1(2006年浙江省绍兴市)小敏在某次投篮中
- 格式:doc
- 大小:1.58 MB
- 文档页数:18
九年级下册综合复习数学试卷(一) 第 1 页 共6 页九年级下册综合复习数学试卷(一) 第 2 页 共 6 页 姓名班级学号__ __ ________◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆九年级下册综合复习数学试卷(一)考试时间:120分钟 满分120分一、选择题(每小题3分,共36分)1、由几个小立方体搭成的一个几何体如图所示,它的主视图如右图,那么它的俯视图为( )ABCD2、把二次函数的图象内在平移2个单位,再向上平移1个单位所得到的图象对应的二次23y x =函数关系为( )A 、B 、 23(2)1y x =-+23(2)1y x =+-C 、D 、23(2)1y x =--23(2)1y x =++3、在△ABC 中,∠C=90°,∠B=50°,AB=10,则BC 的长为( )A 、10tan50°B 、10sin40°C 、10sin50°D 、10cos50︒4、二次函数y=(x -4)2+5的开口方向,对称轴,顶点坐标分别是( )12A 、向上,直线x=4,(4,5)B 、向上,直线x=-4,(-4,5)C 、向上,直线x=4,(4,-5)D 、向下,直线x=-4,(-4,5)5、二次函数y=x 2+x -6的图象与x 轴交点的横坐标是( )A 、2和-3B 、-2和3C 、2和3D 、-2和-36、如图1,M ,N 分别是直角梯形ABCD 两腰AD ,CB 的中点,DE ⊥AB 于点E ,将△ADE 沿DE 翻折,M 与N 恰好重合,则AE :BE 等于( )A 、2:1B 、1:2C 、3:2D 、2:37、如图2,小敏在某次投篮中,球的运动线路是抛物线y=-x 2+3.5的一部分,若命中篮圈中心,15则他与篮底的距离L 是( )A 、3.5mB 、4mC 、4.5mD 、4.6m8、Rt △ABC 中,∠C=90°,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,那么c 等于( )A 、acosA+bsinB B 、asinA+bsinBC 、sin sin cos sin a b a b D A B A B++、9、如图3,小明想用皮尺测量池塘A ,B 间的距离,但现有皮尺无法直接测量,学了数学有关知识后,他想出了一个主意:先在地上取一个可以直接到达A ,B 两点的点O , 连结OA ,OB ,分别在OA ,OB 上取中点C ,D ,连结CD ,并测得CD=a ,由此他便知道A ,B 间的距离是( )A 、B 、2aC 、aD 、3ª2a10、如图4,△ABC 中,∠ACB=90°,AB=5,D 是AB 延长线上一点,连结CD ,若∠DCB= ∠A ,BD :DC=1:2,则△ABC 的面积为( )A 、4B 、5C 、6D 、711、已知的三边长分别为,,2,的两边长分别是1和,如果ABC ∆26C B A '''∆3∽相似,那么的第三边长应该是( )ABC ∆C B A '''∆C B A '''∆A 、B 、C 、D 、222263312、已知二次函数y=ax 2+bx+c 的图象如图5,下列结论:①abc>0;②b=2a ; ③a+b+c< 0④a -b+c>0.其中正确的个数是( ) A 、4个 B 、3个 C 、2个 D 、1个二、填空题(每小题3分,共12分)13、已知△ABC ∽△A 1B 1C 1,AB :A 1B 1=2:3,则面积与之比为_______.ABC S ∆111C B A S ∆14、如图6,△ABC 为⊙O 的内接三角形,O 为圆心,OD ⊥AB ,垂足为点D ,OE ⊥AC ,垂足为点E ,若DE=3,则BC=_______.15、二次函数y=ax 2-x+a 2-1的图象如图7所示,则a 的值为______.16、在位于O 处某海防哨所的北偏东60°相距6海里的A 处, 有一艘快艇正向正南方向航行,经过一段时间快艇到达哨所东南方向的B 处,则A ,B 间的距离是_____海里.(精确到0.1).三、解答题(共72分)17、(8分)计算图1图2图3图4图5 图6 图7()50cos 40sin 30cos 45tan 30cos 330sin 145tan 412222-+-+()o 245sin 45tan 30sin 60cos 1+︒-︒九年级下册综合复习数学试卷(一) 第 3 页 共6 页九年级下册综合复习数学试卷(一) 第 4 页 共 6 页18、(6分)解方程19、(8分)已知抛物线y =ax 2+bx +c 经过点A (0,3)、B (4,3)、C (1,0).(1)填空:抛物线的对称轴为直线x =______,抛物线与x 轴的另一个交点D 的坐标为______;(2)求该抛物线的解析式.20.(8分)如图,AD 是圆O 的直径,BC 切圆O 于点D ,AB ,AC 与圆O 相交于点E ,F .求证:AE·AB=AF·AC .21、(10分)为了落实国务院总理李克强同志到恩施考察时的指示精神,最近,恩施州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加,某农户生产经销一种农副产品,已知这种产品的成本价20元/千克,市场调查发现,该产品每天的销售量W (千克)与销售价X (元/千克)有如下关系:W =-2x+80. 设这种产品每天的销售利润为y (元)。
用二次函数解决问题第1课时、第2课时1.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售价为x元,则可卖出(350-10x)件,则商店所获得的利润y(元)与每件商品售价x(元)之间的函数表达式为()A.y=-10x2-560x+7350B.y=-10x2+560x-7350C.y=-10x2+350xD.y=-10x2+350x-73502.某产品的进货单价为每件90元,按100元一件出售时,每周能售出500件.若每件涨价1元,则每周销售量就减少10件,则该产品每周能获得的最大利润为() A.5000元 B.8000元C.9000元 D.10000元3.某商店出售某种文具盒,若每个获利x元,一天可售出(6-x)个,则当x=________时,一天出售该种文具盒的总利润y最大.4.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价为10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,经市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值X围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出当销售价为多少元/件时,每天的销售利润最大,最大利润是多少.5.为搞好环保,某公司准备修建一个长方体的污水处理池,池底矩形的周长为100 m,则池底的最大面积是()A .600 m 2B .625 m 2C .650 m 2D .675 m 26.如图,用长为10米的篱笆,一面靠墙(墙的长度超过10米),围成一个矩形花圃,设矩形垂直于墙的一边长为x 米,花圃面积为S 平方米,则S 关于x 的函数表达式是________,当边长x 为________米时,花圃有最大面积,最大面积为________平方米.7.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50 m .设饲养室的一边长为x (m),占地面积为y (m 2).(1)如图5-5-3①,则饲养室的一边长x 为多少时,占地面积y 最大?