全等三角形专题训练题.doc
- 格式:doc
- 大小:118.11 KB
- 文档页数:4
全等三角形证明经典50 题(含答案)1. 已知: AB=4, AC=2, D 是 BC 中点, AD 是整数,求ADAB CD延伸 AD 到 E,使 DE=AD,则三角形ADC全等于三角形EBD即 BE=AC=2 在三角形 ABE 中 ,AB-BE<AE<AB+BE即:10-2<2AD<10+2 4<AD<6又 AD 是整数 ,则 AD=512. 已知: D 是 AB 中点,∠ ACB=90°,求证:CD AB2ADC B3.已知: BC=DE,∠ B=∠ E,∠ C=∠ D, F 是 CD中点,求证:∠ 1=∠ 2A21B EC F D证明:连结 BF 和 EF。
由于 BC=ED,CF=DF,∠ BCF=∠ EDF。
因此三角形 BCF 全等于三角形 EDF(边角边 )。
因此 BF=EF,∠ CBF=∠ DEF。
连结 BE。
在三角形BEF 中 ,BF=EF。
因此∠ EBF=∠ BEF。
又由于∠ ABC=∠AED。
因此∠ABE=∠AEB。
因此 AB=AE。
在三角形 ABF 和三角形 AEF中, AB=AE,BF=EF,∠ABF=∠ ABE+∠ EBF=∠ AEB+∠ BEF=∠ AEF。
因此三角形 ABF 和三角形 AEF全等。
因此∠ BAF=∠ EAF (∠ 1=∠ 2)。
A4. 已知:∠ 1=∠ 2, CD=DE, EF//AB,求证: EF=AC 1 2证明:过 E 点,作 EG//AC,交 AD 延伸线于 G 则∠ DEG=∠ DCA,F ∠DGE=∠ 2又∵CD=DE∴ ⊿ADC≌ ⊿ GDE(AAS)∴EG=AC∵ EF//AB∴∠ DFE=∠ 1∵ ∠ 1=∠ 2∴ ∠ DFE=∠ DGE∴ EF=C EG∴ EF=AC DEB5.已知:AD均分∠ BAC,AC=AB+BD,求证:∠B=2∠C ACB D证明:在 AC上截取AD=AD∴ ⊿ AED≌ ⊿ ABD AE=AB,连结(SASED∵ AD)均分∠ BAC∴ ∠∴ ∠ AED=∠ BEAD=∠ BAD 又∵ AE=AB,,DE=DB∵ AC=AB+BDAC=AE+CE∴ CE=DE∴ ∠ C=∠ EDC∵∠ AED=∠ C+∠ EDC=2∠ C∴∠ B=2∠C6. 已知: AC 均分∠ BAD,CE⊥ AB,∠ B+∠ D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连结 CF 由于 CE⊥AB 因此∠CEB=∠ CEF= 90 °由于 EB= EF, CE= CE,所以△CEB≌△CEF 所以∠B =∠ CFE 由于∠ B+∠ D= 180 ,°∠CFE+∠ CFA= 180°因此∠ D=∠ CFA 由于AC 均分∠ BAD 因此∠ DAC=∠ FAC 又由于AC= AC因此△ ADC≌ △ AFC( SAS)因此 AD= AF 因此 AE= AF+ FE= AD+ BE12.如图,四边形 ABCD 中, AB∥ DC, BE、 CE 分别均分∠ ABC、∠ BCD,且点 E 在 AD 上。
中考数学复习《全等三角形》专题训练-附带参考答案一、选择题1.下列选项中表示两个全等的图形的是()A.形状相同的两个图形B.周长相等的两个图形C.面积相等的两个图形D.能够完全重合的两个图形2.如图,点D、E分别在线段AB、AC上,BE、CD相交于点O,AE=AD,则不一定能使△ABE≌△ACD的条件是()A.AB=AC B.∠B=∠CC.∠AEB=∠ADC D.CD=BE3.如图是用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB的依据是()A.SAS B.ASA C.AAS D.SSS4.如图△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.25°B.30°C.35°D.65°5.如图EF=CF,BF=DF则下列结论不一定正确的是()A.△BEF≌△DCF B.△ABC≌△ADEC.DC=AC D.AB=AD6.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=3,则PQ的最小值为()A.2 B.3 C.4 D.57.如图,CD⊥AB,BE⊥AC,垂足分别为点D,点E,BE、CD相交于点O.∠1=∠2,则图中全等三角形共有()A.2对B.3对C.4对D.5对8.如图,AD 是△ABC中∠BAC的平分线,DE⊥AB于点E,△ABC的面积为12,DE =2,AB = 7,则 AC 的长是()A.3 B.4 C.5 D.6二、填空题9.如图,∠ACD=∠BCE,BC=EC,要使△ABC≌△DEC,则可以添加的一个条件是.10.如图所示,在△ABC中,∠C=90°,AB=8,AD是△ABC的一条角平分线.若CD=2,则△ABD的面积为.11.如图,在Rt△ABC中,∠BAC=90°,分别过点B,C作过点A的直线的垂线BD,若BD=4cm,CE=3cm则DE= cm.12.如图,把两根钢条AB,CD的中点连在一起做成卡钳,已知AC的长度是6cm,则工件内槽的宽BD是cm.13.如图,△ABC为等腰直角三角形AC=BC,若A(−3,0),C(0,2),则点B的坐标为.三、解答题14.如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°(1)求证:△ADE≌△CDE.(2)求∠BDC度数.15.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E.(1)求证:BC=DC;(2)若∠A =25°,∠D =15°,求∠ACB 的度数.16.