八年级数学全等三角形考点专题复习练习
- 格式:doc
- 大小:303.50 KB
- 文档页数:4
八年级上册数学专项训练题一、三角形全等专项训练1. 已知:如图,在△ABC和△DEF中,AB = DE,BC = EF,∠A = ∠D。
求证:△ABC≌△DEF。
解析:在三角形全等的判定定理中,有“SSS(边边边)”“SAS(边角边)”“ASA(角边角)”“AAS(角角边)”等。
本题中虽然给出了两组边相等(AB = DE,BC = EF)和一组角相等(∠A = ∠D),但是这组角不是两边的夹角,不满足SAS判定定理,所以不能判定这两个三角形全等。
2. 如图,在△ABC中,AD是BC边上的中线,E是AD上一点,且BE = AC,延长BE交AC于F。
求证:∠AEF = ∠EAF。
解析:延长AD到G,使DG = AD,连接BG。
因为AD是BC边上的中线,所以BD = CD。
在△BDG和△CDA中,BD = CD,∠BDG = ∠CDA(对顶角相等),DG = DA。
根据SAS判定定理,△BDG≌△CDA。
所以BG = AC,∠G = ∠EAF。
又因为BE = AC,所以BE = BG,所以∠G = ∠AEF。
所以∠AEF = ∠EAF。
二、轴对称专项训练1. 已知点A(2,3)关于x轴对称的点为A',求A'的坐标。
解析:关于x轴对称的点,横坐标相同,纵坐标互为相反数。
所以点A(2,3)关于x轴对称的点A'的坐标为(2, 3)。
2. 如图,在△ABC中,AB = AC,∠A = 36°,AB的垂直平分线MN交AC于D,交AB于M。
求∠DBC的度数。
解析:因为AB = AC,∠A = 36°,所以∠ABC=∠C=(180° 36°)÷2 = 72°。
因为MN是AB的垂直平分线,所以AD = BD。
所以∠A = ∠ABD = 36°。
所以∠DBC=∠ABC ∠ABD = 72° 36° = 36°。
初二数学第十一章全等三角形综合复习牢记:“有三个角对应相等”和“有两边及此中一边的对角对应相等”的两个三角形不必定全等。
例 1. 如图,A, F , E, B 四点共线,AC CE , BD DF, AE BF,AC BD 。
求证:ACF BDE 。
例 2.如图,在ABC 中, BE 是∠ABC的均分线,AD BE ,垂足为 D 。
求证:21 C 。
例3.如图,在ABC 中, AB BC ,ABC90o。
F为 AB 延伸线上一点,点E 在 BC 上,BE BF,连结AE, EF和 CF 。
求证:AE CF。
例 4. 如图,AB // CD,AD // BC,求证:AB CD 。
例 5. 如图, AP, CP 分别是ABC 外角MAC 和NCA 的均分线,它们交于点P 。
求证:BP 为MBN 的均分线。
例 6. 如图,D是ABC 的边 BC 上的点,且 CD AB , ADB BAD , AE 是ABD 的。
中线。
求证:AC2AE例7.如图,在ABC 中, AB AC ,1 2 , P 为 AD 上任意一点。
求证:AB AC PB PC 。
同步练习一、选择题:1.能使两个直角三角形全等的条件是()A. 两直角边对应相等B. 一锐角对应相等C. 两锐角对应相等D. 斜边相等2.依据以下条件,能画出独一ABC 的是()oA.AB3, BC 4 , CA8B.AB 4 , BC3, A 30C.C60o, B45o,AB4D.C90o,AB63.如图,已知12, AC AD ,增添以下条件:① AB AE ;② BC ED ;③C D ;④B E 。
此中能使ABC AED 的条件有()A. 4 个B. 3 个C. 2 个D. 1 个()4. 如图,1 2 ,C D ,AC , BD交于E 点,以下不正确的选项是A.DAE CBEB.CE DEC.DEA 不全等于CBED.EAB 是等腰三角形5. 如图,已知AB CD , BC AD ,B23o,则D等于()A. 67oB.46oC. 23oD. 没法确立二、填空题:6. 如图,在ABC 中, C 90o,ABC 的平分线 BD 交 AC 于点 D ,且CD : AD 2:3 , AC10cm ,则点 D 到 AB 的距离等于__________cm;7. 如图,已知AB DC,AD BC ,E, F是 BD 上的两点,且 BE DF ,若AEB 100o, ADB 30o,则BCF ____________;BC , BD为折痕,则CBD的大小为8.将一张正方形纸片按如图的方式折叠,_________;9.如图,在等腰 Rt ABC 中, C 90o,AC BC,AD均分BAC 交 BC 于 D ,DE AB 于 E ,若 AB 10 ,则BDE 的周长等于____________;10. 如图,点 D , E, F , B在同一条直线上,AB // CD ,AE // CF,且AE CF,若BD10 , BF 2 ,则EF___________;三、解答题:11. 如图,交于 Q 点。
一、八年级数学全等三角形解做题压轴题〔难〕1. 〔1〕如图〔1〕,:在△ ABC中,N BAC=90.,AB二AC,直线m经过点A, 8口,直线m, CE J_直线m,垂足分别为点D、E.证实:DE=BD+CE.〔2〕如图〔2〕,将〔1〕中的条件改为:在△ ABC中,AB=AC, D、A、E三点都在直线m 上,并且有N BDA=Z AEC=Z BAC=.,其中.为任意锐角或钝角.请问结论DE=BD+CE是否成立? 如成立,请你给出证实;假设不成立,请说明理由.〔3〕拓展与应用:如图〔3〕 , D、E是D、A、E三点所在直线m上的两动点〔D、A、E 三点互不重合〕,点F为N BAC平分线上的一点,且△ ABF和^ ACF均为等边三角形,连接BD、CE,假设N BDA=Z AEC=Z BAC,试判断△ DEF 的形状.【答案】(1)见解析(2)成立(3) 4DEF为等边三角形【解析】解:(1)证实:BDL直线m, CEJ_直线m,,N BDA=N CEA=900.: Z BAC=90°, /. Z BAD+Z CAE=90°.•/ Z BAD+Z ABD=90°, /. Z CAE=Z ABD.又AB二“AC〞,「・△ ADB合△ CEA (AAS) . /. AE=BD, AD=CE./. DE=,,AE+AD=H BD+CE.(2)成立.证实如下:: Z BDA =Z BAC=a , /. Z DBA+Z BAD=Z BAD+Z CAE=180°-O r . /. Z DBA=Z CAE.Z BDA=Z AEC=., AB=AC,「・△ AD於△ CEA (AAS). /. AE=BD, AD=CE.DE二AE+AD=BD+CE.(3)△ DEF为等边三角形.理由如下:由(2)知,△ ADB合△ CEA, BD=AE, Z DBA =Z CAE,: △ ABF 和^ ACF 均为等边三角形,J Z ABF=Z CAF=60°.・•, Z DBA+Z ABF=Z CAE+Z CAF. /. Z DBF=Z FAE.; BF=AF,,•・丛DBF合△ EAF (AAS) . /. DF=EF, Z BFD=Z AFE.・•, Z DFE=Z DFA+z AFE=Z DFA+Z BFD=60°.・•.A DEF为等边三角形.(1)由于DE=DA+AE,故由AAS证△ ADB合4 CEA,得出DA=EC, AE=BD,从而证得DE=BD+CE.(2)成立,仍然通过证实△ ADB2 J CEA,得出BD=AE, AD=CE,所以DE=DA+AE=EC+BD.(3)由△ ADB2△ CEA得BD=AE, NDBA=N CAE,由△ ABF和△ ACF均等边三角形,得Z ABF=Z CAF=60°, FB=FA,所以N DBA+N ABF=N CAE+N CAF,即N DBF二N FAE,所以△ DBF^ △ EAF,所以FD=FE, Z BFD=Z AFE,再根据N DFE=Z DFA+Z AFE=Z DFA+Z BFD=60°得到△ DEF是等边三角形.2.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE, PE 交CD 于 F〔1〕证实:PC=PE;〔2〕求N CPE的度数:〔3〕如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当N ABC=12〔T时,连接【答案】(1)证实见解析(2) 90° (3) AP=CE【解析】【分析】(1)、根据正方形得出AB=BC, ZABP=ZCBP=45%结合PB=PB得出aABP g^CBP,从而得出结论:⑵、根据全等得出NBAP=NBCP, ZDAP=ZDCP,根据PA=PE得出NDAP=NE,即ZDCP=ZE,易得答案;(3)、首先证实4ABP和^CBP全等,然后得出PA=PC, NBAP=NBCP,然后得出NDCP二NE,从而得出NCPF=NEDF=60°,然后得出AEPC是等边三角形,从而得出AP=CE.【详解】⑴、在正方形ABCD 中,AB=BC, ZABP=ZCBP=45%在ZkABP 和4CBP 中,XV PB=PB AAABP^ACBP (SAS) , ,PA=PC, VPA=PE>:.PC=PE;⑵、由(1)知,A ABP^ACBP,.\ZBAP=ZBCP, JNDAP=NDCP,VPA=PE, .\ZDAP=ZE> /. ZDCP=ZE. VZCFP=ZEFD (对顶角相等), A180° - ZPFC - ZPCF=1800 - ZDFE - NE, BPZCPF=ZEDF=90<>:⑶、AP = CE理由是:在菱形ABCD 中,AB=BC, NABP二NCBP,在2\ABP ^lACBP 中,XV PB=PB /.△ABP^ACBP (SAS),,PA二PC, NBAP=NDCP,VPA=PE,,PC=PE,,NDAP=NDCP, V PA=PC,/DAP=NE, A ZDCP=ZE V ZCFP=ZEFD (对顶角相等),A180°- ZPFC - ZPCF=180° - ZDFE - NE, RPZCPF=ZEDF=180° - ZADC=180° - 120°=60°, AAEPC 是等边三角形,,PC=CE, AAP=CE考点:三角形全等的证实3.如图,在AA8C中,NAC8为锐角,点£>为射线8C上一动点,连接AO.以AO为直角边且在AD的上方作等腰直角三角形ADF.图①图②图③〔1〕假设A3 = AC, ABAC = 90°①当点.在线段BC上时〔与点3不重合〕,试探讨CF与8.的数量关系和位置关系:②当点O在线段C的延长线上时,①中的结论是否仍然成立,请在图2中而出相应的图形并说明理由;〔2〕如图3,假设ABwAC, ABAC90° , ZBC4 = 45°,点.在线段8C上运动,试探究CF与8.的位置关系.【答案】〔1〕①CF_LBD,证实见解析:②成立,理由见解析:〔2〕 CF1BD,证实见解析.【解析】【分析】〔1〕①根据同角的余角相等求出NCAF=NBAD,然后利用"边角边"证实4ACF和4ABD全等,②先求出NCAF=NBAD,然后与①的思路相同求解即可:〔2〕过点A作AE_LAC交BC于E,可得4ACE是等腰直角三角形,根据等腰直角三角形的性质可得AC=AE, NAED=45.,再根据同角的余角相等求出NCAF=NEAD,然后利用“边角边〞证实4ACF 和4AED全等,根据全等三角形对应角相等可得NACF=NAED,然后求出ZBCF=90°,从而得到CFJ_BD.【详解】解:〔1〕①•••NBAC=90°, 4ADF是等腰直角三角形,.\ZCAF+ZCAD=90% ZBAD+ZACD=90°,.\ZCAF=ZBAD,在4ACF和4ABD中,VAB=AC, ZCAF=ZBAD, AD=AF,.,.△ACF^AABD〔SAS〕,.・.CF=BD, ZACF=ZABD=45",ZACB=45",AZFCB=90°,.-.CF±BD:②成立,理由如下:如图2:VZCAB=ZDAF=90%,ZCAB+ ZCAD= ZDAF+ ZCAD, 即NCAF=NBAD,在aACF和AABD中,VAB=AC, ZCAF=ZBAD, AD=AF, AAACF^AABD(SAS), ACF=BD, NACF=NB,VAB=AC, ZBAC=90%AZB=ZACB=45%/. Z BCF= ZACF+ ZACB=45o+45o=90°,ACF1BD:(2)如图3,过点A作AE_LAC交BC于E,•/ ZBCA=45",••.△ACE是等腰直角三角形,,AC=AE, NAED=45°, VZCAF+ZCAD=90°, ZEAD+ZCAD=90%,NCAF=NEAD,在4ACF和4AED中,VAC=AE, NCAF=NEAD, AD=AF,.•.△ACF^AAED(SAS), /. ZACF=ZAED=45\,ZBCF= ZACF+ ZBCA=45o+45°=90°, ACF1BD.【点睛】此题考查全等三角形的动点问题,综合性较强,有一定难度,需要熟练掌握全等三角形的判定和性质进行综合运用.4.如图〔1〕,在△A3C中,ZA = 90°, A3 = AC,点.是斜边8C的中点,点E, 产分别在线段A3, 4c上,且NEDF = 90..〔1〕求证:△.所为等腰直角三角形:〔2〕假设△ABC的面积为7,求四边形AEDF•的面积:〔3〕如图〔2〕,如果点E运动到A8的延长线上时,点尸在射线C4上且保持ZEDF = 90°,△.石尸还是等腰直角三角形吗.请说明理由.【答案】〔1〕证实见解析;〔2〕 3.5:〔3〕是,理由见解析.【解析】【分析】〔1〕由题意连接AD,并利用全等三角形的判定判定△ BD年△ ADF〔ASA〕,进而分析证得△.瓦'为等腰直角三角形;〔2〕由题意分析可得S网边形AEDF=S MDF+S AADE=S ABDE+S ACDF,以此进行分析计算求出四边形AEDF的面积即可;〔3〕根据题意连接AD,运用全等三角形的判定判定△ BDE^ △ ADF〔ASA〕,进而分析证得△.所为等腰直角三角形.【详解】解:〔1〕证实:如图①,连接AD.「N BAC=90°,AB=AC,点D是斜边BC的中点,/. AD±BC , AD=BD,・•, Z 1=Z B=45°,Z EDF=90% Z 2+Z 3=90%又,Z 3+Z 4=90°,/. Z 2=Z 4,在^ BDE 和^ ADF 中,Z 1=Z B, AD=BD,Z 2=Z 4,/. △ BDE合 , ADF(ASA),・•, DE二DF,又;Z EDF=90\・•・ ADEF为等腰直角三角形.(2)由(1)可知DE=DF, NON 6=45., 又「N 2+N 3=90°, Z 2+Z 5=90%J Z 3=Z 5,A ADE级△ CDF,・' S N边H,AEDF=S AADF+S CADE二S ABDE+S^CDF,S MBC=2 S 网边毛AEDF,S wijn;AEDF=3.5.(3)是,如图②,连接AD.•/ Z BAC=90\ AB=AC, D 是斜边BC 的中点,/. AD±BC Z AD=BD ,「・Z 1=45°,Z DAF=180°-Z l=180°-45°=135% Z DBE=180°-Z ABC=180°-45°=135%/. Z DAF=Z DBE,「Z EDF=90\/. Z 3+Z 4=90%又;Z 2+Z 3=90°,「・Z 2=Z 4,在仆BDE 和a ADF 中,Z DAF=Z DBE, AD=BD,N 2=Z 4,△ BDE合△ ADF(ASA),・•.DE=DB又:Z EDF=90\.•.A DEF为等腰直角三角形.【点睛】此题考查等腰直角三角形的性质以及全等三角形的判定与性质,根据题意作辅助线构造出全等三角形是解题的关键.5.如图,在MBC中,ZC = 90°, AC = 3, BC = 7,点.是8c边上的动点,连接AD,以AO为斜边在A.的下方作等腰直角三角形AO石.(1)填空:AABC的面积等于—;(2)连接CE,求证:CE是NAC3的平分线;(3)点.在6C边上,且CO = 1,当.从点.出发运动至点3停止时,求点E相应的运动路程.