极在地球北极附近,地磁的北极在地球的南极附近。
地磁体周围的磁场分布3 •指南针放在地球周围的指南针静止时能够指南北,就是受到了地磁场作用的结果。
地球的地理两极与地磁两极并不重合,磁针并非准确地指南或指北,其间有一个交角,叫地磁偏角,简称磁偏角。
4.磁偏角1说明:① 地球上不同点的磁偏角的数值是不同的。
② 磁偏角随地球磁极缓慢移动而缓慢变化。
③ 地磁轴和地球自转轴的夹角约为11c1•在做奥斯特实验时,下列操作中现象最明显的是()A •沿电流方向放置磁针,使磁针在导线的延长线上B •沿电流方向放置磁针,使磁针在导线的正下方C •电流沿南北方向放置在磁针的正上方D .电流沿东西方向放置在磁针的正上方 二、磁场的方向在电场中,电场方向是人们规定的,同理,人们也规定了磁场的方向。
规定: 在磁场中的任意一点小磁针北极受力的方向就是那一点的磁场方向。
江苏省2017高考物理大一轮复习第九章磁场教师用书编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省2017高考物理大一轮复习第九章磁场教师用书)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省2017高考物理大一轮复习第九章磁场教师用书的全部内容。
第九章磁场考试说明内容要求说明命题趋势磁场磁感应强度磁感线磁通量Ⅰ整体来说,计算题考查比较常见,选择题有时出现,但都是以中难题形式出现,分值比重大,属于拉开分差的情况,必须苦下功夫,认真对待.预计今后出现在计算题中的可能性非常大,而且命题背景将会更加前沿、新颖,注重与科技、生活的应用,如质谱仪、回旋加速器等。
另外关于带电粒子在复合场中的运动将会对分析、推理、综合能力提出更高要求,可能对空间轨迹、函数表示、数学归纳等数学工具的使用提出要求本章涉及的知识点主要包括以下几个方面:1。
四个基本概念:磁感应强度、磁感线、安培力、洛伦兹力。
2.两个基本定则:安培定则和左手定则。
3.两个主要内容:一是通电导线在磁场中所受的安培力,一是带电粒子在磁场中运动所受的洛伦兹力。
4.几个重要仪器分析:速度选择器、质谱仪、磁流体发电机、电磁流量计、回旋加速器等。
在一轮复习过程中带电粒子在磁场或复合场中的运动是本章的重点和难点,要通过一定的强化训练,熟练掌握此类问题的基本方法,切实提高应用物理知识综合分析问题、应用数学知识求解物理问题的能力。
另外,对导体受安培力的分析,要善于把立体图形改成平面图形,注意培养空间想象能力.通电直导线和通电线圈周围磁场的方向Ⅰ安培力Ⅱ计算限于直导线跟匀强磁场平行或垂直两种情况洛伦兹力Ⅱ带电粒子在匀强磁场中的运动Ⅱ计算限于速度与磁感应强度平行或垂直两种情况质谱仪和回旋加速器的工作原理Ⅰ知识网络第1讲磁场的描述磁场对电流的作用(本讲对应学生用书第138141页)考纲解读.。
第九章 电磁感应知识点七:单杆问题(与电阻结合)(水平单杆、斜面单杆(先电后力再能量))1、发电式(1)电路特点:导体棒相当于电源,当速度为v 时,电动势E =Blv(2)安培力特点:安培力为阻力,并随速度增大而增大(3)加速度特点:加速度随速度增大而减小(4)运动特点:加速度减小的加速运动(5)最终状态:匀速直线运动(6)两个极值①v=0时,有最大加速度:②a=0时,有最大速度:(7)能量关系 (8)动量关系 (9)变形:摩擦力;改变电路;改变磁场方向;改变轨道解题步骤:解决此类问题首先要建立“动→电→动”的思维顺序,可概括总结为:(1)找”电源”,用法拉第电磁感应定律和楞次定律求解电动势的大小和方向;(2)画出等效电路图,求解回路中的电流的大小及方向;(3)分析安培力对导体棒运动速度、加速度的动态过程,最后确定导体棒的最终运动情况;(4)列出牛顿第二定律或平衡方程求解.2、阻尼式(1)电路特点:导体棒相当于电源。
(2)安培力的特点:安培力为阻力,并随速度减小而减小。