如图,AB =AC ,AD =AE ,∠BAC =∠DAE.(1)求证:△ABD ≌△ACE ;(2)若∠1=25°,∠2=30°,求∠3的度数.17.如图,在ABC 中90C ∠=︒,BD 是ABC ∠的平分线,DE AB ⊥于点E ,点F 在BC 上,连接DF ,且AD DF =. (1)求证:CF AE =;(2)若3AE =,BF=4,求AB 的长.18.如图,∠BAD =∠CAE =90°,AB =AD ,AE =AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD =2BF+DE .1.D2.D3.D4.A5.C6.B7.C8.C9.AC =DC (答案不唯一)10.811.712.613.(2,-1)14.(1)证明:∵DE 是线段AC 的垂直平分线 ∴DA=DC ,AE=CE在△ADE 与△CDE 中:DA=DCAE=CEDE=DE∴△ADE ≌△CDE (SSS );(2)解:∵△ADE ≌△CDE .∴∠DCA=∠A=50°∴∠BDC=∠DCA+∠A=100°15.(1)证明:∵∠BCE =∠DCA∴∠BCE +∠ACE =∠DCA +∠ECA即∠BCA =∠DCE .在△BCA 和△DCE 中{∠BCA =∠DCE AC =EC ∠A =∠E∴△BCA ≌△DCE (ASA )(2)解:∵△BCA ≌△DCE∴∠B =∠D =15°.∵∠A =25°∴∠ACB =180°−∠A −∠B =140°.16.(1)证明:∵∠BAC =∠DAE∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC∴∠1=∠EAC在△ABD 和△ACE 中{AB =AC ∠1=∠EAC AD =AE∴△ABD ≌△ACE (SAS )(2)解:∵△ABD ≌△ACE∴∠ABD =∠2=30°∵∠1=25°∴∠3=∠1+∠ABD =25°+30°=55°.17.(1)证明:(1)∵90C ∠=︒∴DC BC ⊥又∵BD 是ABC ∠的平分线DE AB ⊥∴DE DC = 90AED ∠=︒在Rt AED △和Rt FCD △中∵AD DFDE DC =⎧⎨=⎩∴()Rt Rt AED FCD HL ≌△△∴CF AE =.(2)解:由(1)可得3CF AE ==∴437BC BF CF =+=+=∵DE AB ⊥∴90DEB ∠=︒∴DEB C ∠=∠∵BD 是ABC ∠的平分线∴ABD CBD ∠=∠在BED 和BCD △中∵DEB C EBD CBD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()BED BCD AAS ≌△△ ∴7BE BC ==∴7310AB BE AE =+=+=∴AB 的长为10.18.(1)证明:∵90BAD CAE ∠=∠=︒∴90BAC CAD ∠+∠=︒ 90CAD DAE ∠+∠=︒ ∴BAC DAE ∠=∠在△BAC 和△DAE 中∵AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴()BAC DAE SAS ≌△△;(2)解:∵90CAE ∠=︒,AC=AE∴45E ∠=︒由(1)知BAC DAE ≌△△∴45BCA E ∠=∠=︒∵AF BC ⊥∴90CFA ∠=︒∴45CAF ∠=︒∴4590135FAE FAC CAE ∠=∠+∠=︒+︒=︒;(3)证明:延长BF 到G ,使得FG FB = ∵AF BG ⊥∴90AFG AFB ∠=∠=︒在△AFB 和△AFG 中∴BF GF AFB AFG AF AF =⎧⎪∠=∠⎨⎪=⎩∴()AFB AFG SAS ≌△△∴AB AG = ABF G ∠=∠∵BAC DAE ≌△△∴AB AD = CBA EDA ∠=∠ CB=ED ∴AG AD = ABF CDA ∠=∠∴CGA CDA ∠=∠∵45GCA DCA ∠=∠=︒∴在△CGA 和△CDA 中GCA DCA CGA CDA AG AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CGA CDA AAS ≌△△∴CG CD =∵22CG CB BF FG CB BF DE BF =++=+=+ ∴2CD BF DE =+.。
(936)全等三角形的性质专项练习30题(有答案)o k(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--全等三角形的性质专项练习30题(有答案)1.如图,点A,B,C,D在一条直线上,△ABF≌△DCE.你能得出哪些结论(请写出三个以上的结论)2.如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.3.如图,AB=DC,AC=DB,你能说明图中∠1=∠2的理由吗4.已知:AB=DE,AF=CD,∠A=∠D,EF=BC,试说明:BF∥CE.5.已知△ABC≌△DEF,其中AB=2cm,BC=3cm,AC=4cm,则△DEF的三边长DE= _________ cm,EF= _________ cm,DF= _________ cm.6.如图,△ABC≌△ADE,∠B=40°,∠E=30°,∠BAE=80°,求∠BAC、∠DAC的度数.7.如图,△AOC≌△BOD,试证明AC∥BD.8.如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3cm,求∠DFE的度数和EC的长.9.如图,△ABD≌△EBD,△DBE≌△DCE,B,E,C在一条直线上.(1)BD是∠ABE的平分线吗为什么(2)DE⊥BC,BE=EC吗为什么10.附加题:如图△ABC≌△DBC,∠A=110°,则∠D=_________ .11.