王O 1 _【答案】〔I〕—:〔2〕证实见解析:〔3〕 3点【解析】【分析】〔1〕根据直角三角形的面积计算公式直接计算可得:〔2〕如下图作出辅助线,证实△AEM名ADEN 〔AAS〕,得至I] ME=NE,即可利用角平分线的判定证实:〔3〕由〔2〕可知点E在NACB的平分线上,当点D向点B运动时,点E的路径为一条直线,再根据全等三角形的性质得出CN=!〔AC + C.〕,根据CD的长度计算出CE的长度即可.【详解】解:〔1〕 ZC = 90°, AC = \ BC = 7= -ACxBC = -x3x7 = — ,故答案为:—2〔2〕连接CE,过点E作EMLAC于点M,作EN_LBC于点N,AZEMA=Z END=90°,XVZACB=90SAZMEN=90%AZMED+Z DEN=90°,•••△ADE是等腰直角三角形AZAED=90\ AE=DEA ZAEM+Z MED=90%, ZAEM=Z DEN,在△AEM 与ZkDEN 中,ZEMA=Z END=90% ZAEM=Z DEN, AE=DEAAAEM^ADEN 〔AAS〕/. ME=NE,点E 在NACB 的平分线上, 即CE 是NAC3的平分线工(3)由(2)可知,点E 在NACB 的平分线上,・•・当点D 向点B 运动时,点E 的路径为一条直线,VAAEM^ADEN,AM=DN,即 AC-CM=CN-CD在 RtZiCME 与 RtZkCNE 中,CE=CE, ME=NE,ARtACME^RtACNE (HL)ACM=CN.,.CN=;(AC + CO),又YNMCE 二NNCE=45°, ZCME=90\・,. CE= y/2CN = —(AC + CD).2当 AC=3, CD=CO=1 时,CE=](3 + 1) = 2&当 AC=3, CD=CB=7 时,5CE=r (3 + 7) = 5 虚,点E 的运动路程为:50-20 = 30,£【点睛】此题考查了全等三角形的综合证实题,涉及角平分线的判定,几何中动点问题,全等三角 形的性质与判定,解题的关键是综合运用上述知识点.6.如图1,在长方形ABCD 中,AB=CD=5 cm, BC=12 cm,点P 从点B 出发,以2cm/s 的 速度沿BC 向点C 运动,设点P 的运动时间为ts.(1) PC=—cm :(用含t 的式子表示)■I) I)(2)当t 为何值时,△ABPg^DCP?.(3)如图2,当点P从点B开始运动,此时点Q从点C出发,以vcm/s的速度沿CD向点D运动,是否存在这样的v值,使得某时刻4ABP与以P, Q, C为顶点的直角三角形全等?假设存在,请求出v的值:假设不存在,请说明理由.【答案】(1) (12-2/); (2)1 = 3;(3)存在,P = 2或忏1【解析】【分析】(1)根据P点的运动速度可得BP的长,再利用BC的长减去BP的长即可得到PC的长:(2)先根据三角形全等的条件得出当BP=CP,列方程求解即得;(3)先分两种情况:当BP=CQ, AB=PC 时,△ABPgZ\PCQ:或当BA=CQ, PB=PC 时,△ABPgaQCP,然后分别列方程计算出t的值,进而计算出v的值.【详解】解:(1)当点P以2cm/s的速度沿BC向点C运动时间为ts时3P = 2/57•・• BC = \2cin:.PC = BC-BP = (n-2i)cm故答案为:(12—27)(2) MBP = ^DCP・•. BP = CP・•・ 2/= 12-2/解得1 = 3.(3)存在,理由如下:①当BP=CQ, AB=PC 时,ZiABP名△PCQ,1. PC=AB=5.•.BP=BC-PC=12-5=7•・• BP = Item:.2t=7解得t=3.5.\CQ=BP=7,那么 3.5v=7解得y = 2.②当B4 = C.,PB = PC 时,MBP = \QCP,: BC = ncm,BP = CP = -BC = 6c7〃 2V BP = Item:.2t = 6解得/ = 3CQ = 3vcm,: AB = CQ = 5cm, 3v = 5解得U3综上所述,当u = 2或i,=,时,A48尸与以P, Q,C为顶点的直角三角形全等.【点睛】此题考查全等三角形的判定及性质和矩形的性质,解题关键是将动态情况化为某一状态情况,并以这一状态为等量关系建立方程求解.7.:在MBC中,AB = AC,ZBAC = 90° ,尸Q为过点4的一条直线,分别过B、C两点作8M_LP0,CN_L尸.,垂足分别为M、N.(1)如图①所示,当P.与BC边有交点时,求证:MN = CN — BM ;(2)如图②所示,当与6C边不相交时,请写出线段8M、CN和MN之间的数量关系,并说明理由. 【答案】(1)见解析:(2) MN = BM + CN (或BM = MN — CN或CN = MN-BM ),理由见解析【解析】【分析】(1)根据条件先证AAA/i运ACN4,得到AM = CN,BM = AN,即可证得MN = CN — BM: (2)由(1)知AAMBYACNA,得到4M =CN,8M = AN,即可确定MN = BM + CN.【详解】证实:・・・BM_LPQ,CN_LP0,・•. ZAMB=ZCAN=90°,V ZBAC=90 ° ,AZCAN+ZACN=90°,ZCAN+ZBAM=90°(或NCW + NAC/V = NC4N+NMM)・•. ZBAM = ZACN,在AAMB和ACN4中,'ZAMB = 4CNA・.• ZBAM = AACN , AB = CA:.AAM“ACN4(A4S),.・.AM =CN,BM =AN,,: MN = AM-AN,:.MN = CN — BM.(2) MN = BM + CN (或BM=MN-CN或CN = MN-BM) .理由:•.・BM_LPQ,CN_LP.,・•・ ZAMB=ZCAN=90°,V ZBAC=90 ° ,.\ZCAN+ZACN=90°,ZCAN+ZBAM=90°(或NCW + NAC/V = NC4N+NBAM ),:.ZBAM = ZACN,在AAMB和ACNA中,'AAMB = ZCNAZ.B\M = ZACN , AB = CA:.AAM*ACNA( AAS),.・.AM =CN,BM =AN,:.MN = AN + AM = BM+CN.【点睛】此题考察三角形全等的应用,正确确定全等三角形是解题关键,由此得到对应相等的线段,确定它们之间的和差关系得到80、CN和MN之间的关系式.8.操作发现:如图,己知"配和"DE均为等腰三角形,AB=AC, AD=AE,将这两个三角形放置在一起,使点8, D, E在同一直线上,连接CE.(1)如图1, ZABC= ZACB= ZADE= ZAED=55Q,求证:△BADgZkCAE;(2)在(1)的条件下,求N8EC的度数:拓广探索:(3)如图2,假设NC48=NEAD=120.,8D=4, CF为aBCE中8E边上的高,请直接写出讦的长度.【答案】(1)见解析:(2) 70°; (3) 2【解析】【分析】(1)根据SAS证实△BADg/kCAE即可.(2)利用全等三角形的性质解决问题即可.(3)同法可证4BAD丝ZkCAE,推出EC=BD=4,由NBEC=NBAC=12O0,推出NFCE=30°即可解决问题.(1)证实:如图1中,图1Z ABC=^ ACB = Z ADE=N AED, /. Z EAD=Z CAB,:.Z EAC=A DAB,AE=AD. AC=AB9:.△ BAD^ & CAE (SAS).(2)解:如图1中,设AC交8E于O. •「N A8C=N4C8 = 55°,/. Z 84c=180° - 110° = 70°,BAD^△ CAE,Z ABO=Z ECO,Z EOC=ZAOB,・•, Z CEO = Z 840=70°,即 N BEC= 70°.(3)解:如图2中,A图2Z C48 = N EAD=120\•. Z BAD=A CAE,:AB=AC, AD=AE.△ BAD^ 4 CAE 〔SAS〕,•. Z BAD=A ACE. 8D=EC=4,同理可证N BEC- 8AC=120°,Z F£C=60%CFLEF,Z F=90",•. Z FCE=30\1•. EF=-EC=2. 2此题属于三角形综合题,考查了全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.9.在等边aABC中,点.是边8C上一点.作射线AO,点3关于射线AO的对称点为点E.连接CE并延长,交射线AO于点〔1〕如图,连接AE,①AE与AC的数量关系是;②设NBA尸=a,用.表示NBCF的大小;〔2〕如图,用等式表示线段A尸,CF.所之间的数量关系,并证实.【答案】⑴①AB二AE;②NBCF=.:(2)AF-EF=CF,理由见详解.【解析】【分析】(1)①根据轴对称性,即可得到答案;②由釉对称性,得:AE二AB, NBAF=NEAF=.,由△A3C是等边三角形,得AB=AC, ZBAC=ZACB=60° ,再根据等腰三角形的性质和三角形内角和等于180°,即可求解:(2)作NFCG=60°交AD于点G,连接BF,易证AFCG是等边三角形,得GF=FC,再证△ACG会ABCF(SAS),从而得AG=BF,进而可得至lj结论.【详解】(1)①•・•点4关于射线的对称点为点E , AAB和AE关于射线AD的对称,AAB=AE.故答案是:AB=AE;②•.•点3关于射线的对称点为点E , ,AE二AB, NBAF=NEAF=.,•二△A3c是等边三角形,AAB=AC, ZBAC=ZACB=60" ,:.ZEAC=60° -2a, AE=AC,ZACE=1[180 - (60 - 2a)] = 60 +6?,A ZBCF=ZACE-ZACB=60 +a-60°=a .(2) AF-EF=CF,理由如下:作NFCG=60.交AD于点G,连接BF,•••NBAF=NBCF=a , NADB=NCDF,A ZABC=ZAFC=60c ,••.△FCG是等边三角形,AGF=FC,•二△A3c是等边三角形,ABC=AC, ZACB=60° , AZACG=ZBCF=« .在AACG和ABCF中,CA = CBZACG = ABCF , CG = CF,AACG 仝ABCF(SAS),.,.AG=BF,•・•点4关于射线AO的对称点为点E , .\AG=BF=EF,VAF-AG=GF,.\AF-EF=CE【点睛】此题主要考查等边三角形的性质和三角形全等的判定和性质定理,添加辅助线,构造全等三角形,是解题的关键.10.如图,AA8C是等边三角形,点.在边4c上〔“点D不与A,C重合〕,点石是射线5c上的一个动点〔点E不与点8,C重合〕,连接OE,以OE为边作作等边三角形hDEF,连接CF.〔1〕如图1,当.石的延长线与A3的延长线相交,且CF在直线OE的同侧时,过点D 作DG//AB, DG 交BC 于点、G ,求证:CF = EG ;〔2〕如图2,当.石反向延长线与A8的反向延长线相交,且.,尸在直线OE的同侧时,求证:CD = CE+CF;〔3〕如图3,当OE反向延长线与线段A8相交,且.,厂在直线O石的异侧时,猜测CD、CE、CP之间的等量关系,并说明理由.【答案】〔1〕证实见详解;〔2〕证实见详解:〔3〕 CF = CO-CE,理由见详解.【解析】【分析】(1)由AABC 是等边三角形,DG//AB,得NCDG=NA=60° , NACB=60.,ACDG 是等边三角形,易证AGDE仝ACDF(SAS),即可得到结论:(2)过点D作DG〃AB交BC于点G,易证A GDE仝△ CDF(SAS),即可得到结论;(3)过点D作DG〃AB交BC于点G,易证A GDE仝A CDF(SAS),即可得到结论.【详解】(1)•・• AA3C是等边三角形,DG//AB, :.ZCDG=ZA=60° , ZACB=60° , ・•. ACQG是等边三角形,.\DG=DC.是等边三角形, .,.DE=DF, ZEDF=60° , A ZCDG-ZGDF=ZEDF-ZGDF,即:ZGDE=ZCDF, 在4 GDE和八CDF中,DE = DFNGDE = NCDF ,DG = DC.,.△GDE^A CDF(SAS),:.CF = EG ;(2)过点D作DG〃AB交BC于点G,如图2,•・• AABC是等边三角形,DG//AB、:.ZCDG=ZA=60° , ZACB=60" ,••・ACDG是等边三角形,:.DG=DC.•••ADE/是等边三角形,,DE=DF, ZEDF=60c ,A ZCDG-ZCDE=ZEDF-ZCDE> 即:ZGDE=ZCDF, 在4 GDE和^ CDF中,DE = DFNGDE = ZCDF ,DG = DC.,.△GDE^ACDF(SAS),:・CF = GE,••. CD = CG = CE+GE = CE+CF(3)CF = CD + CE,理由如下:过点D作DG〃AB交BC于点G,如图3,•・・AA8C是等边三角形,DGUAB, .,.ZCDG=ZA=60° , ZACB=60" ,,ACDG是等边三角形, ADG=DC=GC.•・• ADEF是等边三角形, ,DE=DF, ZEDF=60° ,A ZCDG+ZCDE=ZEDF+ZCDE,即:NGDE=NCDF, 在A GDE和4 CDF中,DE = DFNGDE = ZCDF , DG = DCAAGDE^ACDF(SAS),,CF = G£=GC+CE=CD+CE.【点睛】此题主要考查等边三角形的性质和三角形全等的判定和性质定理,添加辅助线,构造全等三角形,是解题的关键.。
P ODCBA 初二数学全等三角形部分1. 下列可使两个直角三角形全等的条件是A.一条边对应相等B.两条直角边对应相等C.一个锐角对应相等D.两个锐角对应相等 2. 如图,点P 是△ABC 内的一点,若PB =PC ,则A .点P 在∠ABC 的平分线上 B.点P 在∠ACB 的平分线上C .点P 在边AB 的垂直平分线上D .点P 在边BC 的垂直平分线上 3. 如图, AD 是ABC △的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF ,连结BF ,CE . 下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE . 其中正确的有 A. 1个 B. 2个 C. 3个 D. 4个4. 在直角梯形ABCD 中,AD ∥BC ,∠B =90°,E 为AB 上一点,且ED 平分∠ADC ,EC 平分∠BCD ,则下列结论中正确的有 A.∠ADE =∠CDE B.DE ⊥EC C.AD ·BC =BE ·DE D.CD =AD +BC5. 使两个直角三角形全等的条件是A. 斜边相等B. 两直角边对应相等C. 一锐角对应相等D. 两锐角对应相等6. 如图,OP 平分∠AOB ,PC ⊥OA 于C ,PD ⊥OB 于D ,则PC 与PD 的大小关系 A.PC >PD B.PC =PD C.PC <PD D.不能确定7. 用两个全等的直角三角形,拼下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等边三角形,其中不一定能拼成的图形是 A. ①②③B. ②③C. ③④⑤D. ③④⑥ 8. 如图,平行四边形ABCD 中,AC 、BD 相交于点O ,过点O 作直线分别交于AD 、BC 于点E 、F ,那么图中全等的三角形共有A.2对B.4对C.6对D.8对9. 给出下列条件: ①两边一角对应相等 ②两角一边对应相等 ③三角形中三角对应相等 ④三边对应相等,其中,不能使两个三角形全等的条件是AD CBEFA E DOB F CA. ①③B. ①②C. ②③D. ②④10. 如图,P 是∠BAC 的平分线AD 上一点,PE ⊥AB 于E ,PF ⊥AC 于F ,下列结论中不正确的是A. PE PF =B. AE AF =C. △APE ≌△APFD. AP PE PF =+ 12. 填空,完成下列证明过程.如图,ABC △中,∠B =∠C ,D ,E ,F 分别在AB ,BC ,AC 上,且BD CE =,=DEF B ∠∠ 求证:=ED EF .证明:∵∠DEC =∠B +∠BDE ( ), 又∵∠DEF =∠B (已知),∴∠______=∠______(等式性质). 在△EBD 与△FCE 中, ∠______=∠______(已证), ______=______(已知), ∠B =∠C (已知), ∴EBD FCE △≌△( ). ∴ED =EF ( ).19. B ,C ,D 三点在一条直线上,△ABC 和△ECD 是等边三角形.求证BE =AD.20. 如图,正三角形ABC 的边长为2,D 为AC 边上的一点,延长AB 至点E ,使BE =CD ,连结DE ,交BC 于点P 。