(3)加速度特点:加速度随速度减小而减小 (4)运动特点:加速度减小的减速运动(5)最终状态:静止 (6)能量关系:动能转化为焦耳热 (7)动量关系(8)变形:有摩擦力;磁场不与导轨垂直等1.(多选)如图所示,MN 和PQ 是两根互相平行竖直放置的光滑金属导轨,已知导轨足够长,且电阻不计.有一垂直导轨平面向里的匀强磁场,磁感应强度为B ,宽度为L ,ab 是一根不但与导轨垂直而且始终与导轨接触良好的金属杆.开始,将开关S 断开,让ab 由静止开始自由下落,过段时间后,再将S 闭合,若从S 闭合开始计时,则金属杆ab 的速度v 随时间t 变化的图象可能是( ).答案 ACD FN M m F mga m μ-=22-+=()()m F mg R r v B l μ212E mFs Q mgS mv μ=++0m Ft BLq mgt mv μ--=-22()B F B l v a m m R r ==+22B B l v F BIl R r ==+20102mv Q-=00BIl t mv -⋅∆=-0mv q Bl =Bl s q n R r R r φ∆⋅∆==++2、(单选)如图所示,足够长平行金属导轨倾斜放置,倾角为37 °,宽度为0.5 m ,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN 垂直于导轨放置,质量为0.2 kg ,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T .将导体棒MN 由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN 的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10 m/s 2,sin 37°=0.6)( ).答案 BA .2.5 m/s 1 WB .5 m/s 1 WC .7.5 m/s 9 WD .15 m/s 9 W3.(多选)如图所示,水平固定放置的足够长的U 形金属导轨处于竖直向上的匀强磁场中,在导轨上放着金属棒ab ,开始时ab 棒以水平初速度v 0向右运动,最后静止在导轨上,就导轨光滑和导轨粗糙的两种情况相比较,这个过程( ).答案 ACA .安培力对ab 棒所做的功不相等B .电流所做的功相等C .产生的总内能相等D .通过ab 棒的电荷量相等4.(单选)如图,足够长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中( ).答案 BA .运动的平均速度大小为12vB .下滑的位移大小为qR BLC .产生的焦耳热为qBLvD .受到的最大安培力大小为B 2L 2v R sin θ5.(多选)如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R ,匀强磁场垂直于导轨平面,磁感应强度为B .将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P ,导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g .下列选项正确的是( ).答案 ACA .P =2mgv sin θB .P =3mgv sin θC .当导体棒速度达到v 2时加速度大小为g 2sin θD .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功6、(单选)如图所示,两光滑平行导轨水平放置在匀强磁场中,磁场垂直导轨所在平面,金属棒ab 可沿导轨自由滑动,导轨一端连接一个定值电阻R ,金属棒和导轨电阻不计.现将金属棒沿导轨由静止向右拉,若保持拉力F 恒定,经时间t 1后速度为v ,加速度为a 1,最终以速度2v 做匀速运动;若保持拉力的功率P 恒定,棒由静止经时间t 2后速度为v ,加速度为a 2,最终也以速度2v 做匀速运动,则( ).答案 BA .t 2=t 1B .t 1>t 2C .a 2=2a 1D .a 2=5a 17. (多选)如图所示,足够长的光滑导轨倾斜放置,其下端连接一个定值电阻R ,匀强磁场垂直于导轨所在平面,将ab 棒在导轨上无初速度释放,当ab 棒下滑到稳定状态时,速度为v ,电阻R 上消耗的功率为P .导轨和导体棒电阻不计.下列判断正确的是( ).A .导体棒的a 端比b 端电势低 答案 BDB .ab 棒在达到稳定状态前做加速度减小的加速运动C .若磁感应强度增大为原来的2倍,其他条件不变,则ab 棒下滑到稳定状态时速度将变为原来的12D .