如图,已知△AEC≌△BFD,则AD _________ BC.(填“>”、“=”或“<”).12.如图,△ABC≌△DEC,∠A:∠ABC:∠BCA=3:5:10,(1)求∠D的度数;(2)求∠EBC的度数.13.如图,△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,写出其他对应边和对应角.14.如图,已知△ABD≌△ACE.求证:BE=CD.15.如图,△ABC≌△DEF,BF=3,EF=2.求FC的长.16.如图,△ABC≌△BDE,M、M′分别为AB、DB中点,直线MM′交CE于K.试探索CK与EK的数量关系.17.如图,在△ABC中,BE,CF分别是AC,AB边上的高线,BE,CF相交于O,连接AO交BC于D,且△BCF≌△CBE,∠ABC=70°,求∠1和∠2的度数.18.如图,已知△ABC≌△ADE,BC的边长线交AD于F,交AE于G,∠ACB=105°,∠CAD=10°,∠ADE=25°,求∠DFB和∠AGB的度数.19.如图,△ABC≌△DEC,∠1与∠2相等吗请说明理由.20.如图,△ABC≌△EBD.求证:∠1=∠2.21.如图,△ABC≌△ADE,∠CAD=10度,∠B=∠D=25度,∠EAB=120度,试求∠ACB的度数.22.如图,△ABC≌△DEF,△ABC的周长是40cm,AB=10cm,BC=16cm,求△DEF中,边DF的长度.23.如图:△ABF≌△DCE,写出相等的线段.24.如图,△ABC≌△ADE中,BA⊥AE,∠BAC=30°,AD=5,求BD的长.25.如右图所示,已知△ABD≌△ACE,试说明BE=CD.26.如图,△ABC≌△EFD,你能从图中找到几组平行线请写出,并选择一组说明理由.27.如图,点B、E、C、F在一条直线上,BC=EF AB∥DE,请你添加一个条件_________ ,使△ABC≌△DE F.并写出证明过程.28.如图,△ACF≌△DBE,∠E=∠F,若AD=11,BC=7,求线段AB的长.29.如图,已知△ABC≌△DEF,∠A=30°,∠B=50°,BF=2,求∠DFE的度数和EC的长.30.如图,△ABC≌△ADE,B点的对应顶点是D点,若∠BAD=100°,∠CAE=40°,求∠BAC的度数.参考答案1.∵△ABF≌△DCE∴∠BAF=∠CDE,∠AFB=∠DEC,∠ABF=∠DCE,AB=DC,BF=CE,AF=DE;∴AF∥ED,AC=BD,BF∥CE.2.∵△ABC≌△ADE,∴∠DAE=∠BAC=(∠EAB﹣∠CAD)=.∴∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°∠DGB=∠DFB﹣∠D=90°﹣25°=65°3.证明:在△ABC和△DCB中,AB=DC,AC=DB,BC=BC,∴△ABC≌△DCB(SSS),∴∠1=∠2.4.∵AB=DE,AF=CD,∠A=∠D,则可得△ABF≌△DEC,∴BF=EC,又EF=BC,∴可得四边形BCEF是平行四边形,∴BF∥EC5.∵△ABC≌△DEF∴AB=DE,BC=EF,AC=DF∴DE=2cm,EF=3cm,DF=4cm.6.①∵△ABC≌△ADE,∴∠B=∠D=40°,∠E=∠C=30°,∴∠BAC=180°﹣∠B﹣∠C=110°;②∵∠BAE=80°,∠BAC=∠DAE=110°∴∠BAD=∠DAE﹣∠BAE=30°,∴∠DAC=∠BAC+∠BAD=110°+30°=140°7. ∵△AOC≌△BOD,∴∠A=∠B(全等三角形对应角相等).∴AC∥BD(内错角相等,两直线平行)8.△ABC中∠A=25°,∠B=65°,∴∠BCA=180°﹣∠A﹣∠B=180°﹣25°﹣65°=90°,∵△ABC≌△DEF,∴∠BCA=∠DFE,BC=EF,∴EC=BF=3cm.∴∠DFE=90°,EC=3cm.9.(1)∵△ABD≌△EBD,∴∠ABD=∠EBD,∴BD是∠ABE的平分线;(2)∵△DBE≌△DCE,∴∠DEB=∠DEC,∵∠DEB+∠DEC=180°,∴∠DEB=∠DEC=90°,∴DE⊥BC,∵△DBE≌△DCE,∴BE=E C.10.解:∵△ABC≌△DBC,∠A=110°∴∠D=∠A=110°.11.∵△AEC≌△BFD∴AC=BD(全等三角形对应边相等)∴AC+CD=BD+CD,即AD=BC.12.(1)∵∠A+∠ABC+∠BCA=180°,∠A:∠ABC:∠BCA=3:5:10,∴∠A=180°×=30°,∠ABC=180°×=50°,∠BCA=180°×=100°,又∵△ABC≌△DEC,∴∠D=∠A=30°;(2)∵△ABC≌△DEC,∴∠E=∠ABC=50°,∵∠BCA=100°,∴∠EBC=∠BCA﹣∠E,=100°﹣50°=50°13.∵△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,∴对应边:AN与AM,BN与CM;对应角:∠BAN=∠CAM,∠ANB=∠AMC14.∵△ABD≌△ACE,∴AB=AC,AD=AE,∴AC﹣AD=AB﹣AE,即CD=BE15.∵△ABC≌△DEF∴BC=EF=2又∵FC=BF﹣BC∴FC=3﹣2=116.CK与EK的数量关系为相等,理由如下:延长MK到N,使得NK=MM',连接EM′、CM、EN,如图,可得NK+KM'=MM'+M'K,即NM'=MK,∵△ABC≌△BDE,M、M′分别为AB、DB中点,∴EM'=CM,BM'=BM,∠EM'D=∠CMB,由BM'=BM得:∠BM'M=∠BMM'=∠KM'D,∴∠NM'E=∠CMK,在△EM'N和△CMK中,NM'=MK,∠NM'E=∠CMK,EM'=CM,∴△EM'N≌△CMK,(SAS)∴CK=EN,∠N=∠CKM=∠NKE,∴EK=EN,∴CK=EK.17.