八年级数学上册第十一章全等三角形复习题一、选择题(每小题3分,共30分) 1. 能使两个直角三角形全等的条件是( ) A. 两直角边对应相等B. 一锐角对应相等C. 两锐角对应相等D. 斜边相等2. 根据下列条件,能画出唯一ABC ∆的是( ) A. 3AB =,4BC =,8CA = B. 4AB =,3BC =,30A ∠= C. 60C ∠=,45B ∠=,4AB = D. 90C ∠=,6AB =3.如图1,P 是∠BAC 的平分线AD 上一点,PE ⊥AB 于E ,PF ⊥AC 于F ,下列结论中不正确的是( )A .PE PF =B .AE AF =C .△APE ≌ △APFD .AP PE PF =+4.下列说法中:①如果两个三角形可以依据“AAS ”来判定全等,那么一定也可以依据“ASA ”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是( )A .①和②B .②和③C .①和③D .①②③5.如图2, AD 是ABC △的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE .其中正确的有( ) A .1个 B .2个 C .3个 D .4个6.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( ) A .形状相同 B .周长相等 C .面积相等 D .全等7.如图3,AD AE =,= = =100 =70BD CE ADB AEC BAE ︒︒,,∠∠∠,下列结论错误的是( ) A .△ABE ≌△ACD B .△ABD ≌△ACE C .∠DAE =40° D .∠C =30°AD CB图1E F AD CB图2E F OAEF G A ′ E ′D8.已知:如图4,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于F ,则图中共有全等三角形( )A .5对B .4对C .3对D .2对9.将一张长方形纸片按如图5所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为( ) A .60° B .75° C .90° D .95°10.根据下列已知条件,能惟一画出△ABC 的是( )A .AB =3,BC =4,CA =8 B .AB =4,BC =3,∠A =30° C .∠A =60°,∠B =45°,AB =4D .∠C =90°,AB =6二、填空题(每小题3分,共24分)1.如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等, 如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等.(填“一定”或“不一定”或“一定不”)2.如图6,△ABC ≌△ADE ,∠B =100°,∠BAC =30°,那么∠AED =______.3.△ABC 中,∠BAC ∶∠ACB ∶∠ABC =4∶3∶2,且△ABC ≌△DEF ,则∠DEF =______. 4.如图7,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是“______”.5.如图8,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是______.6.如图9,AC ,BD 相交于点O ,AC =BD ,AB =CD ,写出图中两对相等的角______.AD ECB 图6ADECB图7ADOCB 图87.如图10,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是______.8. 如图11,在等腰Rt ABC∆中,90C∠=,AC BC=,AD平分BAC∠交BC于D,DE AB⊥于E,若10AB=,则BDE∆的周长等于____________;三、解答题(本大题共46分)1. (本题6分)如图,,,,A F E B四点共线,AC CE⊥,BD DF⊥,AE BF=,AC BD=。
2022-2023学年人教版八年级数学上册《第12章全等三角形》期末复习题型分类练习题(附答案)一.三角形的面积1.等面积法是一种常用的、重要的数学解题方法.(1)如图1,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB=5,CD⊥AB,则CD长为;(2)如图2,在△ABC中,AB=4,BC=2,则△ABC的高CD与AE的比是;(3)如图3,在△ABC中,∠C=90°(∠A<∠ABC),点D,P分别在边AB,AC上,且BP=AP,DE⊥BP,DF⊥AP,垂足分别为点E,F.若BC=5,求DE+DF的值.二.全等图形2.下列各组图形中,属于全等图形的是()A.B.C.D.3.如图,已知方格纸中是4个相同的正方形,则∠1与∠2的和为()A.100°B.90°C.60°D.45°三.全等三角形的性质4.如图,已知△ABC≌△DCB,∠A=75°,∠DBC=40°,则∠DCB的度数为()A.75°B.65°C.40°D.30°5.如图,△ABC≌△AED,点E在线段BC上,∠1=56°,则∠AED的大小为()A.34°B.56°C.62°D.68°6.如图,点B,E,C,F在同一直线上,△ABC≌△DEF,BC=8,BF=11.5,则EC的长为()A.5B.4.5C.4D.3.57.如图所示,△ABC≌△AEF.在下列结论中,不正确的是()A.∠EAB=∠F AC B.BC=EF C.CA平分∠BCF D.∠BAC=∠CAF 8.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,若△ABC≌△A′B′C,且点A′恰好落在AB上,则∠ACA′的度数为()A.30°B.45°C.50°D.60°9.如图,△ABC≌△ADE,且AE∥BD,∠BAD=94°,则∠BAC的度数的值为()A.84°B.60°C.48°D.43°10.如图,Rt△AOB≌Rt△CDA,且点A、B的坐标分别为(﹣1,0),(0,2),则OD长是()A.2B.5C.4D.311.如图,△ABC≌△DEF,点A,B分别对应点D,E.若∠A=70°,∠B=50°,则∠1等于()A.50°B.60°C.70°D.80°12.如图,△ACB≌△A′CB',∠BCB'=30°,则∠ACA'的度数为()A.20°B.30°C.35°D.40°四.全等三角形的判定13.如图,AB∥DE,AB=DE,添加下列条件,仍不能判断△ABC≌△DEF的是()A.AC=DF B.BF=CE C.∠A=∠D D.AC∥DF14.下列四个三角形中,与图中的△ABC全等的是()A.B.C.D.15.如图,∠1=∠2,添加下列条件,不能使△ABC≌△BAD的是()A.∠CAB=∠DBA B.AC=BD C.∠C=∠D D.AD=BC16.如图,已知线段AB=40米,MA⊥AB于点A,MA=20米,射线BD⊥AB于B,P点从B点向A运动,每秒走1米,Q点从B点向D运动,每秒走3米,P、Q同时从B出发,则出发x秒后,在线段MA上有一点C,使△CAP与△PBQ全等,则x的值为()A.8B.8或10C.10D.6或1017.工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA、OB上分别在取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线,这里构造全等三角形的依据是()A.SSS B.ASA C.AAS D.SAS18.如图,若∠B=∠C,下列结论正确的是()A.△BOE≌△COD B.△ABD≌△ACE C.AE=AD D.∠AEC=∠ADB 19.如图,已知AB=DE,AC=DF,BE=CF.则△ABC≌△DEF的理由是()A.SAS B.ASA C.SSS D.AAS20.在学习完“探索三角形全等的条件”一节后,一同学总结出很多全等三角形的模型,他设计了以下问题给同桌解决:如图,做一个“U”字形框架P ABQ,其中AB=42cm,AP,BQ足够长,P A⊥AB于A,QB⊥AB于点B,点M从B出发向A运动,同时点N从B出发向Q运动,使M,N运动的速度之比3:4,当两点运动到某一瞬间同时停止,此时在射线AP上取点C,使△ACM与△BMN全等,则线段AC的长为()A.18cm B.24cm C.18cm或28cm D.18cm或24cm 21.下列三角形与如图全等的三角形是()A.B.C.D.22.如图,DE⊥BA,DF⊥BC,垂足分别为E,F,DE=DF.则△BDE≌△BDF的依据是()A.SAS B.AAS C.SSS D.HL五.全等三角形的判定与性质23.如图,点E是△ABC的边AC的中点,过点C作CF∥AB,连接FE并延长,交AB于点D,若AB=9,CF=6,则BD的长为()A.2B.2.5C.3D.4.524.如图,AD是△ABC的中线,CE∥AB交AD的延长线于点E,AB=5,AC=7,则AD的取值可能是()A.3B.6C.8D.1225.如图,在△ABC中,AB=AC,点D是△ABC外一点,连接AD、BD、CD,且BD交AC于点O,在BD上取一点E,使得AE=AD,∠EAD=∠BAC,若∠ABC=62°,则∠BDC的度数为()A.56°B.60°C.62°D.64°26.如图,在△ABC中,AD⊥BC于点D,BE⊥AC与点E,BE与AD交于点F,若AD=BD=5,CD=3,则AF的长为()A.3B.3.5C.2.5D.227.如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E,若OD=4,OP=5,则PE的长为()A.3B.C.4D.28.如图,在正方形OABC中,O是坐标原点,点A的坐标为(1,),则点C的坐标是()A.(﹣,1)B.(﹣1,)C.(﹣,1)D.(﹣,﹣1)29.如图,在△ABD中,AD=AB,∠DAB=90°,在△ACE中,AC=AE,∠EAC=90°,CD,BE相交于点F,有下列四个结论:①∠BDC=∠BEC;②F A平分∠DFE;③DC⊥BE;④DC=BE.其中,正确的结论有()A.①②③④B.①③④C.②③D.②③④30.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED =90°;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD,四个结论中成立的是()A.①③B.①②③C.②③④D.①②④31.一个三角形的两边长分别为5和9,设第三边上的中线长为x,则x的取值范围是()A.x>5B.x<7C.4<x<14D.2<x<732.如图,E是∠AOB平分线上的一点,EC⊥OA于点C,ED⊥OB于点D,连结CD,若∠ECD=25°,则∠AOB=()A.50°B.45°C.40°D.25°33.如图,点B,E,C,F在一条直线上,AC与DE相交于点O,AB=DE,AB∥DE,BE=CF.(1)求证:AC∥DF;(2)若∠B=65°,∠F=35°,求∠EOC的度数.34.如图1,∠DAB=90°,CD⊥AD于点D,点E是线段AD上的一点,若DE=AB,DC =AE.(1)判断CE与BE的关系是.(2)如图2,若点E在线段DA的延长线上,过点D在AD的另一侧作CD⊥AD,并保持CD=AE,DE=AB,连接CB,CE,BE,试说明(1)中结论是否成立,并说明理由.35.如图,已知AE⊥AB,AF⊥AC.AE=AB,AF=AC,BF与CE相交于点M.求证:(1)EC=BF;(2)EC⊥BF;(3)连接AM,求证:MA平分∠EMF.36.如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.(1)求证:△ACB≌△BDA;(2)若∠ABC=31°,求∠CAO的度数.37.如图,在四边形ABCD中,AB=AC,BE平分∠CBA,连接AE,若AD=AE,∠DAE =∠CAB.(1)求证:△ADC≌△AEB;(2)若∠CAB=36°,求证:CD∥AB.38.如图,AB=AE,AC=DE,AB∥DE.(1)求证:AD=BC;(2)若∠DAB=70°,AE平分∠DAB,求∠B的度数.39.如图,已知∠C=∠F=90°,BC=EF,AE=DB,BC与EF交于点O.(1)求证:Rt△ABC≌Rt△DEF;(2)若∠A=50°,求∠COE的度数.40.如图,已知AB=AC,点D,E分别是AC,AB的中点,求证:∠B=∠C.41.已知:点A,D,C,B在同一条直线上,DF∥CE,DF=CE,AD=BC.求证:(1)CF=DE;(2)AF∥EB.42.已知:OA=OB,OC=OD.(1)求证:△OAD≌△OBC;(2)若∠O=85°,∠C=25°,求∠BED的度数.43.如图,△ABC中,AD是BC边上的中线,E,F为直线AD上的点,连接BE,CF,且BE∥CF.(1)求证:△BDE≌△CDF;(2)若AE=13,AF=7,试求DE的长.44.如图,在△ABC中,∠B=∠C,点D是边BC上一点,CD=AB,点E在边AC上.(1)若∠ADE=∠B,求证:①∠BAD=∠CDE;②BD=CE;(2)若BD=CE,∠BAC=70°,求∠ADE的度数.45.在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足∠BDA=∠AEC=∠BAC=α.(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是;(2)如图2,当0<α<180时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)拓展与应用:如图3,当α=120°时,点F为∠BAC平分线上的一点,且AB=AF,分别连接FB,FD,FE,FC,试判断△DEF的形状,并说明理由.46.问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系,小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以70海里/小时的速度前进,舰艇乙沿北偏东50°的方向以90海里/小时的速度,前进2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.47.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的△ADE绕点A顺时针旋转α(0°<α<90°),如图②,线段BD,CE 有怎样的数量关系和位置关系?请说明理由.六.全等三角形的应用48.如图,一块三角形的玻璃打碎成四块,现要到玻璃店去配一块完全一样的玻璃,最简单的办法是()A.只带①去B.带②③去C.带①③去D.只带④去49.如图所示,某工程队欲测量山脚两端A、B间的距离,在山旁的开阔地取一点C,连接AC、BC并分别延长至点D,点E,使得CD=AC,CE=BC,测得DE的长,就是AB的长,那么判定△ABC≌△DEC的理由是()A.SSS B.SAS C.ASA D.AAS七.角平分线的性质50.