(2)如图②,现要求在所示位置留2 m 宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室的一边长x 比(1)中的长多2 m 就行了.”请你通过计算,判断小敏的说法是否正确.图5-5-38.从地面垂直向上抛出一小球,小球的高度h (米)与小球运动的时间t (秒)之间的函数表达式是h =t -t 2,则小球的最大高度为________米.9.飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数表达式是y =60t -32t 2.在飞机着陆滑行中,最后4 s 滑行的距离是______m.10.小明大学毕业后回家乡创业,第一期培植盆景与花卉各50盆,售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,经调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元,每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为W 1,W 2(单位:元).(1)用含x 的代数式表示W 1,W 2;(2)当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少?11.随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫之间的距离为x (单位:千米),乘坐地铁的时间y 1(单位:分)是关于x 的一次函数,其关系如下表:(1)求y 1关于x 的函数表达式;(2)李华骑单车的时间y 2(单位:分)也受x 的影响,其关系可以用y 2=12x 2-11x +78来描述,则李华应选择在哪一站出地铁,才能使他从文化宫回到家里所用的时间最短?并求出最短时间.12.某旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x (元)是5的倍数.公司发现每天的营运规律如下:当x 不超过100元时,观光车能全部租出;当x 超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入-管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?参考答案1.B[解析] 由题意,得y =(x -21)(350-10x )=-10x 2+560x -7350. 2.C3.3[解析] 由题意可得y =(6-x )x ,即y =-x 2+6x ,当x =3时,y 有最大值. 4.解:(1)设y 与x 之间的函数关系式为y =kx +b ,把(10,30),(16,24)代入,得⎩⎪⎨⎪⎧10k +b =30,16k +b =24,解得⎩⎪⎨⎪⎧k =-1,b =40.∴y 与x 之间的函数关系式为y =-x +40(10≤x ≤16).(2)W =(x -10)(-x +40)=-x 2+50x -400(10≤x ≤16).∵W =-x 2+50x -400=-(x -25)2+225,函数图像的对称轴是直线x =25,在对称轴的左侧,y 随着x 的增大而增大. ∵10≤x ≤16,∴当x =16时,W 最大,为144.即当销售价为16元/件时,每天的销售利润最大,最大利润是144元.5.B[解析] 设矩形的一边长为x m ,则其邻边长为(50-x )m ,设池底面积为S m 2,则S =x (50-x )=-x 2+50x =-(x -25)2+625.∴当x =25时,S 取得最大值,最大值为625.6.S =-2x 2+10x 52252[解析] 由题意知平行于墙的一边长为(10-2x )米,则S =x (10-2x )=-2(x -52)2+252(0<x <5),所以当x =52时,花圃有最大面积,最大面积为252平方米.7.解:(1)∵y =x ·50-x 2=-12(x -25)2+6252(0<x <50),∴当x =25时,占地面积y 最大,即当饲养室的一边长x 为25 m 时,占地面积y 最大. (2)∵y =x ·50-(x -2)2=-12(x -26)2+338,∴当x =26时,占地面积y 最大.∵26-25=1(m)≠2 m ,∴小敏的说法不正确. 8.9.24[解析] ∵y =60t -32t 2=-32(t -20)2+600,∴当t =20时,飞机着陆后滑行到最大距离600 m ,然后停止滑行;当t =16时,y =576,∴最后4 s 滑行的距离是24 m.10.解:(1)W 1=(50+x )(160-2x )=-2x 2+60x +8000,W 2=19(50-x )=-19x +950.(2)W =W 1+W 2=-2x 2+41x +8950(x 为整数). ∵-2<0,抛物线的开口向下,-412×(-2)=414,∴当0≤x <414时,W 随x 的增大而增大;当414<x ≤50时,W 随x 的增大而减小, 又∵x 取整数,故当x =10时,W 最大,W 最大=-2×102+41×10+8950=9160.即当x =10时,第二期培植的盆景与花卉售完后获得的总利润最大,最大总利润是9160元.11.解:(1)设乘坐地铁的时间y 1关于x 的一次函数表达式是y 1=kx +b .把x =8,y 1=18;x =10,y 1=22代入,得⎩⎪⎨⎪⎧18=8k +b ,22=10k +b ,解得⎩⎪⎨⎪⎧k =2,b =2, ∴y 1关于x 的函数表达式是y 1=2x +2.(2)设李华从文化宫回到家里所用的时间为y 分,则y =y 1+y 2, 即y =2x +2+12x 2-11x +78=12x 2-9x +80=12(x -9)2+792,∴当x =9时,y 最小值=792.∴李华选择从B 地铁口出站,才能使他从文化宫回到家里所用的时间最短,最短时间为792分钟. 12.解:(1)由题意,知若观光车能全部租出,则0<x ≤100,由50x -1100>0,解得x >22,∴22<x ≤100.又∵x 是5的倍数,∴每辆车的日租金至少应为25元. (2)设每辆车的净收入为y 元. 当0<x ≤100时,y 1=50x -1100. ∵y 1随x 的增大而增大,∴当x =100时,y 1有最大值为50×100-1100=3900; 当x >100时,y 2=(50-x -1005)x -1100=-15x 2+70x -1100=-15(x -175)2+5025,∴当x =175时,y 2有最大值为5025. ∵5025>3900,∴当每辆车的日租金为175元时,每天的净收入最多.第3课时1.如图,教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m)与水平距离x (m)之间的关系为y =-112x 2+23x +53,由此可知铅球被推出的距离是() A .10 m B .3 m C .4 m D .2 m 或10 m2.小敏在某次投篮中,球的运动线路是抛物线y =-15x 2+的一部分(如图).若命中篮圈中心,则他与篮底的距离l 是()A .3.5 mB .4 mC .4.5 mD .4.6 m3.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度y (单位:m)与飞行时间x (单位:s)之间具有函数关系y =-5x 2+20x ,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15 m 时,飞行时间是多少? (2)在飞行过程中,小球从飞出到落地所用时间是多少? (3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?4.