气液相平衡关系
- 格式:doc
- 大小:226.50 KB
- 文档页数:6
气液平衡的相平衡条件
气液平衡的相平衡条件是指在闭合系统中,气体与液体达到相平衡的必要条件。
相平衡意味着系统中气体和液体之间的物质交换达到了平衡状态,即两者之间的反应速率相等。
首先,气液相平衡条件之一是液体中溶解的气体分子的逸出速率等于气体中溶
解的气体分子的溶解速率。
这意味着当气体分子从液体中逸出的速率等于气体分子溶解进液体中的速率时,系统达到气液相平衡。
这个平衡条件可以通过亨利定律来描述,该定律指出气体与液体之间的溶解度与气体的分压成正比。
其次,气液相平衡条件还要求气体和液体之间存在均匀的分配。
这意味着在相
平衡状态下,气体和液体之间的分子自由移动并且均匀分布,没有净流动的趋势。
这种均匀分配的态势是通过扩散和浓度均化过程实现的。
最后,气液相平衡还要求液体和气体之间的压力相等。
当气体溶解进液体中时,气体分子对液体施加一定的压力,这被称为溶解气体的蒸气压。
在相平衡状态下,液体的蒸气压与气体的分压相等,从而实现了压力的平衡。
总结来说,气液平衡的相平衡条件包括气体和液体之间溶解速率的平衡、分子
的均匀分配以及压力的平衡。
这些条件是系统达到气液相平衡的前提,同时也是液体和气体之间物质交换达到稳定状态的保证。
二、气液相平衡关系 平衡状态:在一定压力和温度下,当吸收和解吸速率相等时,气液两相达到平衡。
相平衡关系:吸收过程中气液两相达到平衡时,吸收质在气相和液相中的浓度关系1.气体在液体中的溶解度 (图8-1)平衡时溶质在气相中的分压称为平衡分压,用符号*A p 表示;溶质在液相中的浓度称为平衡溶解度,简称溶解度;它们之间的关系称为相平衡关系。
结论:①在相同的吸收剂、温度和分压下,不同溶质的溶解度不同;②分压一定时,温度越低,则溶解度越大。
较低的温度有利于吸收操作;③温度T 一定时,分压P 越大,溶解度越大。
较高的分压有利于吸收操作;④加压和降温对吸收操作有利。
2.亨利定律(1)亨利定律亨利定律内容:在总压不太高,温度一定的条件下,稀溶液上方溶剂的平衡分压*A p 与溶质在液相中的摩尔分数A x 成正比,比例系数为亨利系数E 。
即: A A Ex p =* 形式一E ——亨利系数, Pa讨论:①E 的来源:实验测得,查手册②E 的影响因素:溶质、溶剂、T 。
物系一定时, ③亨利系数表示气体溶解的难易程度。
E 大的,溶解度小,难溶气体;E 小的,溶解度大,易溶气体。
(2)亨利定律的其它形式① 溶质在液相中的浓度用量浓度A c 表示,气相用分压*A p 表示,则: Hc p A A =* 形式二 ↑↑⇒E TH ——溶解度系数,实验测定。
溶解度↓溶解度系数表示气体溶解的难易程度。
易溶气体,H ↑;难溶气体,H ↓。
溶解度系数H 和亨利系数E 的关系:剂剂EM H ρ=②溶质在气液相中的浓度均用摩尔浓度表示, 则:A A A mx x PE P p y ===** 形式三 m ——相平衡常数。
P E m = 是温度和压强的函数。
讨论:1)P 一定时, 溶解度↓。
升温不利于吸收;2)t 一定时, 溶解度↑。
加压有利于吸收。
③溶质在气液相中的浓度均用比摩尔分数表示时,AA A A X X m Y Y +=+**11 整理得: A A A X m mX Y )1(1-+=* 形式四 比摩尔分数表示的气液相平衡关系。
气液平衡关系的适用条件引言气液平衡关系是研究气体和液体在一定条件下的平衡状态的重要课题。
在化工、生物学、环境科学等领域,有许多关于气液平衡的研究正在进行中。
本文将探讨气液平衡关系的适用条件,并解释为什么这些条件对于研究和应用气液平衡非常重要。
1.温度和压力条件气液平衡关系的适用条件之一是一定的温度和压力条件。
在实验和工业应用中,我们通常需要控制气体和液体的温度和压力,以实现气液平衡的条件。
当温度和压力处于适宜的范围内时,气体和液体之间的传质和反应过程可以达到平衡状态。
2.物质性质的相似性为了实现气液平衡关系,液体和气体的物质性质应该相似。
例如,溶液中的溶质分子应该与气体分子具有相似的性质,如极性、分子大小等。
只有在这种情况下,液体和气体之间的物质传递才能达到平衡状态。