若换成一根质量为原来2倍的导体棒,其他条件不变,则ab 棒下滑到稳定状态时的功率将变为原来的4倍8.(单选)如图所示,足够长的光滑金属导轨MN 、PQ 平行放置,且都倾斜着与水平面成夹角θ.在导轨的最上端M 、P 之间接有电阻R ,不计其他电阻.导体棒ab 从导轨的最底端冲上导轨,当没有磁场时,ab 上升的最大高度为H ;若存在垂直导轨平面的匀强磁场时,ab 上升的最大高度为h .在两次运动过程中ab 都与导轨保持垂直,且初速度都相等.关于上述情景,下列说法正确的是( ).A .两次上升的最大高度相比较为H <hB .有磁场时导体棒所受合力的功等于无磁场时合力的功C .有磁场时,电阻R 产生的焦耳热为12mv 20D .有磁场时,ab 上升过程的最小加速度大于g sin θ 答案 B9.如图所示,两根平行金属导轨固定在同一水平面内,间距为l ,导轨左端连接一个电阻.一根质量为m 、电阻为r 的金属杆ab 垂直放置在导轨上.在杆的右方距杆为d 处有一个匀强磁场,磁场方向垂直于轨道平面向下,磁感应强度为B .对杆施加一个大小为F 、方向平行于导轨的恒力,使杆从静止开始运动,已知杆到达磁场区域时速度为v ,之后进入磁场恰好做匀速运动.不计导轨的电阻,假定导轨与杆之间存在恒定的阻力.求(1)导轨对杆ab 的阻力大小f ;(2)杆ab 中通过的电流及其方向;(3)导轨左端所接电阻的阻值R .答案 (1)F -mv 22d (2)mv 22Bld a →b (3)2B 2l 2d mv -r(1)杆进入磁场前做匀加速运动,有① ② 解得导轨对杆的阻力③ (2)杆进入磁场后做匀速运动,有④ 杆ab 所受的安培力⑤ 解得杆ab 中通过的电流⑥ 杆中的电流方向自a 流向b⑦ (3)杆产生的感应电动势⑧ 杆中的感应电流⑨解得导轨左端所接电阻阻值⑩ 10.如图甲所示.一对平行光滑轨道放置在水平面上,两轨道间距l =0.20 m ,电阻R =1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻皆可忽略不计,整个装置处于磁感应强度B =0.5 T 的匀强磁场中,磁场方向垂直轨道面向下.现在一外力F 沿轨道方向拉杆,使之做匀加速运动,测得力F 与时间t 的关系如图乙所示.求杆的质量m 和加速度a .答案 0.1 kg 10 m/s 2解:导体杆在轨道上做匀加速直线运动,用表示其速度,t 表示时间,则有:①杆切割磁力线,将产生感应电动势:② 在杆、轨道和电阻的闭合回路中产生电流③杆受到的安培力的④ 根据牛顿第二定律,有⑤ 联立以上各式,得⑥ 由图线上取两点代入⑥式,可计算得出:,答:杆的质量为,其加速度为.11、如图所示,质量m1=0.1 kg,电阻R1=0.3 Ω,长度l=0.4 m的导体棒ab横放在U型金属框架上.框架质量m2=0.2 kg,放在绝缘水平面上,与水平面间的动摩擦因数μ=0.2.相距0.4 m的MM′、NN′相互平行,电阻不计且足够长.电阻R2=0.1 Ω的MN垂直于MM′.整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5 T.垂直于ab施加F=2 N的水平恒力,ab从静止开始无摩擦地运动,始终与MM′、NN′保持良好接触.当ab运动到某处时,框架开始运动.设框架与水平面间最大静摩擦力等于滑动摩擦力,g取10 m/s2.(1)求框架开始运动时ab速度v的大小;(2)从ab开始运动到框架开始运动的过程中,MN上产生的热量Q=0.1 J,求该过程ab位移x的大小.答案(1)6 m/s(2)1.1 m(1)ab对框架的压力① 框架受水平面的支持力②依题意,最大静摩擦力等于滑动摩擦力,则框架受到最大静摩擦力③ab中的感应电动势④ MN中电流⑤MN受到的安培力⑥ 框架开始运动时⑦ 由上述各式代入数据解得⑧(2)闭合回路中产生的总热量⑨ 由能量守恒定律,得⑩代入数据解得⑪12、如图甲所示,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5 T.质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为r.现从静止释放杆ab,测得其在下滑过程中的最大速度为v m.