某某省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数表达式为y =-125x 2,当水面离桥拱顶的高度DO 是4 m 时,这时水面的宽度AB 为()A.-20 m B.10 m C.20 m D.-10 m5.建立如图所示的直角坐标系,某抛物线形桥拱的最大高度为16米,跨度为40米,则它对应的表达式为________________.6.如图是一个横断面为抛物线形的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,当水面下降1米时,水面的宽度为多少米?7.某广场有一个喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是()A.4米B.3米C.2米D.1米8.某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线形,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合,如图所示,以水平方向为x轴,喷水池中心为原点建立平面直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷出的水柱的最大高度.9.冬天来了,晒衣服成了头疼的事情,聪明的小华想到一个好办法,他在家后院地面(BD)上立两根等长的立柱AB ,CD(均与地面垂直),并在立柱之间悬挂一根绳子.绳子的形状近似抛物线y =110x 2+bx +c ,如图①,已知BD =8米,绳子最低点离地面的距离为1米.(1)求立柱AB 的长度;(2)由于挂的衣服比较多,为了防止衣服碰到地面,小华用一根垂直于地面的立柱MN 撑起绳子(如图②),MN 的长度为米,通过调整MN 的位置,使左边抛物线F 1对应函数表达式的二次项系数为14,顶点离地面米,求MN 与AB 的距离.10.如图,某足球运动员站在点O处练习射门,将足球从离地面0.5 m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8 s时,离地面的高度为3.5 m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为 2.44 m,如果该运动员正对球门射门时,离球门的水平距离为28 m,他能否将球直接射入球门?参考答案1.A[解析] 令y =0,则-112x 2+23x +53=0,解得x 1=10,x 2=-2,由此可知铅球被推出的距离是10 m. 故选A.2.B[解析] 当y =时,-15x 2+=,解得x 1=-1.5(舍去),x 2=,∴l =+=4(m). 故选B.3.解:(1)令y =15,有-5x 2+20x =15, 化简得x 2-4x +3=0, 解得x 1=1,x 2=3, 即飞行时间是1 s 或3 s.(2)飞出和落地的瞬间,高度都为0,故令y =0, 则有0=-5x 2+20x , 解得x 1=0,x 2=4,所以小球从飞出到落地所用时间是4-0=4(s). (3)y =-5x 2+20x =-5(x -2)2+20, ∴当x =2时,y 取得最大值,此时y =20.故在飞行过程中,当飞行时间为2 s 时,小球的飞行高度最大,最大高度为20 m. 4.C 5.y =-125(x -20)2+16[解析] 由图可知抛物线的对称轴为直线x =20,顶点坐标为(20,16).可设此抛物线的表达式为y =a (x -20)2+16.又此抛物线过点(0,0),代入得(0-20)2a +16=0,解得a =-125,所以此抛物线的表达式为y =-125(x -20)2+16.6.解:建立如图所示的直角坐标系,可知OA 和OB 的长均为AB 的一半,即2米,抛物线顶点C 的坐标为(0,2),通过以上条件可设抛物线的函数表达式为y =ax 2+2.把(-2,0)代入y =ax 2+2,得出a =-, 所以y =-x 2+2.当y =-1时,有-1=-x 2+2, 解得x =±6,所以当水面下降1米时,水面的宽度为2 6米.7.A[解析] 直接根据二次函数的顶点坐标公式计算即可,最大高度为4ac -b24a =4×(-1)×0-424×(-1)=4,或将y =-x 2+4x 化为顶点式也可得出结论.8.解:(1)∵抛物线的顶点坐标为(3,5), ∴设y =a (x -3)2+5,将(8,0)代入,得a =-15,∴y =-15(x -3)2+5,即y =-15x 2+65x +165(0<x <8).(2)当y =时,即=-15x 2+65x +165,解得x 1=7,x 2=-1(舍去).答:王师傅必须站在离水池中心7米以内.(3)由y =-15x 2+65x +165,可得原抛物线与y 轴的交点坐标为(0,165).∵装饰物的高度不变, ∴新抛物线也经过点(0,165).∵喷出水柱的形状不变, ∴a =-15.∵直径扩大到32米, ∴新抛物线过点(16,0).设新抛物线的表达式为y 新=-15x 2+bx +c ,将点(0,165)和(16,0)代入,得b =3,c =165.∴y 新=-15x 2+3x +165=-15(x -152)2+28920,∴当x =152时,y 新的最大值为28920.答:扩建改造后喷出的水柱的最大高度为28920米.9.解:(1)由题意可知抛物线的表达式为y =110(x -4)2+1,即y =110x 2-45x +135.令x =0,得y =135,∴AB =135.答:立柱AB 的长度为135米.(2)由题意可以假设抛物线F 1的表达式为y =14x 2+mx +2.6.∵4×14×-m 24×14=,∴m =±1.∵抛物线F 1的对称轴在y 轴右侧,14>0,∴b <0,∴b =-1,∴抛物线F 1的表达式为y =14x 2-x +2.6.令y =,解得x 1=1,x 2=3, 当x =1时,不合题意,舍去, ∴x =3,∴MN 与AB 的距离为3米.10.解:(1)由题意可知函数y =at 2+5t +c 的图像经过点(0,0.5),,3.5), ∴错误!解得错误!∴抛物线的函数表达式为y =-2516t 2+5t +12=-2516(t -85)2+92,∴当t =85时,y 最大值=92.答:足球飞行的时间是85 s 时,足球离地面最高,最大高度是92 m.(2)把x =28代入x =10t ,得28=10t ,∴t =2.8.25 16×2+5×+12=<,∴他能将球直接射入球门.当t=时,y=-。
二次函数期末复习题(基础-中等)知识导图考点精练考点一:二次函数的定义、解析式、图象及性质1.(金华)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①a>0;②c>0;③b2﹣4ac>0,其中正确的个数是()A.0个B.1个C.2个D.3个第1题第2题2.(凉山州)已知二次函数y=ax2+bx+1的大致图象如图所示,那么函数y=ax+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.若二次函数y=(m+1)x2+m2﹣2m﹣3的图象经过原点,则m的值必为()A.﹣1或3B.﹣1C.3D.无法确定4.(陕西)对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限5.抛物线y=3(x+2)2﹣2的顶点坐标是.6.若抛物线y=﹣x2+bx+c经过点(﹣2,3),则2c﹣4b﹣9=.7.(辽阳)如图,抛物线y=x2﹣2x﹣3与y轴交于点C,点D的坐标为(0,﹣1),在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,则点P的横坐标为.