∵△BCF≌△C BE,∴∠FBC=∠ECB=70°,∴∠BAC=180°﹣∠FBC﹣∠ECB=40°,AB=AC,∵BE,CF分别是AC,AB边上的高线,BE,CF相交于O,∵AD⊥BC,∴∠1=∠2=∠BAC=20°18.∵△ABC≌△ADE,∴∠ACB=∠AED,∠ABC=∠ADE,∠CAB=∠EAD.∵∠ADE=25°,∴∠ABC=∠ADE=25°.∵∠ACB=105°,∴∠CAB=180°﹣105°﹣25°=50°.∴∠DFB=∠DAB+∠ABC=50°+10°+25°=85°.∠AGB=∠ACB﹣∠GAC=105°﹣50°﹣10°=45°19.由题意:∵△ABC≌△DEC,∴BC=EC.∴∠1=∠220.∵△ABC≌△EBD.∴∠A=∠E.又∵∠AOD=∠BOE,∴∠A+∠AOD+∠1=∠E+∠BOE+∠2=180°,∴∠1=∠221.∵△ABC≌△ADE,∴∠CAB=∠EAD.∵∠EAB=120°,∠CAD=10°,∴∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,∴∠CAB=55°.∵∠B=∠D=25°,∴∠ACB=180°﹣∠CAB﹣∠B=180°﹣55°﹣25°=100°,即∠ACB的度数是100°22.已知,△ABC的周长是40cm,AB=10cm,BC=16cm,∴AC=△ABC的周长﹣AB﹣BC=40﹣10﹣16=14(cm),∵△ABC≌△DEF,∴DF=AC=14cm,所以边DF的长度为14cm23.∵△ABF≌△DCE,∴AB=DC,BF=CE,AF=DE,∠DEC=∠AFE,∴OE=OF,∴AF﹣FO=DE﹣OE,∴AO=DO,∵BF=CE,∴BF﹣FE=CE﹣EF,∴EB=FC.24.由题意得:∠BAC=∠DAE=30°,AB=AD,∠BAE=90°,∴∠CAD=30°,∴∠ABD=60°,∴△ABD是等边三角形.故可得:BD=AD=525.∵△ABD≌△ACE,∴AD=AE,AC=AB,∴AE﹣AB=AD﹣AC,即BE=CD26.AB∥EF,AC∥ED.∵△ABC≌△EFD,∴∠B=∠F,∠ACB=∠EDF,∴AB∥EF,AC∥ED27.∠ACB=∠F或AB=DE或∠A=∠D.以下证明添加条件为AB=DE时,△ABC≌△DEF.∵AB∥DE,∴∠B=∠DEF.在△ABC和△DEF中,∴△ABC≌△DEF28.∵△ACF≌△DBE,∴AC=DB,∴AC﹣BC=DB﹣BC,即AB=CD,∵AD=11,BC=7,∴AB=(AD﹣BC)=(11﹣7)=2即AB=229.∵∠A=30°,∠B=50°,∴∠ACB=180°﹣∠A﹣∠B=180°﹣30°﹣50°=100°,∵△ABC≌△DEF,∴∠DFE=∠ACB=100°,EF=BC,∴EF﹣CF=BC﹣CF,即EC=BF,∵BF=2,∴EC=230.∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAC﹣∠CAE=∠DAE﹣∠CAE,即∠BAE=∠DAC,∵∠BAD=100°,∠CAE=40°,∴∠BAE=(∠BAD﹣∠CAE)=(100°﹣40°)=30°,∴∠BAC=∠BAE+∠CAE=30°+40°=70。
1、如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E;求证:BC=DC.2、如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?3、如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF4、如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.5、如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A、B两点作AC⊥l交l 于点C,BD⊥l交l于点D.求证:AC=OD.6、如图,已知AD是△ABC的中线,分别过点B、C作BE⊥AD于点E,CF⊥AD交AD的延长线于点F,求证:BE=CF.7、如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.8、如图,CD=CA,∠1=∠2,EC=BC,求证:DE=AB9、如图,点D是△ABC的边AB上一点,点E为AC的中点,过点C作CF∥AB交DE延长线于点F.求证:AD=CF10、如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.11、如图,C是AB的中点,AD=BE,CD=CE.求证:∠A=∠B.12、已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.13、已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.14、如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.15、在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:;结论:。
三角形全等的判定专题训练题1、如图(1):AD⊥BC,垂足为D,BD=CD。
求证:△ABD≌△ACD。
2、如图(2):AC∥EF,AC=EF,AE=BD。
求证:△ABC≌△EDF。
3、如图(3):DF=CE,AD=BC,∠D=∠C。
求证:△AED≌△BFC。
4、如图(4):AB=AC,AD=AE,AB⊥AC,AD⊥AE。