如图,△ABC的三边AC、BC、AB的长分别是8、12、16,点O是△ABC三条角平分线的交点,则S△OAB:S△OBC:S△OAC的值为()A.4:3:2B.1:2:3C.2:3:4D.3:4:551.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC的面积是30cm2,AB=13cm,AC=7cm,则DE的长()A.3cm B.4cm C.5cm D.6cm52.某镇要在三条公路围成的一块三角形平地内修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址()A.仅有一处B.有四处C.有七处D.有无数处53.如图,已知△ABC的周长是36cm,∠ABC和∠ACB的角平分线交于点O,OD⊥BC于点D,若OD=3cm,则△ABC的面积是()A.48cm2B.54cm2C.60cm2D.66cm254.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC的面积是20cm2,AB=15cm,AC=5cm,则DF的长为()A.10cm B.5cm C.4cm D.2cm55.如图,BD为∠ABC的角平分线,DE⊥BC于点E,DE=6,∠A=30°,则AD的长为()A.6B.8C.12D.1656.下列各点中,到∠AOB两边距离相等的是()A.点P B.点Q C.点M D.点N57.如图,BO、CO分别平分∠ABC、∠ACB,OD⊥BC于点D,OD=2,△ABC的周长为28,则△ABC的面积为()A.28B.14C.21D.758.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=7cm,DE=3cm,那么AE等于()A.2cm B.3cm C.4cm D.5cm八.等腰三角形的性质59.如图,在四边形ABCD中,∠BAD=α,∠BCD=180°﹣α,BD平分∠ABC.(1)如图1,若α=90°,根据教材中一个重要性质直接可得DA=CD,这个性质是(2)问题解决:如图2,求证AD=CD;(3)问题拓展:如图3,在等腰△ABC中,∠BAC=100°,BD平分∠ABC,求证:BD+AD =BC.九.全等三角形综合题60.如图1,分别以△ABC的两边AB,AC为边作△ABD和△ACE,使得AB=AD,AE=AC,∠DAB=∠EAC.(1)求证:BE=CD;(2)过点A分别作AF⊥CD于点F,AG⊥BE于点G,①如图2,连接FG,请判断△AFG的形状,并说明理由;②如图3,若CD与BE相交于点H,且∠DAB=∠EAC=60°,试猜想AH,CH,HE之间的数量关系,并证明.参考答案一.三角形的面积1.解:(1)如图1中,∵CD⊥AB,∴S△ABC=•AC•BC=•AB•CD,∴CD==;故答案为:;(2)如图2中,∵S△ABC=AB•CD=BC•AE∴,∴2CD=AE,∴CD:AE=1:2;故答案为:1:2;(3)∵S△ABP=,,,∵S△ABP=S△ADP+S△BDP,∴,又∵BP=AP,∴,即DE+DF=BC=5.二.全等图形2.解:根据全等图形的定义可得C是全等图形,故选:C.3.解:在△ABC和△FDE中,,∴△ABC≌△FDE(SAS),∴∠1=∠EDF,∵∠EDF+∠2=90°,∴∠1+∠2=90°,故选:B.三.全等三角形的性质4.解:∵△ABC≌△DCB,∠A=75°,∴∠D=∠A=75°,∵∠DBC=40°,∴∠DCB=180°﹣75°﹣40°=65°,故选:B.5.解:∵△ABC≌△AED,∴∠BAC=∠EAD,AB=AE,∴∠BAE=∠1=56°,∴∠B=∠AEB=(180°﹣56°)=62°,∴∠AED=∠B=62°,故选:C.6.解:∵BC=8,BF=11.5,∴CF=BF﹣BC=3.5,∵△ABC≌△DEF,BC=8,∴EF=BC=8,∴EC=EF﹣CF=8﹣3.5=4.5,故选:B.7.解:∵△ABC≌△AEF,∴∠BAC=∠EAF,∴∠BAC﹣∠EAE=∠EAF﹣∠EAC,∴∠EAB=∠F AC,故A不符合题意;∵△ABC≌△AEF,∴BC=EF,故B不符合题意;∵△ABC≌△AEF,∴AC=AF,∠ACB=∠F,∴∠ACF=∠F=∠ACB,∴CA平分∠BCF,故C不符合题意;∵△ABC≌△AEF,∴∠BAC=∠EAF,∴∠BAC>∠CAF,故D符合题意,故选:D.8.解:∵∠ACB=90°,∠ABC=30°,∴∠A=90°﹣30°=60°,∵△ABC≌△A′B′C,∴CA′=CA,∴△ACA′为等边三角形,∴∠ACA′=60°,故选:D.9.解:∵△ABC≌△ADE,∴∠BAC=∠EAD,AB=AD,∵∠BAD=94°,∴∠ADB=∠ABD=(180°﹣∠BAD)=43°,∵AE∥BD,∴∠EAD=∠ADB=43°,∴∠BAC=∠EAD=43°,故选:D.10.解:∵点A、B的坐标分别为(﹣1,0),(0,2),∴OB=2,OA=1,∵Rt△AOB≌Rt△CDA,∴AD=OB=2,∴OD=OA+AD=1+2=3,故选:D.11.解:在△ABC中,∠A=70°,∠B=50°,则∠C=180°﹣∠A﹣∠B=180°﹣70°﹣50°=60°,∵△ABC≌△DEF,∴∠1=∠C=60°故选:B.12.解:∵△ACB≌△A′CB',∴∠ACB=∠A′CB',∴∠ACB﹣∠A′CB=∠A′CB'﹣∠A′CB,∴∠ACA'=∠BCB'=30°,故选:B.四.全等三角形的判定13.解:∵AB=DE,∵AB∥DE∴∠B=∠E,当AC=DF时,不能判定△ABC≌△DEF,当AB=DE时,且BC=EF,∠B=∠E,由“SAS”可证△ABC≌△DEF,当∠A=∠D时,且BC=EF,∠B=∠E,由“AAS”可证△ABC≌△DEF,当AC∥DF时,∠ACB=∠DFE,∠B=∠E,由“AAS”可证△ABC≌△DEF,故选:A.14.解:△ABC中,∵∠B=72°,∠C=58°,∴∠A=180°﹣∠B﹣∠C=50°,∴根据“SAS”可判断△ABC下面的三角形全等.故选:C.15.解:∵∠1=∠2,AB=BA,∴当添加∠CAB=∠DBA时,根据“ASA”可证明△ABC≌△BAD,所以A选项不符合题意;当添加AC=BD时,不能判断△ABC≌△BAD,所以B选项符合题意;当添加∠C=∠D时,根据“AAS”可证明△ABC≌△BAD,所以C选项不符合题意;当添加AD=BC时,根据“SAS”可证明△ABC≌△BAD,所以D选项不符合题意;故选:B.16.解:当△APC≌△BQP时,AP=BQ,即40﹣x=3x,解得:x=10;当△APC≌△BPQ时,AP=BP=AB=20米,此时所用时间x为20,AC=BQ=60米,不合题意,舍去;综上,出发20后,在线段MA上有一点C,使△CAP与△PBQ全等.故选:C.17.解:由题意可得,OC=OD,MC=MD,又∵OM=OM,∴△OMC≌△OMD(SSS),故选:A.18.解:∵∠B=∠C,∠CAE=∠BAD,∴∠AEC=∠ADB,所以D选项符合题意;∵不能确定BE=CD,AE=AD,∴不能判断△BOE≌△COD、△ABD≌△ACE,所以A、B、C选项不符合题意.故选:D.19.解:∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),故选:C.20.解:设:BM=3xcm,则BN=4xcm,∵∠A=∠B=90°,(1),当△ACM≌△BNM时,有BM=AM,BN=AC,又AM+BM=42cm,∴3x+3x=42,∴x=7.∴AC=BN=4x=28cm;当△ACM≌△BMN时,有AM=BN,BM=AC,又AM+BM=42cm,∴4x+3x=42,∴x=6,∴AC=BM=18cm;故选:C.21.解:180°﹣51°﹣49°=80°,A.只有两边相等,不符合全等三角形的判定定理,不能推出两三角形全等,故本选项不符合题意;B.只有两边相等,不符合全等三角形的判定定理,不能推出两三角形全等,故本选项不符合题意;C.符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项符合题意;D.只有两边相等,不符合全等三角形的判定定理,不能推出两三角形全等,故本选项不符合题意;故选:C.22.解:∵DE⊥BA,DF⊥BC,∴∠BED=∠BFD=90°,在Rt△BDE和△Rt△BDF中,,∴Rt△BDE≌△Rt△BDF(HL),故选:D.五.全等三角形的判定与性质23.证明:∵CF∥AB,∴∠ADE=∠F,∠FCE=∠A,∵点E为AC的中点,∴AE=CE,在△ADE和△CFE中,,∴△ADE≌△CFE(AAS),∴AD=CF=6,∵AB=9,∴BD=AB﹣AD=9﹣6=3,故选:C.24.解:∵AD是△ABC的中线,∴CD=BD,∵CE∥AB,∴∠DCE=∠DBA,在△CDE和△BDA中,,∴△CDE≌△BDA(SAS),∴EC=AB=5,∵7﹣5<AE<7+5,∴2<2AD<12,∴1<AD<6,故选:A.25.解:∵∠EAD=∠BAC,∴∠BAC﹣∠EAC=∠EAD﹣∠EAC,即:∠BAE=∠CAD;在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴∠ABD=∠ACD,∵∠BOC是△ABO和△DCO的外角,∴∠BOC=∠ABD+∠BAC,∠BOC=∠ACD+∠BDC,∴∠ABD+∠BAC=∠ACD+∠BDC,∴∠BAC=∠BDC,∵∠ABC=∠ACB=62°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣62°﹣62°=56°,∴∠BDC=∠BAC=56°,故选:A.26.解:∵BE⊥AC,AD⊥BC,∴∠AEB=∠ADC=∠BDF=90°,∵∠AFE=∠BFD,∠FBD+∠BDF+∠BFD=180°,∠AEB+∠AFE+∠DAC=180°,∴∠DAC=∠DBF,在△BDF和△ADC中,,∴△BDF≌△ADC(ASA),∴DF=CD=3,∵AF+DF=AD=5,∴AF=2,故选:D.27.解:∵OD=4,OP=5,PD⊥OA,PD=3,∵∠AOC=∠BOC,PD⊥OA,PE⊥OB,∴PE=PD=3.故选:A.28.解:如图,过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,在正方形OABC中,∠AOC=90°,AO=CO,∵∠AOC=∠CDO=90°,∴∠COD+∠AOE=∠COD+∠OCD=90°,∴∠OCD=∠AOE,在△OCD和△AOE中,,∴△OCD≌△AOE(AAS),∴CD=OE=1,OD=AE=,∴C(﹣,1).故选:C.29.解:∵△ABD和△ACE都是等腰直角三角形,∴∠ADB=∠AEC=45°,∵∠BDC=∠ADB﹣∠ADC=45°﹣∠ADC,∠BEC=∠AEC﹣∠AEB=45°﹣∠AEB,∵∠ADC和∠AEB不一定相等,∴∠BDC与∠BEC不确定相等;故①错误,∵∠DAB=∠EAC=90°,∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE,在△ADC和△ABE中,,∴△ADC≌△ABE(SAS),∴DC=BE,故④正确;过A点作AM⊥DC于M,AN⊥BE于N,如图,∵△ADC≌△ABE,∴AM=AN,∴AF平分∠DFE,所以②正确.∵∠ADC+∠1+∠DAB=∠ABE+∠2+∠BFD,而∠ADC=∠ABE,∠1=∠2,∴∠BFD=∠DAB=90°,∴DC⊥BE,所以③正确;故正确的结论为②③④.故选:D.30.解:过E点作EF⊥AD于F,如图,∵AE平分∠BAD,EF⊥AD,EB⊥AB,∴EF=EB,在Rt△ABE和Rt△AFE中,,∴Rt△ABE≌Rt△AFE(HL),∴AB=AE,∠AEB=∠AEF,∵点E是BC的中点,∴EC=EB,∴EC=EF,在Rt△DEC和Rt△DEF中,,∴Rt△DEC≌Rt△DEF(HL),∴DC=DF,∠DEC=∠DEF,∠FDE=∠CDE,所以②正确;∵∠AED=∠AEF+∠DEF=∠BEF+∠CEF∴∠AED=90°,所以①正确;∵DE>EC,而EC=BE,∴DE>BE,所以③错误;∵AF=AB,DF=DC,∴AD=AF+DF=AB+CD,所以④正确.故选:D.31.解:如图,AB=5,AC=9,AD为BC边的中线,延长AD到E,使AD=DE,连接BE,CE,∵AD=x,∴AE=2x,在△BDE与△CDA中,,∴△ADC≌△EDB(SAS),∴BE=AC=9,在△ABE中,AB+BE>AE,BE﹣AB<AE,即5+9>2x,9﹣5<2x,∴2<x<7,故选:D.32.解:∵OE平分∠AOB,EC⊥OA,ED⊥OB,∴ED=EC,∴∠EDC=∠ECD,∵∠ODE=∠OCE=90°,∴∠ODC=∠OCD,∴OC=OD,∵ED=EC,∴点O与点E都在CD的垂直平分线上,∴OE是CD的垂直平分线,∴∠AOE+∠OCD=90°,∠OCD+∠DCE=90°,∴∠AOE=∠ECD=25°,∴∠AOB=2∠AOE=50°,故选:A.33.证明:(1)∵AB∥DE,∴∠B=∠DEF,∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠ACB=∠F,∴AC∥DF;(2)解:由(1)得∠B=∠DEF,∠ACB=∠F,∴∠DEF=∠B=65°,∠ACB=∠F=35°,在△EOC中,∠DEF+∠ACB+∠EOC=180°,∴∠EOC=180°﹣∠DEF﹣∠ACB=180°﹣65°﹣35°=80°.34.解:(1)CE=BE且CE⊥BE,理由如下:∵CD⊥AD,∴∠CDE=90°,∵∠DAB=90°,∴∠CDE=∠EAB,在△CDE和△EAB中,,∴△CDE≌△EAB(SAS),∴CE=BE,∠CED=∠EBA,∵∠EBA+∠BEA=90°,∴∠CED+∠BEA=90°,∴∠CEB=90°,∴CE⊥BE,∴CE=BE且CE⊥BE.(2)(1)中结论成立,理由如下:∵CD⊥AD,∴∠CDE=90°,∵∠DAB=90°,∴∠CDE=∠EAB,在△CDE和△EAB中,,∴△CDE≌△EAB(SAS),∴CE=BE,∠CED=∠EBA,∵∠EBA+∠BEA=90°,∴∠CED+∠BEA=90°,∴∠CEB=90°,∴CE⊥BE,∴CE=BE且CE⊥BE.35.证明:(1)∵AE⊥AB,AF⊥AC,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC,即∠EAC=∠BAF,在△ABF和△AEC中,,∴△ABF≌△AEC(SAS),∴EC=BF;(2)设AB与EC的交点为D,∵△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM,∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=180°﹣90°=90°,∴EC⊥BF;(3)如图,作AP⊥CE于P,AQ⊥BF于Q,∵△ABF≌△AEC,∴S△AEC=S△ABF,∴EC•AP=BF•AQ,∵EC=BF,∴AP=AQ,∵AP⊥CE于P,AQ⊥BF于Q,∴MA平分∠EMF.36.(1)证明:∵∠D=∠C=90°,∴△ABC和△BAD都是直角三角形,在Rt△ABC和Rt△BAD中,,∴Rt△ABC≌Rt△BAD(HL);(2)解:∵Rt△ABC≌Rt△BAD,∴∠ABC=∠BAD=31°,∵∠C=90°,∴∠BAC=59°,∴∠CAO=∠CAB﹣∠BAD=28°.37.(1)证明:∵∠DAE=∠CAB,∴∠DAE﹣∠CAE=∠CAB﹣∠CAE.∴∠DAC=∠EAB.在△DAC和△EAB中∵∴△DAC≌△EAB(SAS)(2)证明:∵AB=AC,∠CAB=36°,∴∠ABC=∠ACB=(180°−36°)=72°,∵BE平分∠CAB,∴∠ABE=∠ABC=36°.∴∠ABE=∠BAC=36°.∵△DAC≌△EAB,∴∠DCA=∠EBA=36°.∴∠DCA=∠BAC=36°.∴CD∥AB.38.(1)证明:如图,∵AB∥DE,∴∠E=∠CAB.