考点二:二次函数的图象变换1.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1D.y=﹣2(x+1)2﹣12.(山西)将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为()A.y=(x+1)2﹣13B.y=(x﹣5)2﹣3C.y=(x﹣5)2﹣13D.y=(x+1)2﹣33.(山西)抛物线y=﹣2x2﹣4x﹣5经过平移得到y=﹣2x2,平移方法是()A.向左平移1个单位,再向下平移3个单位B.向左平移1个单位,再向上平移3个单位C.向右平移1个单位,再向下平移3个单位D.向右平移1个单位,再向上平移3个单位4.如果将抛物线y=x2﹣2x﹣1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是.5.(宁波)如图抛物线y=ax2﹣5ax+4a与x轴相交于点A、B,且过点C(5,4).(1)求a的值和该抛物线顶点P的坐标.(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.考点三:用待定系数法求二次函数解析式1.(宁波)已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,﹣3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=﹣x上,并写出平移后抛物线的解析式.2.(牡丹江)如图,抛物线y=﹣x2+bx+c交x轴于A,B两点,交y轴于点C,对称轴是直线x=﹣3,B(﹣1,0),F(0,1),请解答下列问题:(1)求抛物线的解析式;(2)写出抛物线顶点E的坐标,并判断AC与EF的位置关系.考点四:二次函数与一元二次方程、一元二次不等式的关系1.抛物线y=x2﹣2x﹣3与x轴的交点个数是()A.0个B.1个C.2个D.3个2.(随州)对于二次函数y=x2﹣2mx﹣3,下列结论错误的是()A.它的图象与x轴有两个交点B.方程x2﹣2mx=3的两根之积为﹣3C.它的图象的对称轴在y轴的右侧D.x<m时,y随x的增大而减小3.(2018•莱芜)函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是()A.x<﹣4或x>2B.﹣4<x<2C.x<0或x>2D.0<x<24.如图,抛物线y=ax2+bx+c的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,以下结论:①b2﹣4ac=0;②a+b+c>0;③2a﹣b=0;④c﹣a=3;⑤(a+c)2>b2 。
初三中考复习时关于二次函数应用的专题复习30题 1、徒骇河大桥是我市第一座特大型桥梁,大桥桥体造型新颖,气势恢宏,两条拱肋如长虹卧波,极具时代气息极具时代气息((如图①).大桥为中承式悬索拱桥,大桥的主拱肋ACB 是抛物线的一部分是抛物线的一部分((如图②),跨径AB 为100m ,拱高OC 为25m ,抛物线顶点C 到桥面的距离为17m .(1)请建立适当的坐标系,求该抛物线所对应的函数关系式;(2)七月份汛期来临,河水水位上涨,假设水位比AB 所在直线高出1.96m ,这时位于水面上的拱肋的跨径是多少?在不计桥面厚度的情况,一条高出水面4.6m 的游船是否能够顺利通过大桥?2、某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x 元,,商场一天可获利润y 元.元.①求出y 与x 之间的函数关系式;.②商场经营该商品,每件商品应降价多少元时,可获得最大利润,最大利润是多少?3通过画该函数图像的草图,观察其图像的变化趋势,结合题意写出当x 取何值时,商场获利润不少于2160元?元? 3、某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润(万元)与进货量(吨)近似满足函数关系;乙种水果的销售利润(万元)与进货量(吨)近似满足函数关系(其中为常数)元)与进货量(吨)近似满足函数关系;乙种水果的销售利润(万元)与进货量(吨)近似满足函数关系(其中为常数),,且进货量为1吨时,销售利润为1.4万元;进货量为2吨时,销售利润为2.6万元.万元.(1)求(万元)与(吨)之间的函数关系式.(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为吨,请你写出这两种水果所获得的销售利润之和(万元)与(吨)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?多少?4、北方某水果商店从南方购进一种水果,其进货成本是每吨0.4万元,根据市场调查这种水果在北方市场上的销售量(吨)与每吨的销售价(万元)之间的函数关系如下图所示:(1)求出销售量与每吨销售价之间的函数关系式;(2)如果销售利润为(万元),请写出与之间的函数关系式;(3)当每吨销售价为多少万元时,销售利润最大?最大利润是多少?5、某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.元的各种费用. 设每个房间每天的定价增加元.求:(1)房间每天的入住量(间)关于(元)的函数关系式.(2分)分)(2)该宾馆每天的房间收费(元)关于(元)的函数关系式.(3分)分)(3)该宾馆客房部每天的利润(元)关于(元)的函数关系式;当每个房间的定价为每天多少元时,有最大值?最大值是多少?(5分)分)6、某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表x(元)15 20 30 … y(件)25 20 10 …若日销售量y 是销售价x 的一次函数(1)求出日销售量y (件)与销售价x(元)的函数关系式;的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?7、右图是某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m ,拱桥的跨度为10m ,桥洞与水面的最大距离是5m ,桥洞两侧壁上各有一盏距离水面4m 的景的景 观灯.若把拱桥的截面图放在平面直角坐标系中(如下图)(1)求抛物线的解析式.(2)求两盏景观灯之间的水平距离.8、某电视机生产厂家去年销往农村的某品牌电视机每台的售价某电视机生产厂家去年销往农村的某品牌电视机每台的售价(元)(元)与月份之间满足函数关系,去年的月销售量(万台)与月份之间成一次函数关系,其中两个月的销售情况如下表:月份月份1月 5月 销售量销售量3.9万台万台4.3万台万台 (1)、求(万台)与月份之间成一次函数关系式(2)、该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?9、如图,一座抛物线型的拱桥,正常水位时桥下水面宽度AB 为29m ,拱顶离水面4m ,桥下水深2m ,为保证过往船只顺利航行,桥下水面的宽度不得小于16m,求水深超过多少米时,就会影响过往船只在桥下顺利航行?10、日照市是中国北方最大的对虾养殖产区,日照市是中国北方最大的对虾养殖产区,被国家农业部列为对虾养殖重点区域;被国家农业部列为对虾养殖重点区域;被国家农业部列为对虾养殖重点区域;贝类产品西施舌是日照特产.贝类产品西施舌是日照特产.贝类产品西施舌是日照特产.沿沿海某养殖场计划今年养殖无公害标准化对虾和西施舌,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种苗每投放一吨的先期投资、养殖期间的投资以及产值如下表: (单位:千元/吨)吨)品种品种先期投资先期投资 养殖期间投资养殖期间投资 产值产值 西施舌9 3 30 对虾对虾4 10 20.