求证:(1)∠B=∠C,(2)BD=CE(5)在一次数学课上,李老师在黑板上画出图6,并写下了四个等式①AB = DC ②BE =CE③∠B =∠C④∠BAE =∠CDE..要求同学从这四个等式中选出两个作为条件,推出△AED是等腰三角形;请你试着完成李老师提出的要,并说明理由。
(写出一种即可)已知:求证:△AED是等腰三角形5、如图(5):AB⊥BD,ED⊥BD,AB=CD,BC=DE。
求证:AC⊥CE。
6、如图(6):CG=CF,BC=DC,AB=ED,点A、B、C、D、E在同一直线上。
求证:(1)AF=EG,(2)BF∥DG。
7、如图(7):AC⊥BC,BM平分∠ABC且交AC于点M、N是AB的中点且BN=BC。
求证:(1)MN平分∠AMB,(2)∠A=∠CBM。
8、如图(8):A、B、C、D四点在同一直线上,AC=DB,BE∥CF,AE∥DF。
求证:△ABE≌△DCF。
9、如图(9)AE、BC交于点M,F点在AM上,BE∥CF,BE=CF。
求证:AM是△ABC的中线。
(6)复习“全等三角形”的知识时李老师布置了一道作业题“如图①已知:在△ABC 中,AB=AC,P 是△ABC 内部任意一点,将AP 绕A 顺时针旋转至AQ,使∠QAP=∠BAC,连接BQ、CP;则BQ=CP..”小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ≌△ACP,从而证得BQ=CP 之后,将点P 移到等腰三角形ABC 之外,原题中的条件不变,发现“BQ=CP”仍然成立..请你就图②给出证明。
三角形全等判定专题训练题1.给定三角形ABC,AD垂直于BC,垂足为D,且BD=CD。
证明△ABD≌△ACD。
2.给定平行四边形ABCD,AC=EF,AC平行于EF,且F在AD上。
证明△ABC≌△EDF。
3.给定三角形ABC和DEF,DF=CE,AD=BC,∠D=∠C。
证明△AED≌△BFC,其中AE=BD。
4.给定等腰直角三角形ABC,AB=AC,AD=AE,AB垂直于AC,AD垂直于AE。
证明∠B=∠C且BD=CE。
6.给定四边形ABCDE,CG=CF,BC=DC,AB=ED,且A、B、C、D、E在同一直线上。
证明AF=EG且BF平行于DG。
7.给定三角形ABC,AC垂直于BC,___平分∠ABC,且交AC于点M,N是AB的中点,且BN=BC。
证明___平分∠AMB且∠A=∠___。
8.给定四边形ABCD,AC=DB,BE平行于CF,AE平行于DF。
证明△ABE≌△DCF。
9.给定三角形ABC,AE和BC相交于点M,F在AM上,BE平行于CF,且BE=CF。
证明AM是△ABC的中线。
10.给定四边形ABCD,且∠BAC=∠DAE,∠ABD=∠ACE,BD=CE。
证明AB=AC。
11.给定三角形ABC和△DBC,且∠1=∠2,∠3=∠4,P是BC上的任意一点。
证明PA=PD。
12.给定四边形ABCD,AB平行于CD,OA=OD,且F、D、O、A、E在同一直线上,AE=DF。
证明EB平行于CF。
13.给定三角形ABC和△EDC,且△ABC≌△EDC。
证明BE=AD。
14.给定等腰直角三角形ABC,AC=BC,AE是BC的中线,CF⊥AE于F,BD⊥CB交CF的延长线于点D。
证明AB=BD。
15、证明:由图可知,∠BAC=90°,且AB=2AC,因此由勾股定理可得BC=√5AC,而DE=AC,BF=2AC,EF=BC-AC=√5AC-AC=(√5-1)AC,因此AE=AC+EF=2AC+(√5-1)AC=(1+√5)AC,所以△ABC≌△AED。
全等三角形练习题(含答案)篇一:全等三角形习题选(含)经典三角形证明题选讲(含答案)三角形辅助线做法线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验1.已知:AB=4,AC=2,D是BC中点,AD是整数,求ADD1. 证明:延长AD到E,使DE=AD, 则△ADC≌△EBD ∴BE=AC=2 在△ABE中,AB-BE AE AB+BE ,∴10-2 2AD 10+2 4 AD 6又AD是整数,则AD=5思路点拨:三角形中有中线,延长中线等中线。
2.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠22.证明:连接BF和EF.∵ BC=ED,CF=DF,∠BCF=∠EDF ∴ △BCF≌△EDF(边角边). ∴BF=EF,∠CBF=∠DEF. 连接BE.在△BEF中,BF=EF,∴∠EBF=∠BEF又∵ ∠ABC=∠AED,∴ ∠ABE=∠AEB. ∴ AB=AE在△ABF和△AEF中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF. ∴△ABF≌△AEF∴∠1=∠2.思路点拨:解答本题的关键是能够想到证明AB=AE,而AB、AE在同一个△ABE 中,可利用∠ABE=∠AEB来证明.同一三角形中线段等,可用等角对等边3.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC 证明:过E点,作EG//AC,交AD延长线于G则∠DEG=∠DCA,∠DGE=∠2又∵CD=DE∴△ADC≌△GDE(AAS)∴EG=AC ∵EF∥AB∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE∴EF=EG∴EF=AC 思路点拨:角平分线平行线,等腰三角形来添。