3.界面表面积的稳定界面表面积的稳定也是气液平衡关系的适用条件之一。
当液体和气体接触时,液体表面会形成一个界面,该界面的表面积应该保持稳定。
如果界面表面积不稳定,即表面活性剂的存在或其他原因导致的表面紊乱,将阻碍气体和液体之间的传质和反应过程达到平衡。
4.气液相互作用力的平衡气液平衡关系的适用条件还包括气体和液体之间的相互作用力的平衡。
在气液界面处,气体分子和液体分子之间存在各种相互作用力,如吸附力、扩散力等。
这些相互作用力的平衡对于气液平衡的形成至关重要。
只有当气体分子和液体分子之间的相互作用力达到平衡状态时,气液界面才能保持稳定并且传质过程得以进行。
5.外界环境的稳定除了上述条件外,气液平衡关系还受到外界环境的影响。
外界环境的稳定包括温度、压力和湿度的稳定,以及其他可能影响气体和液体之间相互作用的因素的稳定。
只有在外界环境稳定的条件下,气液平衡关系才能得以实现和研究。
结论成功研究和应用气液平衡关系需要满足一定的条件。
温度和压力的控制、物质性质的相似性、界面表面积的稳定、气液相互作用力的平衡以及外界环境的稳定都是实现气液平衡关系的重要因素。
气液相平衡方程
气液相平衡方程是描述气体和液体之间物质传递的数学关系。
它是化学工程、环境科学、生物工程等领域中重要的理论工具。
气液相平衡方程的基本形式是亨利定律,即气体在液体中的溶解度与气体的分压成正比。
这个方程可以用以下数学表达式表示:
C = kH * P
其中,C是气体在液体中的溶解度,kH是亨利常数,P是气体的分压。
亨利常数是气体溶解度与分压的比例常数,它依赖于具体的气体和溶剂系统。
除了亨利定律,还有其他描述气液相平衡的方程,比如罗特定律和拉乌尔定律。
罗特定律是描述溶剂中溶质的逸度与溶液中溶质的摩尔分数之间的关系。
拉乌尔定律是描述理想混合溶液的蒸气压与组成之间的关系。
在工程实践中,气液相平衡方程经常用于设计和优化化工装置。
例如,在气体吸附过程中,通过气液相平衡方程可以计算出吸附剂中溶质的负荷量。
在化学反应工程中,气液相平衡方程可以帮助确定反应器中气体和液体的相互作用,从而优化反应条件。
此外,气液相平衡方程还可以应用于环境科学研究中。
例如,在水体中溶解氧的研究中,可以利用亨利定律来计算氧气在水中的溶解度,从而评估水体的氧化能力。
在大气污染研究中,可以利用拉乌尔定律来估算不同气体在大气中的浓度。
总之,气液相平衡方程是描述气体和液体之间物质传递的重要工具。
通过这些方程,可以深入理解气体和液体的相互作用,为工程设计和科学研究提供有力的支持。
4.2气液相平衡关系
本节教学要求
1、重点掌握的内容:相平衡的影响因素及相平衡关系在吸收过程中的应用;
2、熟悉的内容:溶解度、平衡状态、平衡分压、亨利定律。
4.2.1 相组成表示方法
1.质量分率与摩尔分率
质量分率:质量分率是指在混合物中某组分的质量占混合物总质量的分率。
对于混合物中的A 组分有
m
m w A A = (4-1) 式中 A w ——组分A 的质量分率;
A m ——混合物中组分A 的质量,kg ;
m ——混合物总质量,kg 。
1N B A =⋅⋅⋅++w w w (4-2)
摩尔分率:摩尔分率是指在混合物中某组分的摩尔数n A 占混合物总摩尔数n 的分率。
对于混合物中的A 组分有 气相:n
n y A A = (4-3) 液相:n n x A A =
(4-4) 式中 A y 、A x ——分别为组分A 在气相和液相中的摩尔分率;
A n ——液相或气相中组分A 的摩尔数,
n ——液相或气相的总摩尔数。
1N B A =⋅⋅⋅++y y y (4-5) 1N B A =⋅⋅⋅++x x x (4-6) 质量分率与摩尔分率的关系为:
N
N B B A A A A x /M w /M w /M w /M w A ⋅⋅⋅++= (4-7) 式中 B A M M 、——分别为组分A 、B 的分子量。
2.摩尔比
摩尔比是指混合物中某组分A 的摩尔数与惰性组分B (不参加传质的组分)的摩尔数之比,其定义式为
B
A A n n Y = (4-8)
B A A n n X =
(4-9) 式中 A Y 、A X ——分别为组分A 在气相和液相中的摩尔比;
摩尔分率与摩尔比的关系为
X
X x +=
