新课程基础训练题必修1第一章(下)函数的基本性质基础训练A组及答案
- 格式:doc
- 大小:134.00 KB
- 文档页数:4
1.3 函数的基本性质【入门向导】 数学与科技根据人类消耗的能源结构比例图的图象,简要说明近150年来人类消耗的能源结构变化情况,并对未来100年能源结构的变化趋势作出预测.由图象可以看出近150年来人类消耗木材比例一直减少;消耗的煤炭比例先逐渐增多,到1940年左右达到最大值,以后又逐渐变少;从1880年左右开始消耗石油,到1990年左右所占比例达到最大值,以后又逐渐减少;天然气从1900年左右开始应用于能源,所占比例一直在逐渐增大,核能从1980年左右开始被应用,所占比例逐渐增大.太阳能呢?从图象可以看出100年内,木材一般不会再作为能源消耗,煤炭、石油所占比例在逐渐变小,天然气、核能所占比例在逐渐增大,新开发的能源,水化物和太阳能所占比例也逐渐增大.解读函数的单调性一、函数的单调性是函数在某个区间上的性质1.这个区间可以是整个定义域.如y =x 在整个定义域(-∞,+∞)上是单调递增的,y =-x 在整个定义域(-∞,+∞)上是单调递减的,此时单调性是函数的一个整体性质.2.这个区间也可以是定义域的一部分,也就是定义域的一个真子集,如y =x 2-2x +1在整个定义域(-∞,+∞)上不具有单调性,但是在(-∞,1]上是减函数,在(1,+∞)上是增函数,这时增减性即单调性是函数的一个局部性质.3.有的函数无单调性.如函数y =⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,它的定义域是(-∞,+∞),但无单调性可言,又如y =x 2+1,x ∈{0,1,2},它的定义域不是区间,也就不能说它在定义域上具有单调性.二、单调性的证明与判断函数单调性的证明与判断的主要方法是定义法.严格按照单调性定义进行证明.主要步骤有如下五步:(1)取值:定义域中x 1,x 2的选取,选取x 1,x 2时必须注意如下三点:①x 1,x 2取值的任意性,即“任意取x 1,x 2”中,“任意”二字不能省略或丢掉,更不可随意取两个特殊值替代x 1,x 2;②x 1与x 2有大小,一般规定x 1<x 2;③x 1与x 2同属一个单调区间.(2)作差:指求f (x 2)-f (x 1).(3)变形:这一步连同下一步“定号”是单调性证明与判定的核心内容,即将②中的差式f (x 2)-f (x 1)进一步化简变形,变到利于判断f (x 2)-f (x 1)的正负为止.常用的变形技巧有:通分、因式分解、有理化、配方等.一般变形结果是将和差变形为积商,这样才便于定号.(4)定号:根据变形结果,确定f (x 2)-f (x 1)的符号.(5)判断:根据x 1与x 2的大小关系及f (x 1)与f (x 2)的大小关系,结合单调性定义得出结论.例1 证明:函数y =x 3(x ∈R )是增函数.证明 设x 1,x 2是R 上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=x 31-x 32=(x 1-x 2)(x 21+x 1x 2+x 22)=(x 1-x 2)[(x 1+12x 2)2+34x 22]. ∵x 1<x 2,∴x 1-x 2<0.易得(x 1+12x 2)2+34x 22≥0. ∵上式等于零的条件是⎩⎪⎨⎪⎧x 1=-12x 2,x 2=0,即x 1=x 2=0,显然不成立,∴(x 1+12x 2)2+34x 22>0. ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴函数y =x 3(x ∈R )是增函数.三、单调区间的求解1.本节单调区间的求解主要是观察法得单调区间再进行证明,或者是图象法求出单调区间,对于利用定义探索函数单调区间问题,由于难度大,要求不可过高,适当了解即可.(单调区间的求解问题随着进一步学习,我们会找到更简单快捷的方法——导数法)2.书写单调区间时,注意区间端点的写法.对于某一个点而言,由于它的函数值是一个确定的常数,无单调性可言,因此在写单调区间时,可以包括端点,也可以不包括端点,但对于某些不在定义域内的区间端点,书写时就必须去掉端点,因此,书写单调区间时,不妨约定“能闭则闭,须开则开”.函数奇偶性学法指导一、学习要点1.要注意准确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域在数轴上关于原点对称,方可讨论函数f (x )的奇偶性.