改变电阻箱的阻值R,得到v m与R的关系如图乙所示.已知轨道间距为L=2 m,重力加速度g取10 m/s2,轨道足够长且电阻不计.(1)当R=0时,求杆ab匀速下滑过程中产生的感应电动势E的大小及杆中电流的方向;(2)求杆ab的质量m和阻值r;(3)当R=4 Ω时,求回路瞬时电功率每增加1 W的过程中合外力对杆做的功W.答案(1)2 V b→a(2)0.2 kg 2 Ω(3)0.6 J解:(1)由图可以知道,当时,杆最终以匀速运动,产生电动势由右手定则判断得知,杆中电流方向从(2)设最大速度为v,杆切割磁感线产生的感应电动势由闭合电路的欧姆定律:杆达到最大速度时满足计算得出:由图象可以知道:斜率为,纵截距为, 得到:计算得出:,(3)根据题意:,得,则由动能定理得联立得代入计算得出13.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ=30°角固定,两轨道间距为L =1 m .质量为m 的金属杆ab 垂直放置在轨道上,其阻值忽略不计.空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B =0.5 T .P 、M 间接有阻值为R 1的定值电阻,Q 、N 间接电阻箱R .现从静止释放ab ,改变电阻箱的阻值R ,测得最大速度为v m ,得到1v m 与1R 的关系如图乙所示.若轨道足够长且电阻不计,重力加速度g 取10 m/s 2.求: (1)金属杆的质量m 和定值电阻的阻值R 1; (2)当电阻箱R 取4 Ω时,且金属杆ab 运动的加速度为12g sin θ时,此时金属杆ab 运动的速度;(3)当电阻箱R 取4 Ω时,且金属杆ab 运动的速度为v m 2时,定值电阻R 1消耗的电功率.解析 (1)总电阻为R 总=R 1R /(R 1+R ),电路的总电流I =BLv /R 总 当达到最大速度时金属棒受力平衡,有mg sin θ=BIL =B 2L 2v m R 1R (R 1+R ),1v m =B 2L 2mgR sin θ+B 2L 2mgR 1sin θ,根据图象代入数据,可以得到金属杆的质量m =0.1 kg ,R 1=1 Ω. (2)金属杆ab 运动的加速度为12g sin θ时,I ′=BLv ′/R 总 根据牛顿第二定律得mg sin θ-BI ′L =ma即mg sin θ-B 2L 2v ′R 1R (R 1+R )=12mg sin θ,代入数据,得到v ′=0.8 m/s. (3)当电阻箱R 取4 Ω时,根据图象得到v m =1.6 m/s ,则v =v m 2=0.8 m/s ,P =E 2R 1=B 2L 2v 2R 1=0.16 W.14.如图所示,竖直平面内有无限长,不计电阻的两组平行光滑金属导轨,宽度均为L =0.5 m ,上方连接一个阻值R =1 Ω的定值电阻,虚线下方的区域内存在磁感应强度B =2 T 的匀强磁场.完全相同的两根金属杆1和2靠在导轨上,金属杆与导轨等宽且与导轨接触良好,电阻均为r =0.5 Ω.将金属杆1固定在磁场的上边缘(仍在此磁场内),金属杆2从磁场边界上方h 0=0.8 m 处由静止释放,进入磁场后恰做匀速运动.(g 取10 m/s 2)(1)求金属杆的质量m 为多大?(2)若金属杆2从磁场边界上方h 1=0.2 m 处由静止释放,进入磁场经过一段时间后开始做匀速运动.在此过程中整个回路产生了1.4 J 的电热,则此过程中流过电阻R 的电荷量q 为多少?解析 (1)金属杆2进入磁场前做自由落体运动,则v m =2gh 0=4 m/s金属杆2进入磁场后受两个力而处于平衡状态,即mg =BIL ,且E =BLv m ,I =E 2r +R解得m =B 2L 2v m 2r +R g =22×0.52×42×0.5+1×10kg =0.2 kg. (2)金属杆2从下落到再次匀速运动的过程中,设金属杆2在磁场内下降h 2,由能量守恒定律得 mg (h 1+h 2)=12mv 2m +Q 解得h 2=12mv 2m +Q mg -h 1=0.2×42+2×1.42×0.2×10 m -0.2 m =1.3 m 金属杆2进入磁场到匀速运动的过程中,感应电动势和感应电流的平均值分别为E =BLh 2t 2,I =E 2r +R 故流过电阻R 的电荷量q =It 2 联立解得q =BLh 22r +R =2×0.5×1.32×0.5+1C =0.65 C.15.