4.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C 证明:延长AC到E使CE=CD,连接 ED,则∠CDE= ∠E∵ AB=AC+CD ∴AB=AC+CE=AE又∵∠BAD=∠EAD,AD=AD∴△BAD≌△EAD ∴∠B=∠E∵∠ACB=∠E+∠CDE,∴∠ACB=2∠B方法二在AC上截取AE=AB,连接ED A∵A D平分∠BAC∴∠EAD=∠BAD又∵AE=AB,AD=AD∴⊿AED≌⊿ABD(SAS)∴∠AED=∠B,DE=DB CBD∵AC=AB+BD ,AC=AE+CE∴CE=DE∴∠C=∠EDC∵∠AED=∠C+∠EDC=2∠C∴∠B=2∠C思路点拨:线段等于线段和,理应截长或补短5.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE 证明:过C作CF⊥AD交AD的延长线于F.在△CFA和△CEA中∴∠CFA=∠CEA=90°又∵∠CAF=∠CAE, AC=AC∴△CFA≌△CEA ,∴AE=AF=AD+DF, CE=CF∵∠B+∠ADC=180°,∠FDC+∠ADC=180°∴∠B=∠FDCE在△CEB和△CFD中,CE=CF,∠CEB=∠CFD=90°, ∠B=∠FDCE∴△CEB≌△CFD∴BE=DF∴ AE=AD+BE思路点拨:图中有角平分线,可向两边作垂线。
全等三角形练习题及答案1、下列判定直角三角形全等的方法,不正确的是()A、两条直角边对应相等。
B、斜边和一锐角对应相等。
C、斜边和一条直角边对应相等。
D、两锐角相等。
2、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C3、下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角 D.已知三边4、在△ABC与△DEF中,已知AB=DE;∠A=∠D;再加一个条件,却不能判断△ABC与△DEF全等的是().A. BC=EF B.AC=DFC.∠B=∠E D.∠C=∠F5、使两个直角三角形全等的条件是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等6、在△ABC和△A'B'C'中有①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列各组条件中不能保证△ABC≌△A'B'C'的是()A、①②③B、①②⑤C、①②④D、②⑤⑥7、如图,已知∠1=∠2,欲得到△ABD≌△ACD,还须从下列条件中补选一个,错误的选法是()A、∠ADB=∠ADCB、∠B=∠CC、DB=DCD、AB=AC8、如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为A. 40°B. 80°C.120°D. 不能确定9、如图,AE=AF,AB=AC,EC与BF交于点O,∠A=600,∠B=250,则∠EOB的度数为()A.600 B.700C.750D.85010、如图,已知AB=DC,AD=BC,E.F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF= ( )A. 150°B.40°C.80°D. 90°11、①两角及一边对应相等②两边及其夹角对应相等③两边及一边所对的角对应相等④两角及其夹边对应相等,以上条件能判断两个三角形全等的是( )A.①③ B.②④ C.②③④ D.①②④12、下列条件中,不能判定两个三角形全等的是()A.三条边对应相等 B.两边和一角对应相等C.两角及其一角的对边对应相等 D.两角和它们的夹边对应相等13、如图,已知,,下列条件中不能判定⊿≌⊿的是()(A)(B)(C)(D)∥14、如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为().A.50° B.30° C.80° D.100°15、如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC的度数是.16、在△ABC和△中,∠A=44°,∠B=67°,∠=69°,∠=44°,且AC=则这两个三角形全等(填“一定”或“不一定”)17、如图,,,,在同一直线上,,,若要使,则还需要补充一个条件:或.18、(只需填写一个你认为适合的条件)如图,已知∠CAB=∠DBA,要使△ABC≌△BAD,需增加的一个条件是。
全等三角形练习题12.1全等三角形1.下列各组的两个图形属于全等图形的是()2.如图,△ABD≌△ACE,则∠B与________,∠AEC与________,∠A与________是对应角;则AB与________,AE与________,EC与________是对应边.第2题图第3题图3.如图,△ABC≌△CDA,∠ACB=30°,则∠CAD的度数为________.4.如图,若△ABO≌△ACD,且AB=7cm,BO=5cm,则AC=________cm.第4题图第5题图5.如图,△ACB≌△DEB,∠CBE=35°,则∠ABD的度数是________.6.如图,△ABC≌△DCB,∠ABC与∠DCB是对应角.(1)写出其他的对应边和对应角;(2)若AC=7,DE=2,求BE的长.12.2三角形全等的判定第1课时“边边边”1.如图,下列三角形中,与△ABC全等的是()A.①B.②C.③D.④2.如图,已知AB=AD,CB=CD,∠B=30°,则∠D的度数是()A.30° B.60° C.20° D.50°第2题图第3题图3.如图,AB=DC,请补充一个条件:________,使其能由“SSS”判定△ABC≌△DCB. 4.如图,A,C,F,D在同一直线上,AF=DC,AB=DE,BC=EF.求证:△ABC≌△DEF.5.如图,AB=AC,AD=AE,BD=CE.求证:∠ADE=∠AED.第2课时“边角边”1.如图,已知点F、E分别在AB、AC上,且AE=AF,请你补充一个条件:________,使其能直接由“SAS”判定△ABE≌△ACF.第1题图第2题图2.