养殖场受经济条件的影响,先期投资不超过360千元,养殖期间的投资不超过290千元.设西施舌种苗的投放量为x 吨(1)求x 的取值范围;的取值范围;(2)设这两个品种产出后的总产值为y (千元),试写出y 与x 之间的函数关系式,并求出当x 等于多少时,y 有最大值?最大值是多少?11、一座拱桥的轮廓是抛物线型(如图1所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m .(1)将抛物线放在所给的直角坐标系中(如图2所示),求抛物线的解析式;,求抛物线的解析式;(2)求支柱的长度;)求支柱的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.12、利达经销店为某工厂代销一种建筑材料利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,(这里的代销是指厂家先免费提供货源,(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,待货物售出后再进行结算,待货物售出后再进行结算,未售未售出的由厂家负责处理)。
绍兴市2002-2013年中考数学试题分类解析 专题12 押轴题一、选择题1. (2002年浙江绍兴3分)抛物线2y ax bx c =++与x 轴交于A ,B 两点,Q (2,k )是该抛物线上一点,且AQ ⊥BQ ,则ak 的值等于【 】 (A )-1 (B )-2 (C )2 (D )32. (2003年浙江绍兴4分)如图,有一矩形纸片ABCD ,AB=10,AD=6,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 以DE 为折痕向右折叠,AE 与BC 交于点F ,则△CEF 的面积为【 】A .4B .6C .8D .103. (2004年浙江绍兴4分)如图,一张长方形纸沿AB对折,以AB中点O为顶点将平角五等分,并沿五等分的折线折叠,再沿CD剪开,使展开后为正五角星(正五边形对角线所构成的图形).则∠OCD等于【】A.108°B.144°C.126°D.129°4. (2005年浙江绍兴4分)小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数2h 3.5t 4.9t=-(t的单位:s,h的单位:m)可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是【】(A)0.71s(B)0.70s(C)0.63s(D)0.36s5. (2006年浙江绍兴4分)如图,正方形OABC,ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B,E在函数1y(x0)x=>的图象上,则点E的坐标是【】A.5151,22⎛⎫+-⎪⎪⎝⎭; B.3535,22⎛⎫+-⎪⎪⎝⎭C.5151,22⎛⎫-+⎪⎪⎝⎭; D.3535,22⎛⎫-+⎪⎪⎝⎭6. (2007年浙江绍兴4分)如图的方格纸中,左边图形到右边图形的变换是【】A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称,再以AB为对称轴作轴对称C.绕AB的中点旋转1800,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格7. (2008年浙江绍兴4分)本学期实验中学组织开展课外兴趣活动,各活动小班根据实际情况确定了计划组班人数,并发动学生自愿报名,报名人数与计划人数的前5位情况如下:小班名称奥数写作舞蹈篮球航模报名人数215 201 154 76 65小班名称奥数舞蹈写作合唱书法计划人数120 100 90 80 70若用同一小班的报名人数与计划人数的比值大小来衡量进入该班的难易程度,则由表中数据,可预测【】A .奥数比书法容易B .合唱比篮球容易C .写作比舞蹈容易D .航模比书法容易8. (2009年浙江绍兴4分)如图,在x 轴上有五个点,它们的横坐标依次为1,2,3,4,5.分别过这些点作x 轴的垂线与三条直线()()y ax y a 1x y a 2x ==+=+,,相交,其中a >0.则图中阴影部分的面积是【 】A .12.5B .25C .12.5aD .25a【分析】根据等底等高的三角形、梯形面积相等的性质可知,图中阴影部分的面积是y ax =与()y a 1x =+,当x=5时所夹得三角形的面积,即:()1[5a 15a]512.52+-⨯=,故选A 。
专题23 利用二次函数解决投球问题姓名_________ 学号_________ 分数_________1.一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m 时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,下列说法正确的是()A.此抛物线的解析式是y=﹣15x2+3.5B.篮圈中心的坐标是(4,3.05)C.此抛物线的顶点坐标是(3.5,0)D.篮球出手时离地面的高度是2m2.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线92t ;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m. 其中正确结论的个数是()A.1B.2C.3D.43.如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t﹣5t2.下列叙述正确的是()A.小球的飞行高度不能达到15mB.小球的飞行高度可以达到25mC.小球从飞出到落地要用时4sD.小球飞出1s时的飞行高度为10m4.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()A.球不会过网B.球会过球网但不会出界C.球会过球网并会出界D.无法确定5.一位运动员在距篮筐正下方水平距离4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮筐.如图所示,建立平面直角坐标系,已知篮筐中心到地面的距离为3.05m,该运动员身高1.9m,在这次跳投中,球在头顶上方0.25m处出手,球出手时,他跳离地面的高度是()A.0.1m B.0.2m C.0.3m D.0.4m6.铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式为y=-112x2+23x+53.则该运动员此次掷铅球的成绩是()A.6 m B.12 m C.8 m D.10 m7.小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数23.54.9h t t=-(t的单位:s,h的单位:m)可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是()A .0.71sB .0.70sC .0.63sD .0.36s8.羽毛球的运动路线可以看作是抛物线y =-14x 2+34x +1的一部分,如图所示(单位:m ),则下列说法不正确的是( )A .出球点A 离地面点O 的距离是1mB .该羽毛球横向飞出的最远距离是3mC .此次羽毛球最高可达到2516m D .当羽毛球横向飞出32m 时,可达到最高点 9.如图所示的是跳水运动员10m 跳台跳水的运动轨迹,运动员从10m 高A 处的跳台上跳出,运动轨迹成抛物线状(抛物线所在平面与跳台墙面垂直).