如图12(a)所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上.在区域Ⅰ内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b)所示.t =0时刻在轨道上端的金属棒ab 从如图所示位置由静止开始沿导轨下滑,同时下端的另一金属棒cd 在位于区域Ⅰ内的导轨上由静止释放.在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好.已知cd棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g .求:(1)通过cd 棒电流的方向和区域Ⅰ内磁场的方向;(2)当ab 棒在区域Ⅱ内运动时cd 棒消耗的电功率;(3)ab 棒开始下滑的位置离EF 的距离;(4)ab 棒从开始下滑至EF 的过程中回路中产生的热量.解析 (1)由楞次定律知通过cd 棒的电流方向为d →c 区域Ⅰ内磁场方向为垂直于纸面向上.(2)对cd 棒:F 安=BIl =mg sin θ,所以通过cd 棒的电流大小I =mg sin θBl 当ab 棒在区域Ⅱ内运动时cd 棒消耗的电功率 P =I 2R =m 2g 2R sin 2θB 2l 2. (3)ab 棒在到达区域Ⅱ前做匀加速直线运动,加速度a =g sin θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得ΔΦΔt =Blv t ,即B ·2l ·l t x =Blg sin θt x ,所以t x =2l g sin θ ab 棒在区域Ⅱ中做匀速直线运动的速度v t =2gl sin θ 则ab 棒开始下滑的位置离EF 的距离h =12at 2x +2l =3l . (4)ab 棒在区域Ⅱ中运动的时间t 2=2l v t=2lg sin θ ab 棒从开始下滑至EF 的总时间t =t x +t 2=22lg sin θ,E =Blv t =Bl 2gl sin θ ab 棒从开始下滑至EF 的过程中闭合回路产生的热量Q =EIt =4mgl sin θ.16.如图所示,两根正对的平行金属直轨道MN 、M ´N ´位于同一水平面上,两轨道之间的距离l=0.50m .轨道的MM ´端之间接一阻值R=0.40Ω的定值电阻,NN ´端与两条位于竖直面内的半圆形光滑金属轨道NP 、N ´P ´平滑连接,两半圆轨道的半径均为R 0=0.50m .直轨道的右端处于竖直向下、磁感应强度B=0.64 T 的匀强磁场中,磁场区域的宽度d=0.80m ,且其右边界与NN ´重合.现有一质量m =0.20kg 、电阻r =0.10Ω的导体杆ab 静止在距磁场的左边界s=2.0m 处.在与杆垂直的水平恒力F=2.0N 的作用下ab 杆开始运动,当运动至磁场的左边界时撤去F ,结果导体杆ab 恰好能以最小速度通过半圆形轨道的最高点PP ´.已知导体杆ab 在运动过程中与轨道接触良好,且始终与轨道垂直,导体杆ab 与直轨道之间的动摩擦因数μ=0.10,轨道的电阻可忽略不计,取g =10m/s 2,求:⑴导体杆刚进入磁场时,通过导体杆上的电流大小和方向;⑵导体杆穿过磁场的过程中通过电阻R 上的电荷量;⑶导体杆穿过磁场的过程中整个电路中产生的焦耳热.解:(1)设导体杆在F 的作用下运动至磁场的左边界时的速度为,根据动能定理则有:导体杆刚进入磁场时产生的感应电动势为:此时通过导体杆上的电流大小为:(或 根据右手定则可以知道,电流方向为由b 向a (2)设导体杆在磁场中运动的时间为t,产生的感应电动势的平均值为,则有: 通过电阻R 的感应电流的平均值为:通过电阻R 的电荷量为:(或 (3)设导体杆离开磁场时的速度大小为,运动到圆轨道最高点的速度为,因导体杆恰好能通过半圆形轨道的最高点,根据牛顿第二定律对导体杆在轨道最高点时有:对于导体杆从运动至的过程,根据机械能守恒定律有:计算得出:导体杆穿过磁场的过程中损失的机械能为:此过程中电路中产生的焦耳热为:知识点八:单杆问题(与电容器结合)电容有外力充电式(1)电路特点:导体为发电边;电容器被充电。