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是________.3.如图,AB=AD,∠1=∠2,AC=AE. 求证:△ABC≌△ADE.4.如图,AE∥DF,AE=DF,AB=CD.求证:(1)△AEC≌△DFB;(2)CE∥BF.第3课时“角边角”“角角边”1.如图,已知∠1=∠2,∠B=∠C,若直接推得△ABD≌△ACD,则其根据是() A.SAS B.SSS C.ASA D.AAS第1题图第2题图2.如图,在△ABD与△ACD中,已知∠CAD=∠BAD,在不添加任何辅助线的前提下,直接由“ASA”证明△ABD≌△ACD,需再添加一个条件,正确的是()A.∠B=∠C B.∠CDA=∠BDAC.AB=AC D.BD=CD3.如图,已知MA∥NC,MB∥ND,且MB=ND.求证:△MAB≌△NCD.4.如图,在△ABC中,AD是BC边上的中线,E,F为直线AD上的两点,连接BE,CF,且BE∥CF.求证:(1)△CDF≌△BDE;(2)DE=DF.第4课时“斜边、直角边”1.如图,∠BAD=∠BCD=90°,AB=CB,可以证明△BAD≌△BCD的理由是() A.HL B.ASA C.SAS D.AAS第1题图第2题图2.如图,在Rt△ABC与Rt△DCB中,∠A=∠D=90°,请你添加一个条件(不添加字母和辅助线),使Rt△ABC≌Rt△DCB,你添加的条件是________.3.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.求证:∠AEB=∠F.4.如图,点C,E,B,F在一条直线上,AB⊥CF于B,DE⊥CF于E,AC=DF,AB=DE.求证:CE=BF.12.3 角的平分线的性质第1课时 角平分线的性质1.如图,在Rt △ACB 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于点E .若CD =6,则DE 的长为( )A .9B .8C .7D .6第1题图 第2题图2.如图,在△ABC 中,∠C =90°,按以下步骤作图:①以点B 为圆心,以小于BC 的长为半径画弧,分别交AB ,BC 于点E ,F ;②分别以点E ,F 为圆心,以大于12EF 的长为半径画弧,两弧相交于点G ;③作射线BG ,交AC 边于点D .若CD =4,则点D 到斜边AB 的距离为________.3.如图,Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,AB =10,S △ABD =15,求CD 的长.4.如图,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE ,CD 相交于点O ,且AO 平分∠BAC .求证:OB =OC .第2课时角平分线的判定1.如图,DE⊥AB于点E,DF⊥BC于点F,且DE=DF.若∠DBC=50°,则∠ABC的度数为()A.50° B.100° C.150° D.200°第1题图第3题图2.在三角形内部,到三角形的三边距离都相等的点是()A.三角形三条高的交点B.三角形三条角平分线的交点C.三角形三条中线的交点D.以上均不对3.如图,∠ABC+∠BCD=180°,点P到AB,BC,CD的距离都相等,则∠PBC+∠PCB 的度数为________.4.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为E,F,AE=AF.求证:(1)PE=PF;(2)AP平分∠BAC.5.如图,B是∠CAF内的一点,点D在AC上,点E在AF上,且DC=EF,△BCD与△BEF的面积相等.求证:AB平分∠CAF.第十二章 全等三角形 12.1 全等三角形1.D 2.∠C ∠ADB ∠A AC AD DB 3.30° 4.7 5.35°6.解:(1)对应边:AB 与DC ,AC 与DB ,BC 与CB .对应角:∠A 与∠D ,∠ACB 与∠DBC .(2)由(1)可知DB =AC =7,∴BE =BD -DE =7-2=5.12.2 三角形全等的判定第1课时 “边边边”1.C 2.A 3.AC =BD4.证明:∵AF =DC ,∴AF -CF =DC -CF ,即AC =DF .在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,BC =EF ,∴△ABC ≌△DEF (SSS).5.证明:在△ABD 与△ACE 中,⎩⎪⎨⎪⎧AB =AC ,AD =AE ,BD =CE ,∴△ABD ≌△ACE (SSS),∴∠ADB =∠AEC .∵∠ADB +∠ADE =180°,∠AEC +∠AED =180°,∴∠ADE =∠AED .第2课时 “边角边”1.AB =AC 2.SAS3.证明:∵∠1=∠2,∴∠BAC =∠DAE .在△ABC 与△ADE 中,∵⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE (SAS).4.证明:(1)∵AE ∥DF ,∴∠A =∠D .∵AB =CD ,∴AC =DB .在△AEC 与△DFB 中,⎩⎪⎨⎪⎧AE =DF ,∠A =∠D ,AC =DB ,∴△AEC ≌△DFB (SAS). (2)由(1)知△AEC ≌△DFB ,∴∠ECA =∠FBD ,∴CE ∥BF .第3课时 “角边角”“角角边”1.D 2.B3.证明:∵MB ∥ND ,∴∠MBA =∠D .∵MA ∥NC ,∴∠A =∠NCD .在△MAB 与△NCD 中,⎩⎪⎨⎪⎧∠MBA =∠D ,∠A =∠NCD ,MB =ND ,∴△MAB ≌△NCD (AAS). 4.证明:(1)∵AD 是△ABC 的中线,∴BD =CD .