在△ABC与△EAD中.∴△ABC≌△EAD(SAS).∴AD=BC.(2)解:∵∠DAB=70°,AE平分∠DAB,∴∠DAE=∠BAC=35°.由(1)知,△ABC≌△EAD,∴∠B=∠DAE=35°.39.(1)证明:∵AE=DB,∴AE+EB=DB+EB,即AB=DE,∵∠C=∠F=90°,∴△ABC和△DEF是直径三角形,在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL);(2)解:∵∠C=90°,∠A=50°,∴∠ABC=∠C﹣∠A=90°﹣50°=40°,由(1)知Rt△ABC≌Rt△DEF,∴∠ABC=∠DEF,∴∠DEF=40°,∴∠COE=∠ABC+∠BEF=40°+40°=80°.40.证明:∵AB=AC,点D,E分别是AC,AB的中点,∴AE=AD,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠C.41.证明:(1)∵DF∥CE,∴∠FDC=∠ECD,在△FDC和△ECD中,,∴△FDC≌△ECD(SAS),∴CF=DE;(2)∵△FDC≌△ECD,∴∠FCD=∠EDC,∵AD=BC,∴AD+DC=BC+DC,∴AC=BD,在△F AC和△EBD中,,∴△F AC≌△EBD(SAS),∴∠A=∠B,∴AF∥EB.42.(1)证明:在△OAD和△OBC中,,∴△OAD≌△OBC(SAS);(2)解:∵∠O=85°,∠D=∠C=25°,∴∠OBC=180°﹣85°﹣25°=70°,∴∠BED=∠OBC﹣∠D=70°﹣25°=45°.43.(1)证明:∵AD是BC边上的中线,∴BD=CD,∵BE∥CF,∴∠DBE=∠DCF,在△BDE和△CDF中,,∴△BDE≌△CDF(ASA);(2)解:∵AE=13,AF=7,∴EF=AE﹣AF=13﹣7=6,∵△BDE≌△CDF,∴DE=DF,∵DE+DF=EF=6,∴DE=3.44.(1)证明:①∵在△ABC中,∠BAD+∠B+∠ADB=180°,∴∠BAD=180°﹣∠B﹣∠ADB,又∵∠CDE=180°﹣∠ADE﹣∠ADB,且∠ADE=∠B,∴∠BAD=∠CDE;②由①得:∠BAD=∠CDE,在△ABD与△DCE中,,∴△ABD≌△DCE(ASA),∴BD=CE;(2)解:在△ABD与△DCE中,,∴△ABD≌△DCE(SAS),∴∠BAD=∠CDE,又∵∠ADE=180°﹣∠CDE﹣∠ADB,∴∠ADE=180°﹣∠BAD﹣∠ADB=∠B,在△ABC中,∠BAC=70°,∠B=∠C,∴∠B=∠C=(180°﹣∠BAC)=×110°=55°,∴∠ADE=55°.45.解:(1)DE=BD+CE,理由如下,∵∠BDA=∠BAC=∠AEC=90°,∴∠BAD+∠EAC=∠BAD+∠DBA=90°,∴∠DBA=∠EAC,∵AB=AC,∴△DBA≌△EAC(AAS),∴AD=CE,BD=AE,∴DE=AD+AE=BD+CE,故答案为:DE=BD+CE.(2)DE=BD+CE仍然成立,理由如下,∵∠BDA=∠BAC=∠AEC=α,∴∠BAD+∠EAC=∠BAD+∠DBA=180°﹣α,∴∠DBA=∠EAC,∵AB=AC,∴△DBA≌△EAC(AAS),∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE;(3)△DEF是等边三角形,理由如下,∵α=120°,AF平分∠BAC,∴∠BAF=∠CAF=60°,∵AB=AF=AC,∴△ABF和△ACF是等边三角形,∴F A=FC,∠FCA=∠F AB=∠AFC=60°,同(2)可得,△BDA≌△AEC,∴∠BAD=∠ACE,AD=CE,∴∠F AD=∠FCE,∴△F AD≌△FCE(SAS),∴DF=EF,∠DF A=∠EFC,∴∠DFE=∠DF A+∠AFE=∠EFC+∠AFE=∠AFC=60°,∴△DEF是等边三角形.46.解:问题背景:由题意:△ABE≌△ADG,△AEF≌△AGF,∴BE=DG,EF=GF,∴EF=FG=DF+DG=BE+FD.故答案为:EF=BE+FD.探索延伸:EF=BE+FD仍然成立.理由:如图2,延长FD到点G,使DG=BE,连接AG∵∠B+∠ADC=180°,∠ADG+∠ADC=180°,∴∠B=∠ADG,又∵AB=AD,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,又∵∠EAF=∠BAD,∴∠F AG=∠F AD+∠DAG=∠F AD+∠BAE=∠BAD﹣∠EAF,=∠BAD﹣∠BAD=∠BAD,∴∠EAF=∠GAF.在△AEF和△AGF中,,∴△AEF≌△AGF(SAS),∴EF=FG,又∵FG=DG+DF=BE+DF,∴EF=BE+FD.实际应用:如图3,连接EF,延长AE,BF相交于点C,在四边形AOBC中,∵∠AOB=30°+90°+20°=140°,∠FOE=70°=∠AOB,又∵OA=OB,∠OAC+∠OBC=60°+120°=180°,符合探索延伸中的条件,∴结论EF=AE+FB成立.即,EF=AE+FB=2×(70+90)=320(海里)答:此时两舰艇之间的距离为320海里.47.证明:(1)延长BD交CE于F,在△EAC和△DAB中,,∴△EAC≌△DAB(SAS),∴BD=CE,∠ABD=∠ACE,∵∠AEC+∠ACE=90°,∴∠ABD+∠AEC=90°,∴∠BFE=90°,即EC⊥BD;(2)延长BD交CE于F,∵∠BAD+∠CAD=90°,∠CAD+∠EAC=90°,∴∠BAD=∠EAC,∵在△EAC和△DAB中,,∴△EAC≌△DAB(SAS),∴BD=CE,∠ABD=∠ACE,∵∠ABC+∠ACB=90°,∴∠CBF+∠BCF=∠ABC﹣∠ABD+∠ACB+∠ACE=90°,∴∠BFC=90°,即EC⊥BD.六.全等三角形的应用48.解:第①块和第②③块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第④块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带④去.故选:D.49.证明:在△ABC和△DEC中,,∴△ABC≌△DCE(SAS),故选:B.七.角平分线的性质50.解:∵O是△ABC三条角平分线交点,∴点O到AB、AC、BC的距离相等,设O到AB、AC、BC的距离为h,∴S△OAB:S△OBC:S△OAC=(•h•AB):(•h•BC):(•h•AC)=AB:BC:AC=16:12:8=4:3:2.故选:A.51.解:∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∴S△ABC=×AB×DE+×AC×DF=30(cm2),即×13×DE+×7×DF=30,解得DE=DF=3cm,故选:A.52.解:∵这个砂石场到三条公路的距离相等,砂石场在三条公路围成的三角形平地内,∴这个砂石场为三条公路所围成的三角形的内角平分线的交点,∴可供选择的地址仅有一处.故选:A.53.解:如图,过点O作OE⊥AC于点E,OF⊥AB于点F,连接OA,∵OB、OC分别平分∠ABC、∠ACB,OD⊥BC,∴OD=OE=OF=3(cm),∴S△ABC=S△AOB+S△BOC+S△AOC=×AB×OF+×BC×OD+×AC×OE=×OD×C△ABC=×3×36=54(cm2).故选:B.54.解:∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∵△ABC的面积是20cm2,∴•AB•DE+AC•DF=20,即×15×DF+×5×DF=20,解得DF=2.故选:D.55.解:如图所示,过D作DF⊥AB于F,∵BD为∠ABC的角平分线,DE⊥BC,DF⊥AB,∴DE=DF=6,∵∠A=30°,∴AD=2DF=12,故选:C.56.解:由图形可知,点Q在∠AOB的角平分线上,∴点Q到∠AOB两边距离相等,故选:B.57.解:连接OA,作OE⊥AB于点E,作OF⊥AC于点F,∵BO,CO分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=2,∴OD=OE=OF=2,∴S△ABC=S△OAB+S△OAC+S△OBCAB•OE+AC•OF+BBC•OD=(AB+AC+BC)•OD=×28×2=28,故选:A.58.解:∵BE平分∠ABC,DE⊥AB,∠ACB=90°,∴ED=EC,∴AE=AC﹣EC=AC﹣ED=7﹣3=4(cm),故选:C.八.等腰三角形的性质59.解:(1)∵BD平分∠ABC,∠BAD=90°,∠BCD=90°,∴DA=DC(角平分线上的点到角的两边距离相等),故答案为:角平分线上的点到角的两边距离相等;(2)如图2,作DE⊥BA交BA延长线于E,DF⊥BC于F,∵BD平分∠EBF,DE⊥BE,DF⊥BF,∴DE=DF,∵∠BAD+∠C=180°,∠BAD+∠EAD=180°,∴∠EAD=∠C,在△DEA和△DFC中,∴△DEA≌△DFC(AAS),∴DA=DC;(3)如图,在BC时截取BK=BD,连接DK,∵AB=AC,∠A=100°,∴∠ABC=∠C=40°,∵BD平分∠ABC,∴∠DBK=∠ABC=20°,∵BD=BK,∴∠BKD=∠BDK=80°,即∠A+∠BKD=180°,由(2)的结论得AD=DK,∵∠BKD=∠C+∠KDC,∴∠KDC=∠C=40°,∴DK=CK,∴AD=DK=CK,∴BD+AD=BK+CK=BC.九.三角形综合题60.(1)证明:∵∠DAB=∠EAC,∴∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,在△DAC和△BAE中,,∴△DAC≌△BAE(SAS),∴BE=CD;(2)①解:△AFG是等腰三角形,理由如下:∵△ADC≌△ABE,∴∠ADF=∠ABG,∵AF⊥CD,AG⊥BE,∴∠AFD=∠AGB=90°,在△ADF和△ABG中,,∴△ADF≌△ABG(AAS),∴AF=AG,∴△AFG是等腰三角形;②解:HE=AH+CH,理由如下:∵∠DAB=∠EAC,∴∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,在△DAC和△BAE中,,∴△DAC≌△BAE(SAS),∴BE=CD,∠ACF=∠AEG,∵AF⊥CD,AG⊥BE,∴∠AFC=∠AGE=90°,在△ACF和△AEG中,,∴△ACF≌△AEG(AAS),∴CF=EG,AF=AG,∵∠CAE+∠AEC+∠ACE=180°,∠ACE+∠HEC+∠HCA+∠CHE=180°,∠AEB=∠ACH,∴∠EHC=60°,∴∠DHE=120°,∵AF=AG,AF⊥CD,AG⊥BE,∴∠AHF=∠AHG=60°,∴∠F AH=∠GAH=30°,∴AH=2FH=2HG,∴FH=HG,∴HE=GE+HG=CF+HG=CH+FH+HG=CH+2HG=CH+AH.。
专题4.3 全等三角形考点1:全等形和全等三角形性质例1.(1)(2022秋·江苏连云港·八年级校考阶段练习)下列图标中,不是由全等图形组合成的是()A.B.C.D.(2)(2023秋·浙江台州·八年级统考期末)如图,△ABC≌△DEF,且∠A=55°,∠B=75°,则∠F=______°.(3)(2022秋·湖南岳阳·八年级校考期中)如图,△ABC≌△DEC,点B、C、D在同一直线上,且BD=12,AC=7,则CE长为____________.知识点训练1.(2023秋·河北邢台·八年级统考期末)与下图全等的图形是()A.B.C.D.2.(2020秋·江苏常州·八年级常州市清潭中学校考期中)找出下列各组图中的全等图形()A.②和⑥B.②和⑦C.③和④D.⑥和⑦3.(2022秋·福建龙岩·八年级统考期末)如图,△DBC≌△ECB,且BE与CD相交于点A,下列结论错误的是()A.BE=CD B.AB=ACC.∠D=∠E D.BD=AE4.(2023秋·四川自贡·八年级统考期末)如图所示,△ABC≌△AEF,∠B=∠E,有以下结论:①AC=AE;②EF=BC;③∠EAB=∠FAC;④∠EFA=∠AFC.其中正确的个数是()5.(河北省唐山市2022-2023学年八年级上学期期末考试数学试题)如图,△ABC≌△DEC,点B,C,D在同一条直线上,且CE=1,CD=3,则BD的长是()A.1.5B.2C.3.5D.46.(2023秋·四川南充·八年级统考期末)如图,点A,E,C在同一直线上,△ABC≌△DEC,AE=3,CD=8,则BC的长为()A.3B.5C.8D.117.(2023秋·天津·八年级统考期末)如图,已知△ABC≌△DEF,CD平分∠BCA,DF与BC交于点G.若∠A=26°,∠CGF=83°,则∠E的度数是()A.34°B.36°C.38°D.40°8.(2022秋·河南许昌·八年级统考期中)如图所示的图案是由全等的图形拼成的,其中AD=0.8,BC=1.6,则AF=()9.(2022秋·山东菏泽·八年级统考期中)下列说法正确的是()A.形状相同的两个三角形全等B.三个角都分别相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等10.(2022秋·山东烟台·七年级统考期中)下列说法:①角是轴对称图形;②等腰三角形有三条对称轴;③关于某直线成轴对称的两个三角形全等;④两个全等三角形一定关于某条直线成轴对称.其中正确的个数是()A.1个B.2个C.3个D.4个11.(2022秋·江苏宿迁·八年级统考期中)如图所示的网格是由9个相同的小正方形拼成的,图形的各个顶点均为格点,则∠1−∠2−∠3的度数为().A.30°B.45°C.55°D.60°12.(2023·福建南平·统考一模)如图,在△ABC中,∠BAC=135°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E.当点A、D、E在同一条直线上时,下列结论不正确...的是()A.△ABC≌△DEC B.AE=AB+CDC.AD=√2AC D.AB⊥AE13.(2021秋·陕西商洛·八年级统考期末)在平面直角坐标系内,点O为坐标原点,A(−4,0),B(0,3).若在该坐标平面内有一点P(不与点A、B、O重合)为一个顶点的直角三角形与Rt△ABO全等,且这个以点P 为顶点的直角三角形与Rt△ABO有一条公共边,则所有符合条件的三角形个数为()A.3个B.4个C.6个D.7个14.(2023秋·云南曲靖·八年级统考期末)如图,在平面直角坐标系中,点A的坐标为(3,0),点B的坐标为(0,6),点C在x轴上运动(不与点A重合),点D在y轴上运动(不与点B重合),当以点C、O、D为顶点的三角形与△AOB全等时,则点D的坐标为______.15.(2023秋·江苏镇江·八年级统考期末)如图,△AOD≌△BOC,∠A=30°,∠C=50°,∠AOC=150°,则∠COD=______°.16.(2023秋·四川南充·八年级统考期末)如图,△ABC绕点C旋转得到△DEC,点E在边AB上,若∠B=75°,则∠ACD的度数是_________.考点2:全等三角形的判定及应用例2.(1)(2023秋·山东威海·七年级统考期末)为了测量湖的宽度AB,小明同学先从A点走到点O处,再继续向前走相同的距离到达点C(即OC=OA),然后从点C沿与AB平行的方向,走到与点O,B共线的点D处,测量C,D间的距离就是湖的宽度.下列可以判断△OCD≌△OAB的是()A.SSS B.SSA C.SAS D.ASA(2)(2023秋·黑龙江齐齐哈尔·八年级统考期末)如图,已知∠CAE=∠DAB,AC=AD,请你再添加一个条件:___________,使△ABC≌△AED.(3)(2023秋·江苏徐州·八年级统考期末)根据下列条件,能确定△ABC(存在且唯一)的是()A.AB=2,BC=3,AC=6B.AC=4,BC=3,∠A=60°C.AB=5,BC=3,∠B=30°D.