第9章磁场欧阳家百(2021.03.07)第1讲磁场及其对电流的作用知识点1磁场、磁感应强度Ⅰ1.磁场(1)基本特性:磁场对处于其中的磁体、电流和运动电荷有力的作用。
(2)方向:小磁针静止时N极所指的方向或小磁针N极受力方向。
2.磁感应强度(1)物理意义:描述磁场的强弱。
(2)大小:B=FIL(通电导线垂直于磁场)。
(3)方向:小磁针静止时N极的指向。
(4)B是矢量,合成时遵循平行四边形法则。
单位:特斯拉,符号T。
3.磁通量(1)公式:Φ=BS。
(2)单位:韦伯,符号:Wb。
(3)适用条件:①匀强磁场;②S是垂直磁场并在磁场中的有效面积。
4.安培的分子电流假说安培认为,在原子、分子等物质微粒的内部,存在着一种电流——分子电流。
分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于磁体的两极。
知识点2磁感线、通电直导线和通电线圈周围磁场的方向Ⅰ1.磁感线在磁场中画出一些有方向的曲线,使曲线上各点的切线方向跟该点的磁感应强度方向一致,疏密描述磁感应强度的强弱。
2.电流的磁场(1)奥斯特实验:奥斯特实验说明了电流的磁效应,即电流可以产生磁场,首次揭示了电和磁的联系。
(2)安培定则①通电直导线:用右手握住导线,让伸直的大拇指所指的方向跟电流的方向一致,弯曲的四指所指的方向就是磁场的环绕方向。
②环形电流:让右手弯曲的四指指向跟环形电流方向一致,大拇指所指的方向是环形电流中心轴线上的磁感线方向。
③通电螺线管:让右手弯曲的四指所指的方向跟电流的方向一致,大拇指所指的方向就是螺线管内部磁感线的方向。
3.几种常见的磁场(1)常见磁体的磁场(2)几种电流周围的磁场分布直线电流的磁场通电螺线管的磁场环形电流的磁场特点无磁极、非匀强,且距导线越远处磁场越弱与条形磁铁的磁场相似,管内为匀强磁场且磁场由S→N,管外为非匀强磁场环形电流的两侧是N极和S极,且离圆环中心越远,磁场越弱安培定则立体图横截面图纵截面图匀强磁场:磁感应强度的大小相等,方向相同的磁场。
第九章 磁场一、基本概念1.磁场的产生⑴磁极周围有磁场。
⑵电流周围有磁场(奥斯特)。
安培提出分子电流假说(又叫磁性起源假说),认为磁极的磁场和电流的磁场都是由电荷的运动产生的。
⑶变化的电场在周围空间产生磁场(麦克斯韦)。
2.磁场的基本性质磁场对放入其中的磁极和电流有磁场力的作用(对磁极一定有力的作用;对电流只是可能有力的作用,当电流和磁感线平行时不受磁场力作用)。
这一点应该跟电场的基本性质相比较。
3.磁感应强度ILF B (条件是匀强磁场中,或ΔL 很小,并且L ⊥B ) 磁感应强度是矢量。
单位是特斯拉,符号为T ,1T=1N/(A ∙m)=1kg/(A ∙s 2)4.磁感线⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。
磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N 极的指向。
磁感线的疏密表示磁场的强弱。
⑵磁感线是封闭曲线(和静电场的电场线不同)。
⑶要熟记常见的几种磁场的磁感线:⑷安培定则(右手螺旋定则):对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。
5.磁通量如果在磁感应强度为B 的匀强磁场中有一个与磁场方向垂直的平面,其面积为S ,则定义B地球磁场 通电直导线周围磁场 通电环行导线周围磁场与S 的乘积为穿过这个面的磁通量,用Φ表示。
Φ是标量,但是有方向(进该面或出该面)。
单位为韦伯,符号为W b 。
1W b =1T ∙m 2=1V ∙s=1kg ∙m 2/(A ∙s 2)。
可以认为磁通量就是穿过某个面的磁感线条数。
在匀强磁场磁感线垂直于平面的情况下,B =Φ/S ,所以磁感应强度又叫磁通密度。
在匀强磁场中,当B 与S 的夹角为α时,有Φ=BS sin α。
二、安培力 (磁场对电流的作用力)1.安培力方向的判定⑴用左手定则。
⑵用“同性相斥,异性相吸”(只适用于磁铁之间或磁体位于螺线管外部时)。
⑶用“同向电流相吸,反向电流相斥”(适用于两电流互相平行时)。