若运动员的最高点M 离墙1m ,离水面403m ,则运动员落水点B 离墙的距离OB 是( )A .2mB .3mC .4mD .5m10.定点投篮是同学们喜爱的体育项目之一,某位同学投出篮球的飞行路线可以看作是抛物线的一部分,篮球飞行的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系2y ax bx c =++(a≠0).下表记录了该同学将篮球投出后的x 与y 的三组数据,根据上述函数模型和数据,可推断出篮球飞行到最高点时,水平距离为( )二、填空题(共5小题)11.小明在某次投篮中,球的运动路线是抛物线y =-15x 2+3.5的一部分(如图所示),若命中篮圈中心,则他与篮底的距离l 是_____m.12.一男生推铅球,铅球行进高度y 与水平距离x 之间的关系是21251233y x x =-++,则铅球推出的距离是_____.此时铅球行进高度是_____. 13.如图,小李推铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数表达式为y =-18x 2+12x +32,那么铅球运动过程中最高点离地面的距离为________米.14.飞行中的炮弹经x 秒后的高度为y 米,且高度与时间的关系为()20y ax bx c a =++≠,若此炮弹在第7秒与第13秒时的高度相等,则炮弹在最高处的时间是第________秒.15.从地面竖直向上抛出一小球,小球离地面的高度h (米)与小球运动时间t (秒)之间关系是h=30t ﹣5t 2(0≤t≤6),则小球从抛出后运动4秒共运动的路径长是________米.三、解答题(共2小题)16.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x(m)满足关系式y=a(x -6)2+h.已知球网与O 点的水平距离为9m ,高度为2.43m ,球场的边界距O 点的水平距离为18m .(1)当h=2.6时,求y 与x 的关系式(不要求写出自变量x 的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求h 的取值范围.17.如图,某足球运动员站在点O 处练习射门,将足球从离地面0.5m 的A 处正对球门踢出(点A 在y 轴上),足球的飞行高度y(单位:m )与飞行时间t(单位:s )之间满足函数关系y =at 2+5t +c ,已知足球飞行0.8s 时,离地面的高度为3.5m .(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m )与飞行时间t(单位:s )之间具有函数关系x =10t ,已知球门的高度为2.44m ,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?。
二次函数的应用【学习目标】1.会利用二次函数的知识解决面积、利润等最值问题。
2.经过面积、利润等最值问题的学习,学会分析问题,解决问题的方法,并总结和积累解题经验。
3.根据给出的函数解析式,应用二次函数的知识解决实际问题。
4.经历解决实际问题,再应用于实践,能够对问题的变化趋势进行分析。
根据函数图象确立函数关系式,解决实际问题。
5.熟练应用二次函数的知识解决实际问题。
6.通过对实际问题的分析,建立二次函数的模型,解决实际问题。
【学习重难点】1.利用二次函数求实际问题的最值。
2.二次函数的最值问题和二次函数模型的建立。
3.应用二次函数的知识解决实际问题。
【学时安排】3学时【第一学时】 【学习过程】一、预习导航(一)链接。
1.在二次函数c bx ax y ++=2(0≠a )中,当a >0时,有最_____值,最值为__________;当a <0时,有最_____值,最值为__________。
2.二次函数y=-(x-12)²+8中,当x=_____时,函数有最_____值为__________。
(二)导读。
在21.1问题1中,要使围成的水面面积最大,那么它的长应是多少?它的最大面积是多少?二、合作探究问题:某商场的一批衬衣现在的售价是60元,每星期可买出300件,市场调查反映:如果调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件,已知该衬衣的进价为40元,如何定价才能使利润最大?1.问题中定价有几种可能?涨价与降价的结果一样吗?2.设每件衬衣涨价x元,获得的利润为y元,则定价__________元,每件利润为__________元,每星期少卖__________件,实际卖出__________件。
所以Y=__________。
(0<X<30)何时有最大利润,最大利润为多少元?3.设每件衬衣降价x元,获得的利润为y元,则定价为__________元,每件利润为__________元,每星期多卖__________件,实际卖出__________件。
15、若把代数式223x x --化为()2x m k -+的形式,其中,m k 为常数,则m k += .16、抛物线23(1)5y x 的顶点坐标为__________.17、已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+>.其中正确结论的个数是 个.18、抛物线2y x bx c =-++的图象如图6所示,则此抛物线的解析式为 .19、函数(2)(3)y x x =--取得最大值时,x =______.20、图为二次函数2y ax bx c =++的图象,给出下列说法:①0ab <;②方程20ax bx c ++=的根为1213x x =-=,;③0a b c ++>;④当1x >时,y 随x 值的增大而增大;⑤当0y >时,13x -<<.其中,正确的说法有 .(请写出所有正确说法的序号)21.已知抛物线2y ax bx c =++(a >0)的对称轴为直线1x =,且经过点()()212y y -1,,,,试比较1y 和2y 的大小:1y _2y (填“>”,“<”或“=”)22、已知关于x 的函数y=(m+6)x 2+2(m-1)x+m+1的图像总有交点(1)求m 的取值范围;(2)当函数图像与两个交点的横坐标的倒数和等于-4时,求m23.如图,二次函数y=x 2+px+q (p<0)的图像与x 轴交于A ,B 两点,与y 轴交于点C (0,-1),△ABC 的面积为45,求该二次函数的关系式(二)二次函数的实际应用1. 边长为4米的正方形的中间挖去一个边长为x 的小正方形,剩下四方框形的面积为y,y 与x 之间的函数关系式为 。