1 (4-10) Y
Y y +=1 (4-11) -x x X 1= (4-12) -y
y Y 1= (4-13) 【例5-1】 在一常压、298K 的吸收塔内,用水吸收混合气中的SO 2。
已知混合气体中含SO 2的体积百分比为20%,其余组分可看作惰性气体,出塔气体中含SO 2体积百分比为2%,试分别用摩尔分率、摩尔比和摩尔浓度表示出塔气体中SO 2的组成。
解: 混合气可视为理想气体,以下标2表示出塔气体的状态。
02.02=y
02.002
.0102.01222≈-==-y y Y kPa 026.202.03.10122A =⨯==py p
34A2A2A2kmol/m 10018.8298
314.8026.2⨯=⨯===
RT p V n c
图4-2 氨在水中的溶解度
图4-3 20℃下SO2在水中的溶解度
4.2.2气体在液体中的溶解度
1.溶解度曲线
平衡状态:在一定压力和温度下,使一定量的吸收剂与混合气体充分接触,气相中的溶质便向液相溶剂中转移,经长期充分接触之后,液相中溶质组分的浓度不再增加,此时,气液两相达到平衡,此状态为平衡状态。
饱和浓度:气液平衡时,溶质在液相中的浓度为饱和浓度(溶解度)。
平衡分压:气液平衡时,气相中溶质的分压为平衡分压。
相平衡关系:平衡时溶质组分在气液两相中的浓度关系为相平衡关系。
溶解度曲线:气液相平衡关系用二维坐标绘成的关系曲线称为溶解度曲线。
由图4-2可见,在一定的温度下,气相中溶质组成y不变,当总压p增加时,在同一溶剂中溶质的溶解度x随之增加,这将有利于吸收,故吸收操作通常在加压条件下进行。
由图4-3可知,当总p、气相中溶质y一定时,吸收温度下降,溶解度大幅度提高,吸收剂常常经冷却后进入吸收塔。
结论:加压和降温有利于吸收操作过程;而减压和升温则有利于解吸操作过程。
图4-4 101.3kPa 下SO 2在水中的溶解度
图4-5 几种气体在水中的溶解度曲线
易溶气体:溶解度大的气体如NH 3等称为易溶气体;
难溶气体:溶解度小的气体如O 2、CO 2溶解度适中的气体:
介乎其间的如SO 2等气体称为溶解度适中的气体。
等气体称为难溶气体;
4.2.3.亨利定律
亨利定律的内容:总压不高(譬如不超过5×105Pa )时,在一定温度下,稀溶液上方气相中溶质的平衡分压与溶质在液相中的摩尔分率成正比,其比例系数为亨利系数。
亨利定律的数学表达式
(1) Ex p =* ( 4-14)
式中 *p ————溶质在气相中的平衡分压,kPa ;
E ——亨利系数,kPa ;T ↑,E ↑。
x ——溶质在液相中的摩尔分率。
亨利定律有不同的表达形式:
(2) H c
p =* (4-15)
式中 c ——溶质在液相中的摩尔浓度,kmol/m 3;
H ——溶解度系数,kmol/(m 3·kPa );
*p ——溶质在气相中的平衡分压,kPa 。
溶解度系数H 与亨利系数E 的关系为:
0HM E ρ
= (4-16)
式中 S ρ——为溶剂的密度,kg/m 3。
T ↑,H ↓
(3) mx y =* (4-17) 式中 x ——液相中溶质的摩尔分率;
*y ——与液相组成x 相平衡的气相中溶质的摩尔分率;
m ——相平衡常数,无因次。
相平衡常数m 与亨利系数E 的关系为:
p E
m = (4-18)
当物系一定时,T ↓或P ↑,则m ↓。
(4) mX Y =* (4-19) 式中 X —液相中溶质的摩尔比;
*Y —与液相组成X 相平衡的气相中溶质的摩尔比;
【例5-2】某系统温度为10℃,总压101.3kPa ,试求此条件下在与空气充分接触后的水中,每立方米水溶解了多少克氧气?
解:空气按理想气体处理,由道尔顿分压定律可知,氧气在气相中的分压为:
py p =*
=101.3×0.21=21.27kPa
氧气为难溶气体,故氧气在水中的液相组成x 很低,气液相平衡关系服从亨利定律,由表5-1查得10℃时,氧气在水中的亨利系数E 为3.31×106kPa 。
0EM H ρ
=
Hp c =*
∴ 0*EM p
c ρ=
故 =⨯⨯⨯=18
1031.327.2110006*c 3.57×10-4kmol/m 3 m =3.57×10-4×32×1000=11.42g/m 3。