可以把条形磁铁等效为长直螺线管(不要把长直螺线管等效为条形磁铁)。
只要两导线不是互相垂直的,都可以用“同向电流相吸,反向电流相斥”判定相互作用的磁场力的方向;当两导线互相垂直时,用左手定则分别判定每半根导线所受的安培力。
例1.如图所示,可以自由移动的竖直导线中通有向下的电流,不计通电导线的重力,仅在磁场力作用下,导线将如何移动? 解:先画出导线所在处的磁感线,上下两部分导线所受安培力的方向相反,使导线从左向右看顺时针转动;同时又受到竖直向上的磁场的作用而向右移动(不要说成先转90º后平移)。
分析的关键是画出相关的磁感线。
例2.条形磁铁放在粗糙水平面上,正中的正上方有一导线,通有图示方向的电流后,磁铁对水平面的压力将会______(增大、减小还是不变?)。
水平面对磁铁的摩擦力大小为______。
解:本题有多种分析方法。
⑴画出通电导线中电流的磁场中通过两极的那条磁感线(如图中下方的虚线所示),可看出两极受的磁场力的合力竖直向上。
磁铁对水平面的压力减小,但不受摩擦力。
⑵画出条形磁铁的磁感线中通过通电导线的那一条(如图中上方的虚线所示),可看出导线受到的安培力竖直向下,因此条形磁铁受的反作用力竖直向上。
⑶把条形磁铁等效为通电螺线管,上方的电流是向里的,与通电导线中的电流是同向电流,所以互相吸引。
例3.如图在条形磁铁N 极附近悬挂一个线圈,当线圈中通有逆时针方向的电流时,线圈将向哪个方向偏转? 解:用“同向电流互相吸引,反向电流互相排斥”最简单:条形磁铁的等效螺线管的电流在正面是向下的,与线圈中的电流方向相反,互相排斥,而左边的线圈匝数多所以线圈向右偏转。
(本题如果用“同名磁极相斥,异名磁极相吸”将出现判断错误,因为那只适用于线圈位于磁铁外部的情况。
)例4. 电视机显象管的偏转线圈示意图如右,即时电流方向如图所示。
该时刻由里向外射出的电子流将向哪个方向偏转?解:画出偏转线圈内侧的电流,是左半线圈靠电子流的一侧为向里,右半线圈靠电子流的一侧为向外。
电子流的等效电流方向是向里的,根据“同向电流互相吸引,反向电流互相排斥”,可判定电子流向左偏转。
(本题用其它方法判断也行,但不如这个方法简洁)。
2.安培力大小的计算F =BLI sin α(α为B 、L 间的夹角)高中要求会计算α=0(不受安培力)和α=90º两种情况。
例5.如图所示,光滑导轨与水平面成α角,导轨宽L 。
匀强磁场磁感应强度为B 。
金属杆长也为L ,质量为m ,水平放在导轨上。
当回路总电流为I 1时,金属杆正好能静止。
求:⑴B 至少多大?这时B 的方向如何?⑵若保持B 的大小不变而将B 的方向改为竖直向上,应把回路总电流I 2调到多大才能使金属杆保持静止?解:画出金属杆的截面图。
由三角形定则可知,只有当安培力方向沿导轨平面向上时安培力才最小,B 也最小。
根据左手定则,这时B 应垂直于导轨平面向上,大小满足:BI 1L =mg sin α,B =mg sin α/I 1L 。
当B 的方向改为竖直向上时,这时安培力的方向变为水平向右,沿导轨方向合力为零,得BI 2L cos α=mg sin α,I 2=I 1/cos α。
(在解这类题时必须画出截面图,只有在截面图上才能正确表示各力的准确方向,从而弄清各矢量方向间的关系)。
例6.如图所示,质量为m 的铜棒搭在U 形导线框右端,棒长和框宽均为L ,磁感应强度为B 的匀强磁场方向竖直向下。
电键闭合后,在磁场力作用下铜棒被平抛出去,下落h 后落在水平面上,水平位移为s 。
求闭合电键后通过铜棒的电荷量Q 。
解:闭合电键后的极短时间内,铜棒受安培力向右的冲量F Δt =mv 0而被平抛出去,其中F =BIL ,而瞬时电流和时间的乘积等于电荷量Q =I Δt ,由平抛规律可算铜棒离开导线框时的初速度hg s t s v 20==,最终可得h g BL ms Q 2=。
三、洛伦兹力1.洛伦兹力的大小运动电荷在磁场中受到的磁场力叫洛伦兹力,它是安培力的微观表现。
计算公式的推导:如图所示,整个导线受到的磁场力(安培力)为F 安 =BIL ;其中I=nesv ;设导线中共有N 个自由电子N=nsL ;每个电子受的磁场力为F ,则F 安=NF 。
由以上四式得F=qvB 。
条件是v 与B 垂直。
当v 与B 成θ角时,F=qvB sin θ。