九年级数学二次函数测试题一、选择题(本大题共12个小题,每小题2分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列函数中,y 是x 二次函数的是( )A .y =x -1B .y =x 2+1x-10 C .y =x 2+2x D .y 2=x -12.在同一平面直角坐标系中,一次函数y =ax +b 和二次函数y =ax 2+bx 的图象可能为( )3.二次函数y =x 2的图象向右平移3个单位,得到新的图象的函数表达式是( )A .y =x 2+3B .y =x 2-3C .y =(x +3)2D .y =(x -3)24.已知二次函数y =ax 2+bx +c (a ≠0),其中a 、b 、c 满足a +b +c =0和9a -3b +c =0,则该二次函数图象的对称轴是( )A .x =-2B .x =-1C .x =2D .x =1 5.如图,小敏在某次投篮中,球的运动路线是抛物线y =-15x 2+3.5的一部分,若命中篮圈中心,则他与篮底的距离l 是( )A .3.5mB .4mC .4.5mD .4.6m6.二次函数2y ax bx c =++的图象如图所示,则直线y bx c =+的图象不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 7.抛物线与x 轴交点的横坐标为-2和1,且过点(2,8),它的关系式为( )A .y=2x 2-2x -4B .y=-2x 2+2x -4C .y=x 2+x -2D .y=2x 2+2x -48.二次函数y=ax 2+bx+c 的图象如图所示,下列五个代数式ab 、ac 、a -b+c 、b 2- 4ac 、2a+b 中,值大于0的个数为( )A .5B .4C .3D .29.下列函数关系中,可以看做二次函数y =ax 2+bx +c (a ≠0)模型的是 ( )A .在一定的距离内汽车的行驶速度与行驶时间的关系B .我国人口年自然增长率1%,这样我国人口总数随年份的关系C .竖直向上发射信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计阻力)D .圆的周长与圆的半径之间的关系O x y O x y O x y O x y AB C D 第5题Ox y10. 若二次函数2212y x y x k =+=-+与的图象的顶点重合, 则下列结论不正确...的是 ( ) A .方程20x k -+=没有实数根 B .这两个函数图象的开口方向相反 C .这两个函数图象有相同的对称轴 D .二次函数2y x k =-+的最大值为1211.把二次函数215322y x x =++的图象向右平移2个单位,再向上平移3个单位,所得到图象的函数解析式是 ( ) A .21(5)12y x =-+ B. 21(1)52y x =+- C. 21322y x x =++ D. 21722y x x =+-12.关于二次函数2y ax bx c =++图像有下列命题:(1)当c =0时,函数的图像经过原点;(2)当c >0时,函数的图像开口向下时,方程2y ax bx c =++ 必有两个不等实根;(3)当b =0时,函数图像关于原点对称.其中正确的个数有 ( )A .0个B .1个C .2个D .3个二、填空题(本大题共6个小题,每小题3分,共18分,把答案写在题中横线上)13、用配方法将二次函数y=4x 2-24x+26写成y=a(x -h)2+k 的形式是 ,对称轴为 ,顶点坐标为 。
【中考12年】浙江省绍兴市2001-2012年中考数学试题分类解析 专题06函数的图像与性质】选择题1. (2001年浙江绍兴3分)直线y 3x =与双曲线()ky k 0,x 0x =≠>的一个分支相交,则该分支位于【 】(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限2. (2002年浙江绍兴3分)抛物线2y ax bx c =++与x 轴交于A ,B 两点,Q (2,k )是该抛物线上一点,且AQ ⊥BQ ,则ak 的值等于【 】(A )-1 (B )-2 (C )2 (D )3∵Q (2,k )在抛物线2y ax bx c =++上,∴k 4a 2b c =++②。
①②联立,得:2ak k ak 1=-⇒=-。
故选A 。
3. (2003年浙江绍兴4分)若点(-1,2)是反比例函数ky x =图象上一点,则k 的值是【 】A .-21B .21C .-2D .2【答案】C 。
【考点】曲线上点的坐标与方程的关系。
【分析】∵点(-1,2)是反比例函数k y x =图象上一点,∴k21=-,解得:k 2=-。
故选C 。
4. (2004年浙江绍兴4分)已知正比例函数y=kx 的图象经过点(1,2),则k 的值为【 】A .21B .1C .2D .45. (2005年浙江绍兴4分)反比例函数2y x =的图象在【 】(A )第一、三象限 (B )第二、四象限 (C )第一、二象限 (D )第三、四象限6. (2005年浙江绍兴4分)小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数2h 3.5t 4.9t=-(t 的单位:s ,h 的单位:m )可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是【 】(A)0.71s(B)0.70s(C)0.63s(D)0.36s7. (2006年浙江绍兴4分)小敏在某次投篮中,球的运动路线是抛物线21x35y.5-=+的一部分(如图),若命中篮圈中心,则他与篮底的距离l是【】A.3.5m B.4m C.4.5m D.4.6m8. (2006年浙江绍兴4分)如图,正方形OABC,ADEF的顶点A,D,C在坐标轴上,点F在AB 上,点B ,E 在函数1y (x 0)x =>的图象上,则点E 的坐标是【 】A.⎝⎭; B.⎝⎭ C.⎝⎭; D.⎝⎭9. (2008年浙江绍兴4分)已知点11(x y ),,22(x y ),均在抛物线2y x 1=-上,下列说法中正确的是【 】A .若12y y =,则12x x =B .若12x x =-,则12y y =-C .若120x x <<,则12y y >D .若12x x 0<<,则12y y >【答案】D 。
图7函数1.(2006年浙江省绍兴市)小敏在某次投篮中,球的运动路线是抛物线的一部分(如图),若命中篮圈中心,则他与篮底的距离l 是A .3.5mB .4mC .4.5mD .4.6m2.(2006年浙江省绍兴市)如图,正方形OABC ,ADEF 的顶点A ,D ,C 在坐标轴上,点F 在AB 上,点B ,E 在函数的图象上,则点E 的坐标是A .B .C .D . 3.(2006年浙江省绍兴市)某校部分住校生,放学后到学校锅炉房打水,每人接水2升,他们先同时打开两个放水笼头,后来因故障关闭一个放水笼头.假设前后两人接水间隔时间忽略不计,且不发生泼洒,锅炉内的余水量y(升)与接水时间x(分)的函数图象如图.请结合图象,回答下列问题:(1)根据图中信息,请你写出一个结论;(2)问前15位同学接水结束共需要几分钟?(3)小敏说:“今天我们寝室的8位同学去锅炉房连续接完水恰好用了3分钟.”你说可能吗?请说明理由.4.(2006年重庆市)观察市统计局公布的“十五”时期重庆市农村居民人均 收入每年比上一年增长率的统计图,下列说法正确的是( )A.2003年农村居民人均收入低于2002年B.农村居民人均收入比上年增长率低于9%的有2年C.农村居民人均收入最多时2004年D.农村居民人均收入每年比上一年的增 长率有大有小,但农村居民人均收入在持续增加 5.(2006年大连市)在平面直角坐标系中,点P (-2,3)在 ( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 6.(2006年大连市)如图7是二次函数y 1=ax 2+y 2=mx +n 的图象,观察图象写出y 2≥y 1图11 O XY ______________。
7.(2006年大连市)如图11,直线y =k 和双曲线xk y =相交于点P ,过P 点作PA 0垂直x 轴,垂足为A 0,x 轴上的点A 0、A 1、A 2、…A n 的横坐标是连续的整数,过点A 1、A 2、…A n 分别作x 轴的垂线,与双曲线xk y =(x >0)及直线y =k 分别交于点B 1、B 2、…B n ,C 1、C 2、…C n 。
(1)求A 0点坐标;(2)求1111B A B C 及2222B A B C 的值; (3)试猜想n n n n B A B C8.(江西省)一条抛物线y=21x +mx+n 4经过点(0,33422,)。
(1)求这条抛物线的解析式,并写出它的顶点坐标坐标;(2)现有一半径为1,圆心P 在抛物线上运动的动圆,当⊙P 与坐标轴相切时,求轴心P 的坐标。