∵BE ∥CF ,∴∠FCD =∠EBD .在△CDF 和△BDE 中,⎩⎪⎨⎪⎧ ∠FCD =∠EBD ,CD =BD ,∠CDF =∠BDE ,∴△CDF ≌△BDE (ASA).(2)由(1)知△CDF ≌△BDE ,∴DF =DE .第4课时 “斜边、直角边”1.A 2.AB =DB (答案不唯一)3.证明:∵∠ABC =90°,∴∠CBF =90°.在Rt △ABE 和Rt △CBF 中, ∵⎩⎪⎨⎪⎧AE =CF ,AB =CB ,∴Rt △ABE ≌Rt △CBF (HL).∴∠AEB =∠F .4.证明:∵AB ⊥CF ,DE ⊥CF ,∴∠ABC =∠DEF =90°.在Rt △ABC 和Rt △DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,∴Rt △ABC ≌Rt △DEF (HL),∴BC =EF ,∴BC -BE =EF -BE ,即CE =BF . 12.3 角的平分线的性质第1课时 角平分线的性质1.D 2.43.解:∵S △ABD =15,AB =10,∴点D 到AB 的距离h =2×1510=3.∵AD 平分∠BAC ,∠C =90°,∴DC =h =3. 4.证明:∵CD ⊥AB ,BE ⊥AC ,AO 平分∠BAC ,∴OD =OE ,∠ODB =∠OEC =90°.在△DOB与△EOC 中,⎩⎪⎨⎪⎧∠DOB =∠EOC ,OD =OE ,∠ODB =∠OEC ,∴△DOB ≌△EOC (ASA),∴OB =OC .第2课时 角平分线的判定1.B 2.B 3.90°4.证明:(1)∵PE ⊥AB ,PF ⊥AC ,∴∠AEP =∠AFP =90°.在Rt △AEP 和Rt △AFP 中,⎩⎪⎨⎪⎧AP =AP ,AE =AF ,∴Rt △AEP ≌Rt △AFP (HL),∴PE =PF .(2)∵PE⊥AB,PF⊥AC,PE=PF,∴点P在∠BAC的平分线上,故AP平分∠BAC. 5.证明:∵DC=EF,△DCB和△EFB的面积相等,∴点B到AC,AF的距离相等,∴AB 平分∠CAF.。
八年级提高班数学资料
(全等三角形专题训练题)
1、 如图,已知MB=ND ,∠MBA=∠NDC ,下列条件不能判定△ABM ≌△CDN 的是( )
(A ) ∠M=∠N (B ) AB=CD
(C ) AM=CN
(D ) AM ∥CN 2、如图,D 在AB 上,E 在AC 上,且∠B=∠C ,那么补充下列一个条件后,仍无法判断
△ABE ≌△ACD 的是( )
(A ) AD=AE
(B ) ∠AEB=∠ADC
(C ) BE=CD
(D ) AB=AC
3、已知,如图,M 、N 在AB 上,AC=MP ,AM=BN ,BC=PN 。
求证:AC ∥MP
4、 已知,如图,AB=CD ,DF ⊥AC 于F ,BE ⊥AC 于E ,DF=BE 。
求证:AF=CE 。
5、 已知,如图,AB 、CD 相交于点O ,△ACO ≌△BDO ,CE ∥DF 。
求证:CE=DF 。
F E A C D B M P C
A B N F E O D
C
B A
C N M A B
D E B D A
C
6、 已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。
求证:BE =CD 。
7、已知,如图,四边形ABCD 是正方形,△ECF 是等腰直角三角形,其中CE=CF ,G 是CD 与EF 的交点,求证:△BCF ≌△DCE
8、 如图,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,请你从下面三个条件中任选出两个作为
已知条件,另一个为结论,推出一个正确的命题。
① AB=AC ② BD=CD ③ BE=CF
9、 如图,EG ∥AF ,请你从下面三个条件中任选出两个作为已知条件,另一个作为结论,
推出一个正确的命题。
① AB=AC ② DE=DF ③ BE=CF
A E
D C B G F
E D
C A B
D C F E
D C A B G
10、如图,四边形ABCD 中,AB=AD ,AC 平分∠BCD ,AE ⊥BC ,AF ⊥CD ,图中有没有
和△ABE 全等的三角形?请说明理由。
10、如图,正方形ABCD 的边长为1,G 为CD 边上一动点(点G 与C 、D 不重合), 以
CG 为一边向正方形ABCD 外作正方形GCEF ,连接DE 交BG 的延长线于H 。
求证:① △BCG ≌△DCE
② BH ⊥DE
11、如图,△ABC 中,AB=AC ,过A 作GB ∥BC ,角平分线BD 、CF 交于点H ,它们的延长线分别交GE 于E 、G ,试在图中找出三对全等三角形,并对其中一对给出证明。
12、如图所示,己知AB ∥DE ,AB=DE ,AF=DC ,请问图中有哪几对全等三角形,并选其
中一对给出证明。
F
E D C A B ┐
F E D
C A
B G H E G F
E
D C A B
13、如图,AB=AD ,BC=CD ,AC 、BD 交于E ,由这些条件可以得出若干结论。
请你写出
其中三个正确的结论(不要添加字母和辅助线)。
14、己知,△ABC 中,AB=AC ,CD ⊥AB ,垂足为D ,P 是BC 上任一点,PE ⊥AB ,PF ⊥
AC 垂足分别为E 、F , 求证:① PE+PF=CD. ② PE – P F=CD.
15、已知,如图5,△ABC 中,AB=AC ,∠BAC=900,D 是AC 的中点,AF ⊥BD 于E ,交BC 于F ,连结DF 。
求证:∠ADB=∠CDF 。
F E D C A 3 N 1 M B 2 M F E D C A 3 1 B 2 E
D C A B F
E D C A B G P
F E D
C A B G
P。