∠A=45°,∠B=45°,∠C=90°(4)(2023秋·广东汕头·八年级统考期末)如图,在△ABC中,∠ACB=65°,∠BAC=70°,AD⊥BC于点D,BM⊥AC于点M,AD与BM交于点P,则∠BPC=______.例3(2022秋·浙江宁波·八年级校考期末)如图,在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,P是OC的中点,D是BC延长线上一点,满足PB=PD.(1)求证∠1=∠2;(2)探究CD与AP之间的数量关系,并给出证明.例4.(2023秋·黑龙江齐齐哈尔·八年级统考期末)综合与实践【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图(1),△ABC中,AB=8,AC=6,求BC边上的中线AD的取值范围,经过组内合作交流.小明得到了如下的解决方法:延长AD到点E,使DE=AD请根据小明的方法思考:(1)由已知和作图得到△ADC≌△EDB的理由是()A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是___________.【感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑倍长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图(2),AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC=BF.知识点训练1.(2022秋·浙江温州·八年级校考期中)如图,在Rt△ABC中,∠ACB=90∘,∠ABC=25∘,O为斜边中点,将线段OA绕点O逆时针旋转a(0∘<α<90∘)至OP,若CB=CP,则α的值为()A.80∘B.65∘C.50∘D.40∘2.(2023秋·山东威海·七年级统考期末)如图,△ABC和△BDE都是等边三角形,点A,D,E在同一条直线上,BE=2,CE=4,则AE=()A.6B.5C.8D.73.(海南省海口市(部分校)2022-2023学年八年级上学期期末检测数学试题(A))如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3,等腰直角△ABC的三个顶点A、B、C分别在直线l2、l1、l3上,∠ACB=90°,则△ABC的面积为()D.25A.10B.12C.2524.(2022秋·黑龙江双鸭山·八年级统考期末)如图所示的网格是由9个相同的小正方形拼成的,图形的各个顶点均为格点,则∠2+∠3的度数为()A.30°B.45°C.55°D.60°5.(2022秋·安徽黄山·八年级统考期末)如图,已知等边△ABC和等边△BPE,点P在BC的延长线上,EC的延长线交AP于点M,连接BM,有下列结论:①AP=CE;②∠PME=60°;③MB平分∠AME;④AM+MC=BM,其中正确的结论是()A.①②③B.①②④C.①③④D.①②③④6.(2022秋·山西吕梁·八年级统考期末)如图,点E,F在线段AC上,AE=CF,AD⊥DF,CB⊥BE,要根据“HL”证明Rt△ADF≌Rt△CBE,则还需添加的一个条件是()A.AF=CE B.∠A=∠C C.AD=CB D.AD∥BC7.(2023·全国·九年级专题练习)如图,点O为△ABC的内心,∠B=60°,BM≠BN,点M,N分别为AB,BC上的点,且OM=ON.甲、乙、丙三人有如下判断:甲:∠MON=120°;乙:四边形OMBN的面积为定值;丙:当MN⊥BC时,△MON的周长有最小值.则下列说法正确的是()A.只有甲正确B.只有乙错误C.乙、丙都正确D.只有丙错误8.(2023秋·浙江台州·八年级统考期末)如图,AB与CD相交于点O,且OA=OB,添加下列选项中的一个条件,不能判定△AOC和△BOD全等的是()A.OC=ODB.∠A=∠BC.AC=BDD.AC∥BD9.(2023秋·浙江台州·八年级统考期末)如图,射线OC为∠AOB的平分线,点M,N分别是边OA,OB上的两个定点,且OM<ON,点P在OC上,满足PM=PN的点P的个数有()A.0个B.1个C.2个D.无数个10.(2023秋·河南新乡·八年级统考期末)在△ABC和△DEF中,已知AB=DE,∠A=∠D,下列条件:①AC= DF;②∠B=∠E;③∠C=∠F;④BC=EF.其中一定能判定△ABC≌△DEF的个数为()A.1B.2C.3D.411.(2022秋·四川广安·八年级统考期末)如图,AB=DC,若要用“SSS”证明△ABC≌△DCB,需要补充一个条件,这个条件是__________.12.(2022秋·福建莆田·八年级统考期末)数学社团活动课上,甲乙两位同学玩数学游戏.游戏规则是:两人轮流对△ABC及△A′B′C′的对应边或对应角添加一组等量条件(点A′,B′,C′分别是点A,B,C的对应点),某轮添加条件后,若能判定△ABC与△A′B′C′全等,则当轮添加条件者失败,另一人获胜.1甲AB=A′B′=2cm2乙∠A=∠A′=35°3甲…上表记录了两人游戏的部分过程,则下列说法正确的是___________.(填写所有正确结论的序号)①若第3轮甲添加∠C=∠C′=45°,则甲获胜;②若第3轮甲添加BC=B′C′=3cm,则甲必胜;③若第2轮乙添加条件修改为∠A=∠A′=90°,则乙必胜;④若第2轮乙添加条件修改为BC=B′C′=3cm,则此游戏最多4轮必分胜负.13.(2023秋·山东淄博·七年级统考期末)如图,点C,E,B,F在同一条直线上,AB=DE,AC=DF,BF=CE.说明AC∥DF.14.(2023秋·江苏南京·八年级统考期末)如图AB=AD,CB=CD,AC,BD相交于点E.(1)求证△ABC≅△ADC;(2)求证BE=DE.15.(2022秋·山西吕梁·八年级统考期末)如图,△ABC是等边三角形,点D,E分别在BC,CA的延长线上,且CD=AE.求证:∠D=∠E.16.(2023秋·广东汕头·八年级统考期末)如图,已知点O在等边△ABC的内部,∠AOB=105°,∠BOC=α,以OC为边作等边△COD,连接AD.(1)求证:AD=BO;(2)当α=150∘时,试判断△AOD的形状,并说明理由;17.(2023秋·江苏南京·八年级统考期末)如图,在四边形ABCD中,连接BD,AB∥CD,且AB=CD.(1)求证:△ABD≅△CDB;(2)若AB=BD,∠ABD=48°,求∠C的度数.18.(2023秋·浙江宁波·八年级校考期末)如图,在四边形ABCD中,P为CD边上的一点,BC∥AD.AP、BP 分别是∠BAD、∠ABC的角平分线.(1)若∠BAD=70°,则∠ABP的度数为_______,∠APB的度数为____________;(2)求证:AB=BC+AD;(3)设BP=3a,AP=4a,过点P作一条直线,分别与AD,BC所在直线交于点E、F,若AB=EF,直接写出AE的长(用含a的代数式表示)考点3:角平分线性质定理和逆定理例5.(2023秋·广东汕头·八年级统考期末)如图,DE⊥AB于点E,DF⊥AC于点F,若BD=CD,BE=CF.(1)求证:AD 平分∠BAC ;(2)请猜想AB +AC 与AE 之间的数量关系,并给予证明.例6.(2022秋·湖北武汉·八年级校考期末)如图,在△ABC 中,E 是BC 中垂线上一点,EM ⊥AB 于M ,EN ⊥AC 于N ,BM =CN .求证:AE 平分∠BAC .知识点训练1.(2022秋·贵州铜仁·九年级统考期中)如图,在平面直角坐标系中,△OAB 的顶点B 的坐标为(6,0),OC 平分∠AOB 交AB 于点C ,反比例函数y =k x (x >0)的图象经过点A ,C .若S △AOC :S △BOC =2:3,则k 的值为( )A .5√716B .45√716C .454D .916 2.(2023秋·山东济宁·八年级统考期末)如图,Rt △ABC 中,∠C =90°,∠ABC =60°,以顶点B 为圆心、适当长为半径作弧,在边BC 、BA 上截取BE 、BD ;然后分别以点D 、E 为圆心、以大于DE 的长为半径作弧,两弧在∠CBA 内交于点F ;作射线BF 交AC 于点G .若AC =6,P 为边AB 上一动点,则GP 的最小值为( )A.3B.2C.1D.无法确定3.(2023秋·山东淄博·七年级统考期末)如图,已知AB=AC,∠A=36°,AB的垂直平分线MD交AC于点D,AB于点M,以下结论:①△BCD是等腰三角形;②BD是△ACB的角平分线;③△BCD的周长C△BCD=AC+ BC;④△ADM≌△BCD.正确的有()A.①③B.①②C.①②③D.③④4.(2023秋·黑龙江牡丹江·八年级统考期末)如图,已知△ABC和△ADE都是等腰直角三角形,∠BAC=∠EAD=90°,BD,CE交于点F,连接AF,下列结论:①BD=CE;②∠AEF=∠ADF;③BD⊥CE;④AF 平分∠CAD;⑤∠AFE=45°,其中结论正确的序号是()A.①②③④B.①②④⑤C.①③④⑤D.①②③⑤5.(2022秋·福建泉州·八年级统考期末)小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角两边距离相等的点在这个角的平分线上.B.角平分线上的点到角两边的距离相等.C.三角形三个内角的平分线交于同一个点.D.三角形三个内角的平分线的交点到三条边的距离相等.6.(2023秋·河北邢台·八年级统考期末)如图,在△ABC中,∠BAC=60°,角平分线BE,CD相交于点P,若AP=4,AC=6,则S△APC=().A.4B.6C.12D.247.(2023秋·江苏泰州·八年级统考期末)已知,如图,△ABC中,∠ABC=48°,∠ACB=84°,点D、E分别在BA、BC延长线上,BP平分∠ABC,CP平分∠ACE,连接AP,则∠PAC的度数为()A.45°B.48°C.60°D.66°8.(2023秋·河北沧州·八年级统考期末)如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=108∘,连接AC,BD交于点M,连接OM.甲、乙、丙三人的说法如下,下列判断正确的是()甲:AC=BD;乙:∠CMD>∠COD;丙:MO平分∠BMCA.乙错,丙对B.甲和乙都对C.甲对,丙错D.甲错,丙对9.(2023秋·重庆大足·八年级统考期末)如图,△ABC的三边AC、BC、AB的长分别是8、12、16,点O是△ABC三条角平分线的交点,则S△OAB:S△OBC:S△OAC的值为()A.4:3:2B.5:3:2C.2:3:4D.3:4:510.(2022秋·甘肃庆阳·八年级统考期中)庆阳市是传统的中药材生产区,优越的地理气候条件形成了较独特的资源禀赋,孕育了丰富的中药植物资源和优良品种,素有“天然药库”“中药之乡”的美称.如图,三条公路把A、B、C三个盛产中药材的村庄连成一个三角形区域,此地区决定在这个三角形区域内修建一个中药材批发市场,要使批发市场到三条公路的距离相等,则这个批发市场应建在()A.三角形的三条中线的交点处B.三角形的三条角平分线的交点处C.三角形的三条高的交点处D.以上位置都不对11.(2022秋·海南海口·八年级校联考期末)如图,在△ABC中,∠A=90°,BD平分∠ABC,BC=12,AD=4,则△DBC的面积为__________.12.(2023·湖南衡阳·校考一模)如图所示,点O在一块直角三角板ABC上(其中∠ABC=30°),OM⊥AB于点M,ON⊥BC于点N,若OM=ON,则∠ABO=_______度.13.(2023秋·湖北省直辖县级单位·八年级统考期末)如图,△ABC与△BDE都为等边三角形,连接AE与CD,延长AE交CD于点F,连接FB.给出下面四个结论:①AE=CD;②∠AFC=60°;③BF平分∠EBD;④FB 平分∠EFD.其中所有正确结论的序号是__________.14.(2023春·浙江金华·八年级浙江省义乌市后宅中学校考阶段练习)已知:OP平分∠MON,点A,B分别在边OM,ON上,且∠OAP+∠OBP=180°.(1)如图1,当∠OAP=90°时,求证:OA=OB;(2)如图2,当∠OAP<90°时,作PC⊥OM于点C.求证:①PA=PB;②请直接写出OA,OB,AC之间的数量关系.15.(2022春·广东茂名·八年级统考期中)如图,在Rt△ABC中,∠A=90°,∠B=30°,CM平分∠ACB交AB 于点M,过点M作MN∥BC交AC于点N,若AN=1,求BC的长.考点4:线段垂直平分线性质定理和逆定理例7. (1)(2023秋·浙江宁波·八年级宁波市第七中学校考期末)如图,△ABC中,AB<AC<BC,如果要使用尺规作图的方法在BC上确定一点P,使PA+PB=BC,那么符合要求的作图痕迹是()A.B.C.D.(2)(2023秋·云南曲靖·八年级统考期末)如图,在△ABC中,∠BAC=110°,EF是边AB的垂直平分线,垂足为E,交BC于F.MN是边AC的垂直平分线,垂足为M,交BC于N.连接AF、AN则∠FAN的度数是()A.70B.55C.40D.30(3)(2022秋·新疆乌鲁木齐·八年级校考期末)电信部门要再S区修建一座手机信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条高速公路OC,OD的距离也必须相等,则发射塔应建在()A.∠COD的平分线上任意某点处B.线段AB的垂直平分线上任意某点处C.∠COD的平分线和线段AB的交点处D.∠COD的平分线和线段AB垂直平分线的交点处例8.(2023春·重庆沙坪坝·八年级重庆南开中学校考开学考试)如图,在△ABC中,EF是AB的垂直平分线,AD⊥BC于点D,且D为CE的中点.(1)求证:BE=AC;(2)若∠C=70°,求∠BAC的度数.知识点训练1.(2022秋·海南海口·八年级校联考期末)如图,在△ABC中,DE垂直平分BC,若AB=6,AC=8,则△ABD 的周长等于()A.11B.13C.14D.162.(2023秋·河南南阳·八年级统考期末)如图,等腰△ABC的底边BC长为6,面积是24,E为腰AB的垂直平分线MN上一动点.点D为BC的中点,则△BDE的周长的最小值为()A.6B.8C.10D.113.(2023秋·福建泉州·八年级校联考期末)如图,根据尺规作图的痕迹,计算∠α的度数为()A.56∘B.68∘C.28∘D.34∘4.(2023秋·山东东营·八年级统考期末)如图,平行四边形ABCD的对角线AC、BD交于点O,DE平分∠ADCAB,连接OE.下列结论:①S▱ABCD=AD⋅BC;②DB平分∠CDE;③AO=交AB于点E,∠BCD=60°,AD=12DE;④OE垂直平分BD.其中正确的个数有()A.1个B.2个C.3个D.4个5.(2022秋·河北石家庄·八年级统考期末)如图,在△ABC中,AB=AC,尺规作图:(1)分别以B,C为圆心,BC长为半径作弧,两弧交于点D;(2)连接AD,BD,CD,AD与BC交于点E,则下列结论中错误的是()A.△ABD≌△ACD B.△DBE≌△DCEC.△BCD是等边三角形D.BC垂直平分AD6.(2023秋·黑龙江牡丹江·八年级统考期末)如图,在△ABC中,∠ACB=90°,∠A=75°,DE垂直平分AB,交AB于点D,交BC于点E,若BE=8cm,则AC为______cm.7.(2023秋·重庆万州·八年级统考期末)如图,在△ABC中,边AC的垂直平分线交BC于点D,交AC于点E,连接AD,若AD是∠BAC的角平分线,且AB=AD时,则∠B=___________°.8.(2023秋·山东淄博·七年级统考期末)如图,已知AB是线段CD的垂直平分线,垂足为点F.E是AB上的一点,∠CEF=30°,CF=2.试求△CED的周长.9.(2022秋·山西吕梁·八年级统考期末)如图,在△ABC中,AB=BC,EF是AB的垂直平分线,交AB于点E,交BC于点F.(1)按要求作图:作∠ABC的平分线BD,交AC于点D,交EF于点O,连接OA,OC(尺规作图,保留痕迹,不写作法);(2)求证:点O在BC的垂直平分线上;(3)若∠CBD=20°,求∠COF的度数.10.