9.(江西省)如图,在平面直角坐标系中,点A 在第一象限,点B 的坐标为(3,0),OA =2,∠AOB =60º。
(1)求点A 的坐标;(2)若直线AB 交y 轴于点C ,求△AOC 的面积。
10.(江西省)近视眼镜的度数y (度)与镜片焦距x(m)成反比例,已知400度的近视眼镜镜片的焦距为0.25m ,则y 与x 的函数关系式为__________________。
11.(2006年长春市)如图,在平面直角坐标系中,两个函数621,+-==x y x y 的图象交于点A 。
动点P 从点O 开始沿OA 方向以每秒1个单位的速度运动,作PQ ∥x 轴交直线BC 于点Q ,以PQ 为一边向下作正方形PQMN ,设它与△OAB 重叠部分的面积为S 。
X(1)求点A 的坐标。
(2分)(2)试求出点P 在线段OA 上运动时,S 与运动时间t(秒)的关系式。
(4分)(3)在(2)的条件下,S 是否有最大值?若有,求出t为何值时,S 有最大值,并求出最大值;若没有,请说明理由。
(2分)(4分)若点P 经过点A 后继续按原方向、原速度运动,当正方形PQMN 与△OAB 重叠部分面积最大时,运动时间t 满足的条件是____________。
(2分)解:(1)由⎪⎩⎪⎨⎧+-==,621,x y x y 可得⎩⎨⎧==.4,4y x ∴A (4,4)。
(2)点P 在y = x 上,OP = t ,则点P 坐标为).22,22(t t 点Q 的纵坐标为t 22,并且点Q 在621+-=x y 上。
∴t x x t 212,62122-=+-=,即点Q 坐标为)22,212(t t -。
t PQ 22312-=。
当t t 2222312=-时,23=t 。
当时230≤<t , .2623)22312(222t t t t S +-=-= 当点P 到达A 点时,24=t ,当2423<t <时, 2)22312(t S -=144236292+-=t t 。
(3)有最大值,最大值应在230≤<t 中, ,12)22(2312)824(232623222+--=++--=+-=t t t t t S 当22=t 时,S 的最大值为12。
(4)212≥t 。
12.(2006年长春市)某厂生产一种零件,每个成本为40元,销售单价为60元。
该厂为了鼓励客户购买,决定当一次购买零件超过100个时,多购买一个,全部零件的销售单价均降低0.02元,但不能低于51元。
(1)当一次购买多少个零件时,销售单价恰为51元?(3分)(2)设一次购买零件x 个时,销售单价为y 元,求y 与x 的函数关系式。
(4分)(3)当客户一次购买500个零件时,该厂获得的利润是多少?当客户一次购买1000个零碎件时,利润又是多少?(利润 = 售价-成本)(3分)解:(1)设当一次购买x 个零件时,销售单价为51元,则(x -100)×0.02 = 60-51,解得 x = 550。
答:当一次购买550个零件时,销售单价为51元。
(3分)(2)当0<x ≤100时, y = 60;当100<x ≤550时, y = 62-0.02x ;当x >550时, y = 51。
(7分)(3)当x = 500时,利润为(62-0.02×500)×500-40×500 = 6000(元)。
当x = 1000时,利润为1000×(51-40)= 11000(元)。
答:当一次购买500个零件时,该厂获得利润为6000元;当一次购买1000个零件时,该厂获得利润11000元。
13.(2006年长春市)如图,二资助函数c bx x y ++=2的图象经过点M(1,—2)、N (—1,6)。
(1)求二次函数c bx x y ++=2的关系式。
(3分)(2)把Rt △ABC 放在坐标系内,其中∠CAB = 90°,点A 、B 的坐标分别为(1,0)、(4,0),BC = 5。
将△ABC 沿x 轴向右平移,当点C 落在抛物线上时,求△ABC 平移的距离。
(4分)解:(1)∵M (1,-2),N (-1,6)在二次函数y = x 2+bx +c 的图象上,∴⎩⎨⎧=+--=++.61,21c b c b 解得⎩⎨⎧=-=.1,4c b 二次函数的关系式为y =x 2-4x +1。
(2)Rt △ABC 中,AB = 3,BC = 5,∴AC = 4,,034,14422=--+-=x x x x 解得.72212164±=+±=x ∵A (1,0),∴点C 落在抛物线上时,△ABC 向右平移71+个单位。
14.(2006年长春市)甲、乙两个水桶内水面的高度y (cm )与放水(或注水)的时间x (分)之间的函数图象如图所示,当两个水桶内水面高度相同时,x 约为____________分。
(精确到0.1分) 2.7(2.6、2.8亦可)15.(2006年长春市)如图,直线l 与双曲线交于A 、C 两点,将直线l 绕点O 顺时针旋转α度角(0°<α≤45°),与双曲线交于B 、D 两点,则四边形ABCD 的形状一定是_________形。
平行四边(形)16.(2006年长春市)用铝合金型材做一个形状如图1所示的矩形窗框,设窗框的一边为x m ,窗户的透光面积为y m 2,y 与x 的函数图象如图2所示。
(1)观察图象,当x 为何值时,窗户透光面积最大?(3分)(2)当窗户透光面积最大时,窗框的另一边长是多少?(2分)解:(1)由图象可知,当x = 1时,窗户透光面积最大。
(2)窗框另一边长为1.5米。
17.(2006年海淀区)在函数y x =+3中,自变量x 的取值范围是( )AA. x ≥-3B. x >-3C. x ≤-3D. x <-318.(2006年海淀区)打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y (升)与时间x (分钟)之间满足某种函数关系,其函数图象大致为( )D19.(2006年海淀区)二次函数()y x =-+122的最小值是_____________。
220.(2006年海淀区)已知抛物线y x x c 122=-+的部分图象如图1所示。
图1 图2(1)求c 的取值范围;(2)若抛物线经过点(0,-1),试确定抛物线y x x c 122=-+的解析式;(3)若反比例函数y k x2=的图象经过(2)中抛物线上点(1,a ),试在图2所示直角坐标系中,画出该反比例函数及(2)中抛物线的图象,并利用图象比较y 1与y 2的大小。
解:(1)根据图象可知c <0,且抛物线y x x c 122=-+与x 轴有两个交点,所以一元二次方程x x c 220-+=有两个不等的实数根。
所以()∆=--=->244402c c ,且c <0, 所以c <1;(2)因为抛物线经过点(0,-1), 把x y ==-011,代入y x x c 122=-+得c =-1,故所求抛物线的解析式为y x x 1221=--;(3)因为反比例函数y k x 2=的图象经过抛物线y x x 1221=--上的点(1,a ), 把x y a ==11,代入y x x 1221=--,得a =-2, 把x a ==-12,代入y k x 2=,得k =-2,所以y x 22=-。
画出y x22=-的图象如图所示。
观察图象,y y 12与除交点(1,-2)外,还有两个交点大致为()-12,和()21,-把x y =-=122,和x y ==-212,分别代入y x x 1221=--和y x 22=-可知, ()-12,和()21,-是y y 12与的两个交点。
根据图象可知:当x <-1或01<<x 或x >2时,y y 12>;当x x x =-==112或或时,y y 12=;当-<<<<1012x x 或时,y y 21>。