2.洛伦兹力的方向在用左手定则时,四指必须指电流方向(不是速度方向),即正电荷定向移动的方向;对负电荷,四指应指负电荷定向移动方向的反方向。
例7.磁流体发电机原理图如右。
等离子体高速从左向右喷射,两极板间有如图方向的匀强磁场。
该发电机哪个极板为正极?两板间最大电压为多少? 解:由左手定则,正、负离子受的洛伦兹力分别向上、向下。
所以上极板为正。
正、负极板间会产生电场。
当刚进入的正负离子受的洛伦兹力与电场力等值反向时,达到最大电压:U=Bdv 。
当外电路断开时,这也就是电动势E 。
当外电路接通时,极板上的电荷量减小,板间场强减小,洛伦兹力将大于电场力,进入的正负离子又将发生偏转。
这时电动势仍是E=Bdv ,但路端电压将小于Bdv 。
在定性分析时特别需要注意的是:⑴正负离子速度方向相同时,在同一磁场中受洛伦兹力方向相反。
⑵外电路接通时,电路中有电流,洛伦兹力大于电场力,两板间电压将小于Bdv ,但电动势不变(和所有电源一样,电动势是电源本身的性质。
)⑶注意在带电粒子偏转聚集在极板上以后新产生的电场的分析。
在外电路断开时最终将达到平衡态。
例8.半导体靠自由电子(带负电)和空穴(相当于带正电)导电,分为p 型和n 型两种。
p 型半导体中空穴为多数载流子;n 型半导体中自由电子为多数载流子。
用以下实验可以判定一块半导体材料是p 型还是n 型:将材料放在匀强磁场中,通以图示方向的电流I ,用电压表比较上下两个表面的电势高低,若上极板电势高,就是p 型半导体;若下极板电势高,就是n 型半导体。
试分析原因。
解:分别判定空穴和自由电子所受的洛伦兹力的方向,由于四指指电流方向,都向右,所以洛伦兹力方向都向上,它们都将向上偏转。
p 型半导体中空穴多,上极板的电势高;n 型半导体中自由电子多,上极板电势低。
注意:当电流方向相同时,正、负离子在同一个磁场中的所受的洛伦兹力方向相同,所以偏转方向相同。
3.洛伦兹力的应用带电粒子在匀强磁场中仅受洛伦兹力而做匀速圆周运动时,洛伦兹力充当向心力:r m v qvB 2=,由此可以推导出该圆周运动的半径公式和周期公式:Bqm T Bq mv r π2,== 例9.图中MN 表示真空室中垂直于纸面的平板,它的一侧有匀强磁场,磁场方向垂直于纸面向里,磁感应强度大小为B 。
一带电粒子从平板上的狭缝O 处以垂直于平板的初速v 射入磁场区域,最后到达平板上的P 点。
已知B 、v 以及P 到O 的距离l ,不计重力,求此粒子的电荷e 与质量m 之比。
解:根据直线与圆相交图形的对称性,粒子到达P 点时的速度方向也垂直于平板,因此PQ 是轨迹圆的直径。
洛伦兹力充当向心力:r mv evB 2=,而半径2l r =, 因此得 Blv m e 2= 例10.如图直线MN 上方有磁感应强度为B 的匀强磁场。
正、负电子同时从同一点O 以与MN 成30°角的同样速度v 射入磁场(电子质量为m ,电荷为e ),它们从磁场中射出时相距多远?射出的时间差是多少?解:正负电子的半径和周期是相同的。
只是偏转方向相反。
先确定圆心,画出半径,由对称性知:射入、射出点和圆心恰好组成正三角形。
所以两个射出点相距2r ,由图还看出经历时间相差2T /3。
由rmv evB 2=得轨道半径r 和周期T 分别为Be m T Be mv r π2,==, 因此两个射出点相距Be mv s 2=,时间差为Bqm t 34π=∆。
这类问题的解题关键是画好示意图,画图中注意找圆心、找半径和用对称。
B M4.带电粒子在匀强磁场中的偏转⑴穿过矩形磁场区。
要先画好辅助线(半径、速度及延长线)。
偏转角由sin θ=L /R 求出。
侧移由R 2=L 2-(R-y )2解出。
经历时间由Bq m t θ=得出。
注意,这里射出速度的反向延长线与初速度延长线的交点不再是宽度线段的中点,这点与带电粒子在匀强电场中的偏转结论不同!⑵穿过圆形磁场区。
画好辅助线(半径、速度、轨迹圆的圆心、连心线)。
偏角可由R r =2tan θ求出。
经历时间由Bq m t θ=得出。
注意:由对称性,射出线的反向延长线必过磁场圆的圆心。
四、带电粒子在混合场中的运动1.速度选择器正交的匀强磁场和匀强电场组成“速度选择器”。
带电粒子(不计重力)必须以唯一确定的速度(包括大小、方向)才能匀速(或者说沿直线)通过速度选择器。