(2023秋·黑龙江齐齐哈尔·八年级统考期末)如图,∠AOB=30°,M,N分别是射线OA,OB上的动点,OP平分∠AOB,OP=9,则△PMN的周长的最小值为()C.6D.27A.9B.9211.(2022秋·山东临沂·八年级校考期末).如图,电信部门要在S区修建一座电视信号发射塔.按照设计要求,发射塔到两个城镇A,B距离必须相等,到两条高速公路m和n的距离也必须相等.发射塔应修建在什么位置?在图上标出它的位置.(保留作图痕迹)12.(2023·全国·九年级专题练习)如图,∠HAB=30°,点B与点C关于射线AH对称,连接AC.D点为射线AH 上任意一点,连接CD.将线段CD绕点C顺时针旋转60°,得到线段CE,连接BE.(1)求证:直线EB是线段AC的垂直平分线;(2)点D是射线AH上一动点,请你直接写出∠ADC与∠ECA之间的数量关系.13.(2023秋·山西运城·九年级统考期末)综合与实践问题情境:课堂上老师展示了一张直角三角形纸片.请同学们进行折纸活动,已知在Rt△ABC中.∠ACB=90°,点D、F分别是BC、AB上的一点.连接DF.(1)如图1.小红将△BDF 沿直线DF 折叠,点B 恰好落在BC 上点E 处,若S △BDF S 四边形ACEF=17,则DEDC的值______.(2)如图2,小明将△BDF 沿直线DF 折叠,点B 落在AC 上点E 处,若FE ⊥AC ,求证:四边形BDEF 是菱形; (3)如图3.小亮将△BDF 沿直线DF 折叠,点B 落在AC 延长线上点E 处,且EF 平分∠AED ,若AC =3,BC =4,求CE 的长.14.(2023秋·江苏南京·八年级统考期末)(1)如图1,在△ABC 中,∠A =30°,∠C =90°.求证BC =12AB .①补全证明过程.证明:如图2,取AB 中点D ,连接CD . ∴BD =AD =12AB .在△ABC 中,∠C =90°, ∴______; ∴CD =BD . 又∠A =30°,∴∠B =90°−∠A =60°. ∴△BCD 为______三角形. ∴BC =BD =12AB .②请用文字概括①所证明的命题:____________.(2)如图3,某市三个城镇中心D,E,F恰好分别位于一个等边三角形的三个顶点处,在三个城镇中心之间铺设通信光缆,以城镇D为出发点设计了三种连接方案:方案1:DE+EF;方案2:DG+EF(G为EF的中点);方案3:OD+OE+OF(O为△DEF三边的垂直平分线的交点).①设DE=6,通过计算,比较三种连接方案中铺设的光缆长度的长短;②不计算,比较三种连接方案中铺设的光缆长度的长短,并说明理由.15.(2023秋·河南洛阳·八年级统考期末)我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图1,直线MN是线段AB的垂直平分线,P是MN上任一点,连接PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等.解答下列问题:(1)请你结合图形把已知和求证补充完整,并写出证明过程.已知:如图1,MN⊥AB,垂足为点C,______,点P是直线MN上的任意一点.求证:______.(2)证明:如图2,CD是线段AB垂直平分线,则∠CAD与∠CBD有何关系?请说明理由.考点5:全等三角形的综合问题例9.(2023秋·河南南阳·八年级统考期末)如图,在△ABC中,∠ACB=90°,CE⊥AB于点E,AD=AC,AF平分∠CAB交CE于点F,DF的延长线交AC于点G.(1)求证:DF∥BC;(2)若AE=6,CE=8,求线段GF的长.例10.(2022秋·湖北黄冈·八年级统考期末)已知OM是∠AOB的平分线,点P是射线OM上一定点,点C、D分别在射线OA、OB上,连接PC、PD.(1)如图①,当PC⊥OA,PD⊥OB时,则PC与PD的数量关系是___________;(2)如图②,点C、D在射线OA、OB上滑动,且∠AOB=90∘,当PC⊥PD时,PC与PD在(1)中的数量关系还成立吗?请说明理由.(3)在问题(2)中,若OC+OD=6,则四边形ODPC的面积S是否为定值?若是,请求出该定值,若不是,请说明理由.知识点训练1.(2022秋·河南商丘·八年级统考期中)如图,在△ABC中,∠ABC=90°,D,E分别为边AC,BC上一点,连接BD,DE.已知AB=BE,AD=DE.(1)求证:BD平分∠ABC;(2)若∠A=55°,求证:∠CDE=14∠ADB.2.(2023秋·湖北荆州·八年级统考期末)如图,在△ABC中,BC=2AB,D是AC上一点,∠ABD=20°,E 是BD上一点,EA⊥AB,EB=EC.(1)求证:BD平分∠ABC;(2)求∠DEC的度数.3.(2023秋·重庆长寿·九年级统考期末)在图(1)至图(2)中,直线MN与线段AB相交于点O,∠1=∠2=45°.(1)如图(1),若AO=OB,请写出AO与BD的数量关系和位置关系;(2)将图(1)中的MN绕点O顺时针旋转得到图(2),其中AO=OB.求证:AC=BD,AC⊥BD.4.(2023秋·重庆万州·八年级统考期末)小明在物理课上学习了发声物体的振动实验后,对其作了进一步的探究:在一个支架的横杆点O处用一根细绳悬挂一个小球A,小球A可以自由摆动,如图,OA表示小球静止时的位置.当小明用发声物体靠进小球时,小球从OA摆到OB位置,此时过点B作BD⊥OA于点D,当小球摆到OC位置时,OB与OC恰好垂直(图中的A、B、O、C在同一平面上),过点C作CE⊥OA于点E,测得CE=15cm,AD=2cm.(1)试说明OE=BD;(2)求DE的长.5.(2022秋·海南海口·八年级校联考期末)如图1,在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D,∠MDN=90°,将∠MDN绕点D顺时针旋转,它的两边分别交AB、AC于点E、F.(1)求证:△BDE≌△ADF;(2)如图2,若DM=DN,连接BM、NA,求证:BM=AN.6.(2023秋·江苏宿迁·八年级统考期末)如图,已知AC平分∠BAF,CE⊥AB于点E,CF⊥AF于点F,且BC= DC.(1)求证:BE=DF;(2)若AB=21,AD=9,求DF的长.7.(2023秋·广西南宁·九年级统考期末)如图,将矩形ABCD绕点B旋转得到矩形BEFG,点E在AD上,延长DA交GF于点H.(1)求证:△ABE≅△FEH;(2)连接BH,若∠EBC=30°,求∠ABH的度数.8.(2023秋·山东威海·七年级统考期末)在四边形ABDE中,点C是BD边的中点.(1)如图①,AC平分∠BAE,∠ACE=90°,写出线段AE,AB,DE间的数量关系及理由;(2)如图②,AC平分∠BAE,EC平分∠AED,∠ACE=120°,写出线段AB,BD,DE,AE间的数量关系及理由.9.(2022秋·广西柳州·八年级统考期末)在平面直角坐标系中,点O为坐标原点,A(a,0),B(0,b),且a,b满足(a−3)2+|b−3|=0,连接AB.(1)求点A,B点的坐标;(2)如图1,动点C从点O出发,以1个单位/秒的速度沿y轴正半轴运动,运动时间为t秒(0<t<3),连接AC,过点C作CD⊥AC,且CD=CA,点D在第一象限,请用含有t的式子表示点D的坐标;(3)在(2)的条件下,如图2,连接并延长DB交x轴于点E,连接AD和AB,过点B作线段BF交x轴于点F,使得∠OBF=∠DCB,已知此时点F的坐标为(−1,0),求△ADE的面积.10.(2023秋·福建福州·八年级统考期末)在平面直角坐标系xOy中,点A(0,a),B(b,0),C(c,0),点D在第四象限,其中a>0,b<0,c>0,∠BAC+∠BDC=180°,AC⊥CD.(1)如图1,求证:∠BAO=∠CBD;(2)若|a−c|+b2+6b+9=0,且AB=BD.①如图1,求四边形ACDB的面积;(用含a的式子表示)②如图2,BD交y轴于点E,连接AD,当E关于AD的对称点K落在x轴上时,求CK的长.。
八年级数学全等三角形专项练习题一、单选题1.如图,△ABC ≌△DEF ,点A 与D ,B 与E 分别是对应顶点,且测得BC=5cm ,BF=7cm ,则EC 长为( )A .1cmB .2cmC .3cmD .4cm 2.已知图中的两个三角形全等,则α∠的度数是( )A .72°B .60°C .58°D .50° 3.在下列各组条件中,不能说明ABC DEF ∆∆≌的是( )A .AB=DE ,∠B=∠E ,∠C=∠FB .AB=DE ,∠A=∠D ,∠B=∠EC .AC=DF ,BC=EF ,∠A=∠D D .AB=DE ,BC=EF ,AC=ED 4.如图,在四边形ABCD 中,AB=AD ,CB=CD ,若连接AC 、BD 相交于点O ,则图中全等三角形共有( )A .1对B .2对C .3对D .4对5.如图,已知12,AC AD ∠=∠=,增加下列条件,不能肯定ABC AED ≌的是( )A .C D ∠=∠B .B E ∠=∠C . AB AE =D .BC ED = 6.“经过已知角一边上的一点,作一个角等于已知角”的尺规作图过程如下:已知:如图,AOB ∠和OA 上一点C .求作:一个角等于AOB ∠,使它的顶点为C ,一边为CA .作法:如图.(1)在OA 上取一点()D OD OC <,以点O 为圆心,OD 长为半径画弧,交OB 于点E ; (2)以点C 为圆心,OD 长为半径画弧,交CA 于点F ,以点F 为圆心,DE 长为半径画弧,两弧交于点G ;(3)作射线CG .则GCA ∠就是所求作的角.此作图的依据中不含有( )A .三边分别相等的两个三角形全等B .全等三角形的对应角相等C .两直线平行同位角相等D .两点确定一条直线7.如图,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是( )A .线段CD 的中点B .OA 与OB 的中垂线的交点C .OA 与CD 的中垂线的交点 D .CD 与∠AOB 的平分线的交点 8.如图所示,在ABC ∆中,AD 平分BAC ∠,DE AB ⊥于E ,15ABC S ∆=,3DE =,6AB =,则AC 长是( )A .4B .5C .6D .79.如图,在Rt △ABC 中,∠C=90°,∠A=30°,BD 是∠ABC 的平分线,AD=20,则BC 的长是( )A .20B .C .30D .10 10.如图,在△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 中点,PE ,PF 分别交AB ,AC 于点E ,F ,给出下列四个结论:①△APE ≌△CPF ;②AE=CF ;③△EAF 是等腰直角三角形;④S △ABC =2S 四边形AEPF ,上述结论正确的有( )A .1个B .2个C .3个D .4个二、填空题 11.已知△ABC ≌△DEF ,△ABC 的周长为100cm ,DE =30cm ,DF =25cm ,那么BC =_______. 12.如图,要测量河两岸相对两点A 、B 间的距离,先在过点B 的AB 的垂线上取两点C 、D ,使CD=BC ,再在过点D 的垂线上取点E ,使A 、C 、E 三点在一条直线上,可证明△EDC ≌△ABC ,所以测得ED 的长就是A 、B 两点间的距离,这里判定△EDC ≌△ABC 的理由是__.13.如图,△ABC 的三边AB 、BC 、CA 的长分别为30、40、15,点P 是三条角平分线的交点,将△ABC 分成三个三角形,则APB S ∆︰BPC S ∆︰CPA S ∆等于____.14.如图,的正方形ABCD绕点A逆时针方向旋转30°后得到正方形A′B′C′D′,则图中阴影部分面积为_______平方单位.15.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________三、解答题16.如图,点E、F在AC上,DF=BE,AE=CF,∠AFD=∠CEB.求证:AD∥CB.17.已知:如图,∠ACB =90°,AC =BC ,AD ⊥CE ,BE ⊥CE ,垂足分别是点D ,E . (1)求证:△BEC ≌△CDA ;(2)当AD =3,BE =1时,求DE 的长.18.嘉淇同学要证AE BF =,她先用下列尺规作图步骤作图:①//,90AD BC BAD ∠=;②以点B 为圆心,BC 长为半径画弧,与射线AD 相交于点E ,连接BE ;③过点C 作CF BE ⊥,垂足为点F .并写出了如下不完整的已知和求证.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明过程.19.如图,点C为线段AB上一点,△ACM与△CBN都是等边三角形,AN与MB交于P.(1)求证:AN=BM;(2)连接CP,求证:CP平分∠APB.20.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DAE交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.答案1.C2.D3.C4.C5.D6.C7.D8.A9.D10.C11.45cm12.ASA13.6:8:314.6﹣15.135°16.∵A E=CF∴AE﹣EF=CF﹣EF,即AF=CE,又∵∠AFD=∠CEB,DF=BE,△ADF≌△CBE(SAS),∴∠A=∠C∴AD∥CB.17.(1)证明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠E=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠∠CBE=90°,∴∠ACD=∠CBE,在△ADC和△CEB中,ADC E90 ACD CBE AC BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△ADC≌△CEB(AAS),(2)解:∵△ADC≌△CEB,∴BE=CD=1,AD=EC=3,∴DE=CE﹣CD=3﹣1=2.18.(1)∵以点B为圆心,BC长为半径画弧∴BC=BE根据已知条件第一句话,得到AE=BF故答案为:BE;BF;(2)证明:∵CF⊥BE,∴∠BFC=90°,又∵AD∥BC,∴∠AEB=∠FBC.∵以点B为圆心,BC长为半径画弧,∴BE=BC,在△ABE与△FCB中,BAE CFB AEB FBC BE CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△FCB ,∴AE=BF19.(1)∵△ACM 与△CBN 都是等边三角形, ∴AC =CM ,CN =CB ,∠ACM =∠BCN =60°, ∴∠ACN =∠BCM =120°,且AC =CM ,CN =CB ,∴△ACN ≌△MCB (SAS ), ∴AN =BM ;(2)过点C 作CE ⊥AN 于点E ,作CF ⊥BM 于点F , ∵△ACN ≌△MCB ,∴S △ACN =S △MCB , ∴12×AN ×CE =12×BM ×CF ,且AN =BM , ∴CE =CF ,且CE ⊥AN ,CF ⊥BM , ∴CP 平分∠APB .20.(1)证明:如图,∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°, 又∵∠BAC=∠DAC+∠1=90°, ∴∠1=∠2,在△ABD 和△ACE 中 12AB AC AD AE ⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△ACE . (2)结论:BD 2+FC 2=DF 2.理由如下: 连接FE ,∵∠BAC=90°,AB=AC , ∴∠B=∠3=45°由(1)知△ABD ≌△ACE ∴∠4=∠B=45°,BD=CE ∴∠ECF=∠3+∠4=90°, ∴CE 2+CF 2=EF 2, ∴BD 2+FC 2=EF 2, ∵AF 平分∠DAE , ∴∠DAF=∠EAF ,在△DAF 和△EAF 中 AF AF DAF EAF AD AE ⎧⎪∠∠⎨⎪⎩===, ∴△DAF ≌△EAF ∴DF=EF∴BD 2+FC 2=DF 2. (3)过点A 作AG ⊥BC 于G , 由(2)知DF 2=BD 2+FC 2=32+42=25 ∴DF=5,∴BC=BD+DF+FC=3+5+4=12, ∵AB=AC ,AG ⊥BC , ∴BG=AG=12BC=6, ∴DG=BG -BD=6-3=3,∴在Rt △ADG 中,。
人教版八年级上册数学期中常考题《全等三角形的性质》专项复习一.选择题(共5小题)1.如图,△ABC≌△DEF.若BC=5cm,BF=7cm,则EC=()A.1cm B.2cm C.3cm D.4cm2.(2020秋•巩义市期末)已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°3.(2021•浦东新区模拟)在平面直角坐标系xOy中,点A(﹣3,0),B(2,0),C(﹣1,2),E(4,2),如果△ABC与△EFB全等,那么点F的坐标可以是()A.(6,0)B.(4,0)C.(4,﹣2)D.(4,﹣3)4.(2021•新华区模拟)三个全等三角形按如图的形式摆放,则∠1+∠2+∠3的度数是()A.90°B.120°C.135°D.180°5.(2021春•衡阳期末)如图,已知Rt△ABC≌Rt△CDE,下列结论中不正确的是()A.AC=CE B.∠BAC=∠ECD C.∠ACB=∠ECD D.∠B=∠D二.填空题(共5小题)6.(2020秋•河东区期末)如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为.7.(2020秋•吉林期末)如图,在平面直角坐标系中,△AOB≌△COD,则点D的坐标是.8.(2020秋•射阳县期末)如图,△ABC≌△ADE,∠EAC=35°,则∠BAD=°.9.(2021春•泰兴市期末)如图,两个三角形全等,根据图中所给条件,可得∠α=°.10.(2021春•雁塔区校级期末)一个三角形的三条边的长分别是5,7,10,另一个三角形的三条边的长分别是5,3x﹣2,2y+1,若这两个三角形全等,则x+y的值是或.三.解答题(共5小题)11.(2020秋•章贡区期末)如图,点E在AB上,△ABC≌△DEC,求证:CE平分∠BED.12.(2021春•市中区期末)如图,△ABD≌△EBC,AB=3cm,BC=6cm,(1)求DE的长.(2)若A、B、C在一条直线上,则DB与AC垂直吗?为什么?13.(2021春•碑林区校级期中)如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=10,BC=4,∠D=30°,∠C=70°.(1)求线段AE的长.(2)求∠DBC的度数.14.(2021春•铁西区期中)如图,点B、C、E、F在同一直线上,AB⊥BC于点B,△DEF ≌△ABC,且BC=6,CE=3.(1)求CF的长;(2)判断DE与EF的位置关系,并说明理由.15.(2021春•宝安区期中)如图所示,已知△ABD≌△CFD,AD⊥BC于D.(1)求证:CE⊥AB;(2)已知BC=7,AD=5,求AF的长.参考答案一.选择题(共5小题)1.【解答】解:∵BC=5cm,BF=7cm,∴CF=BF﹣BC=2cm,∵△ABC≌△DEF,∴FE=BC=5cm,∴EC=EF﹣CF=5cm﹣2cm=3cm,故选:C.2.【解答】解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.3.【解答】解:如图所示:△ABC与△EFB全等,点F的坐标可以是:(4,﹣3).故选:D.4.【解答】解:如图所示:由图形可得:∠1+∠4+∠5+∠8+∠6+∠2+∠3+∠9+∠7=540°,∵三个全等三角形,∴∠4+∠9+∠6=180°,又∵∠5+∠7+∠8=180°,∴∠1+∠2+∠3+180°+180°=540°,∴∠1+∠2+∠3的度数是180°.故选:D.5.【解答】解:∵Rt△ABC≌Rt△CDE,∴AC=CE,故A正确;∴∠BAC=∠ECD,故B正确;∴∠B=∠D,故D正确;但不能得出∠ACB=∠ECD,故C错误;故选:C.二.填空题(共5小题)6.【解答】解:∵△ABE≌△ACF∴AC=AB=5∴EC=AC﹣AE=5﹣2=3,故答案为:3.7.【解答】解:∵△AOB≌△COD,∴OD=OB,∴点D的坐标是(﹣2,0).故答案为:(﹣2,0).8.【解答】解:∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC,∵∠EAC=35°,∴∠BAD=35°,故答案为:35.9.【解答】解:左边的三角形中,b所对的角为180°﹣65°﹣55°=60°,两个全等三角形中,相等的边是对应边,两三角形中,长度为b的边是对应边,它们对的角是对应角,∴∠α=60°故答案为:60.10.【解答】解:由题意得,①,解得,,∴x+y=3+=;②,解得,,∴x+y=4+3=7;故答案为:或7.三.解答题(共5小题)11.【解答】证明:∵△ABC≌△DEC,∴∠B=∠DEC,BC=EC,∴∠B=∠BEC,∴∠BEC=∠DEC,∴CE平分∠BED.12.【解答】解:(1)∵△ABD≌△EBC,∴BD=BC=6cm,BE=AB=3cm,∴DE=BD﹣BE=3cm;(2)DB⊥AC.理由如下:∵△ABD≌△EBC,∴∠ABD=∠EBC,又∵∠ABD+∠EBC=180°,∴∠ABD=∠EBC=90°,∴DB⊥AC.13.【解答】解:(1)∵△ABC≌△DEB,DE=10,BC=4,∴AB=DE=10,BE=BC=4,∴AE=AB﹣BE=6;(2)∵△ABC≌△DEB,∠D=30°,∠C=70°,∴∠BAC=∠D=30°,∠DBE=∠C=70°,∴∠ABC=180°﹣30°﹣70°=80°,∴∠DBC=∠ABC﹣∠DBE=10°.14.【解答】解:(1)∵△DEF≌△ABC,∴BC=EF,∵BC=6,CE=3,∴EF=6,∴CF=EF+EC=6+3=9;(2)DE⊥EF,理由:∵AB⊥BC,∴∠ABC=90°,∴∠ABC=∠DEF=90°,∴DE⊥EF.15.(【解答】(1)证明:∵△ABD≌△CFD,∴∠BAD=∠DCF,又∵∠AFE=∠CFD,∴∠AEF=∠CDF=90°,∴CE⊥AB;(2)解:∵△ABD≌△CFD,∴BD=DF,∵BC=7,AD=DC=5,∴BD=BC﹣CD=2,∴AF=AD﹣DF=5﹣2=3.。
八年级全等三角形专题练习(解析版)一、八年级数学轴对称三角形填空题(难)1.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是______.【答案】5【解析】【分析】作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由等腰直角三角形的性质即可得出结论.【详解】如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN 为所求的最小值.∵AD是∠BAC的平分线,∴MH=MN,∴BH是点B到直线AC的最短距离(垂线段最短).∵AB=5,∠BAC=45°,∴BH==5.∵BM+MN的最小值是BM+MN=BM+MH=BH=5.故答案为5.【点睛】本题考查了轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.的边长为8,E是中线AD上一点,以CE为一边在CE下方作2.如图,已知等边ABC等边CEF ∆,连接BF 并延长至点,N M 为BN 上一点,且5CM CN ==,则MN 的长为_________.【答案】6【解析】【分析】作CG ⊥MN 于G ,证△ACE ≌△BCF ,求出∠CBF=∠CAE=30°,则可以得出124CG BC ==,在Rt △CMG 中,由勾股定理求出MG ,即可得到MN 的长.【详解】解:如图示:作CG ⊥MN 于G ,∵△ABC 和△CEF 是等边三角形,∴AC=BC ,CE=CF ,∠ACB=∠ECF=60°,∴∠ACB-∠BCE=∠ECF-∠BCE ,即∠ACE=∠BCF ,在△ACE 与△BCF 中AC BC ACE BCFCE CF =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△BCF (SAS ),又∵AD 是三角形△ABC 的中线∴∠CBF=∠CAE=30°,∴124CG BC ==, 在Rt △CMG 中,2222543MG CM CG =-=-,∴MN=2MG=6,故答案为:6.【点睛】本题考查了勾股定理,等边三角形的性质,全等三角形的性质和判定的应用,解此题的关键是推出△ACF ≌△BCF .3.如图,点P 是AOB 内任意一点,5OP cm =,点P 与点C 关于射线OA 对称,点P 与点D 关于射线OB 对称,连接CD 交OA 于点E ,交OB 于点F ,当PEF 的周长是5cm 时,AOB ∠的度数是______度.【答案】30【解析】【分析】根据轴对称得出OA 为PC 的垂直平分线,OB 是PD 的垂直平分线,根据线段垂直平分线性质得出12COA AOP COP ,12POB DOB POD ,PE=CE ,OP=OC=5cm ,PF=FD ,OP=OD=5cm ,求出△COD 是等边三角形,即可得出答案.【详解】解:如图示:连接OC ,OD ,∵点P 与点C 关于射线OA 对称,点P 与点D 关于射线OB 对称,∴OA 为PC 的垂直平分线,OB 是PD 的垂直平分线, ∵OP=5cm ,∴12COA AOP COP ,12POB DOB POD ,PE=CE ,OP=OC=5cm ,PF=FD ,OP=OD=5cm ,∵△PEF 的周长是5cm ,∴PE+EF+PF=CE+EF+FD=CD=5cm ,∴CD=OD=OD=5cm ,∴△OCD 是等边三角形,∴∠COD=60°, ∴11122230AOB AOP BOP COP DOP COD ,故答案为:30.【点睛】本题考查了线段垂直平分线性质,轴对称性质和等边三角形的性质和判定,能求出△COD 是等边三角形是解此题的关键.4.如图,在△ABC 中,P ,Q 分别是BC ,AC 上的点,PR ⊥AB ,PS ⊥AC ,垂足分别是R ,S ,若AQ PQ =,PR PS =,那么下面四个结论:①AS AR =;②QP //AR ;③△BRP ≌△QSP ;④BRQS ,其中一定正确的是(填写编号)_____________.【答案】①,②【解析】【分析】连接AP ,根据角平分线性质即可推出①,根据勾股定理即可推出AR=AS ,根据等腰三角形性质推出∠QAP=∠QPA ,推出∠QPA=∠BAP ,根据平行线判定推出QP ∥AB 即可;在Rt △BRP 和Rt △QSP 中,只有PR=PS .无法判断△BRP ≌△QSP 也无法证明BRQS .【详解】解:连接AP①∵PR ⊥AB ,PS ⊥AC ,PR=PS ,∴点P 在∠BAC 的平分线上,∠ARP=∠ASP=90°,∴∠SAP=∠RAP ,在Rt △ARP 和Rt △ASP 中,由勾股定理得:AR 2=AP 2-PR 2,AS 2=AP 2-PS 2,∵AP=AP ,PR=PS ,∴AR=AS ,∴①正确;②∵AQ=QP ,∴∠QAP=∠QPA ,∵∠QAP=∠BAP ,∴∠QPA=∠BAP ,∴QP ∥AR ,∴②正确;③在Rt △BRP 和Rt △QSP 中,只有PR=PS ,不满足三角形全等的条件,故③④错误;故答案为:①②.【点睛】本题主要考查了角平分线的性质与勾股定理的应用,熟练掌握根据垂直与相等得出点在角平分线上是解题的关键.5.如图,ABC ∆中,AB AC =,点D 是ABC ∆内部一点,DB DC =,点E 是边AB 上一点,若CD 平分ACE ∠,100AEC =∠,则BDC ∠=______°【答案】80【解析】【分析】根据角平分线得到∠ACE=2∠ACD ,再根据角的和差关系得到∠ECB =∠ACB -2∠ACD ,然后利用外角定理得到∠ABC+∠ECB=100°,代换化简得出∠ACB -∠ACD=50°,即∠DCB=50°,从而求出∠BDC 即可.【详解】∵CD 平分∠ACE ,∴∠ACE=2∠ACD=2∠ECD ,∴∠ECB=∠ACB -∠ACE=∠ACB -2∠ACD ,∵∠AEC=100°,∴∠ABC+∠ECB=100°,∴∠ABC+∠ACB-2∠ACD=100°,∵AB=AC,∴∠ABC=∠ACB,∴2∠ACB-2∠ACD=100°,∴∠ACB-∠ACD=50°,即∠DCB=50°,∵DB=DC,∴∠DBC=∠DCB,∴∠BDC=180°-2∠DCB=180°-2×50°=80°.【点睛】本题考查了角平分线,三角形内角和,外角定理,及等边对等角的性质等知识,熟练掌握基本知识,找出角与角之间的关系是解题的关键.6.如图,△ABC中,AB=AC=12厘米,BC=9厘米,点D为AB的中点,如果点P在线段BC 上以v厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动。
八年级数学全等三角形考点专题复习练习
考点一:全等三角形的性质和判定
1.如图,点B,F,C,E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定
△ABC ≌△DEF的是()
A.∠A=∠D
B. AC=DF
C.AB=ED
D.BF=EC
2.如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC =35°,∠C=50°,则∠CDE的度数为()
A.35°
B.40°
C.45°
D.50°
3.如图,已知AD=AE,请你添加一个条件,使得△ADC≌△AEB,你添加的条件是 .(不添加任何字母和辅助线)
4.已知:如图,点B,D在线段AE上,AD=BE,AC∥EH,∠C=∠H.求证:BC=DH.
5.如图,在四边形ABCD中,AB∥DC,点E是CD的中点,AE=BE.
求证:∠D=∠C.
考点二:直角三角形全等的性质和判定
1.如图,AB⊥CD交于点H,且AB=CD.E,F是AD上两点,CE⊥AD交AB于点G,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为()
A.a+c
B.b+c
C.a-b+c
D.a+b-c
2.如图,已知∠C=∠D=90°,BC与AD交于点E,AC=BD,求证: AE=BE.
3.如下图,CD⊥AD,CB⊥AB,AB=AD,求证:CD=CB.
4.如图,有两个长度相等(BC=EF)的滑梯靠在一面墙上,已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,求证:∠ABC+∠DFE=90°.
考点三:角平分线的性质和判定
1.如图,在△ABC中,∠C=90°,AC=8,DC=AD,BD平分∠ABC,则点D到AB的距离等于()
A.4
B.3
C.2
D.1
2.如图,BD是长方形ABCD的对角线,在BA和BD上分别截取BE,BF,使BE=BF;分别以E,F 为圆心,以大于EF的长为半径作弧,两弧在∠ABD内交于点G,作射线BG交AD于点P,若AP=3,则点P到BD的距离为.
3. 如图,在△ABC中,∠C=90°,∠B=30°,A D平分∠BAC,DE⊥AB于E,有下列结论:①DE=DC;②∠BDE=∠ADC;③AB=2AC;④图中共有两对全等三角形.其中正确的是:
____________(填序号即
可).
4.证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.
已知:如图,∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB.
求证:PD=PE.
请你补全已知和求证,并写出证明过程.。