(2)f (-x )=-f (x )或f (-x )=f (x )是定义域上的恒等式.2.奇、偶函数的定义是判断奇偶性的主要依据.为了便于判断函数的奇偶性,有时需要先将函数进行化简或应用定义的等价形式,即:f (-x )=±f (x )⇔f (-x )±f (x )=0⇔f (-x )f (x )=±1(f (x )≠0). 3.奇函数的图象关于原点成中心对称图形,偶函数的图象关于y 轴成轴对称图形,反之亦成立.因此也可以利用函数图象的对称性去判断函数的奇偶性和简化一些函数图象的画法.4.按奇偶性分类,函数可分为四类:奇函数、偶函数、既奇又偶函数、非奇非偶函数.5.在公共定义域内:(1)奇函数与奇函数的和(差)仍是奇函数;偶函数与偶函数的和(差)仍是偶函数;非零的奇函数与偶函数的和(差)是非奇非偶函数.(2)奇函数与奇函数的积(商)是偶函数;偶函数与偶函数的积(商)是偶函数;奇函数与偶函数的积(商)是奇函数.以上两条同学们可以自行验证.6.设f (x )是定义域关于原点对称的一个函数,则F 1(x )=f (x )+f (-x )为偶函数,F 2(x )=f (x )-f (-x )为奇函数.7.奇函数在其定义域内关于原点对称的区间上单调性相同,偶函数在其定义域内关于原点对称的区间上单调性相反.二、典型例题选析例2 当a ,b ,c 满足什么条件时,函数f (x )=ax 2+bx +c 是:(1)奇函数;(2)偶函数;(3)既奇又偶函数;(4)非奇非偶函数.解 (1)若是奇函数,应有f (-x )=-f (x ),于是有ax 2-bx +c =-ax 2-bx -c ,即ax 2+c =0对定义域内所有实数都成立,所以只有a =c =0.(2)若是偶函数,则有f (-x )=f (x ),于是有ax 2-bx +c =ax 2+bx +c ,即2bx =0对定义域内所有实数都成立,所以只有b =0.(3)若既是奇函数又是偶函数,则由(1)和(2)知a =b =c =0.(4)若是非奇非偶函数,则f (-x )≠-f (x ),f (-x )≠f (x ),即⎩⎪⎨⎪⎧ax 2-bx +c ≠-ax 2-bx -c ,ax 2-bx +c ≠ax 2+bx +c ⇒⎩⎪⎨⎪⎧ ax 2+c ≠0,bx ≠0⇒⎩⎪⎨⎪⎧a ≠0或c ≠0,b ≠0. 所以a ≠0且b ≠0或c ≠0且b ≠0时,f (x )为非奇非偶函数.例3 已知f (x )=ax 5+bx 3+cx -8,且f (-2)=10,求f (2)的值.解 令g (x )=f (x )+8=ax 5+bx 3+cx ,显然g (x )是奇函数,即g (-2)=-g (2).又g (-2)=f (-2)+8=18,所以f (2)=g (2)-8=-26.判断函数奇偶性的常见错误一、忽略定义域出错例4 判断f (x )=x 4-x 31-x的奇偶性. 错解 因为f (x )=x 4-x 31-x =x 3(1-x )1-x=x 3, 显然f (-x )=-f (x ),故f (x )为奇函数.剖析 判断函数奇偶性,首先要看函数的定义域,若定义域是关于原点的对称区间,则函数可能具有奇偶性;否则,函数一定不具有奇偶性.其次,要看f (x )与f (-x )之间的关系.正解 函数的定义域为{x |x ≠1}.显然,它的定义域不关于原点对称,于是该函数为非奇非偶函数.二、忽视对参数的讨论例5 判断函数f (x )=x 2+|x -a |+1(a ∈R )的奇偶性.错解 显然函数定义域为R .因为f (a )=a 2+1,f (-a )=a 2+2|a |+1,所以f (-a )≠f (a ),且f (-a )≠-f (a ),所以f (x )既不是奇函数,也不是偶函数.剖析 此解法错在没有对参数进行讨论,未考虑到a =0这种特殊情形,以致解题出错.正解 当a =0时,函数f (-x )=(-x )2+|-x |+1=x 2+|x |+1=f (x ),此时f (x )为偶函数;当a ≠0时,f (a )=a 2+1,f (-a )=a 2+2|a |+1,f (-a )≠f (a ),f (-a )≠-f (a ),此时f (x )既不是奇函数,也不是偶函数.三、忽视特殊函数f (x )=0的存在例6 判断函数f (x )=1-x 2+x 2-1的奇偶性.错解 定义域为{-1,1},关于原点对称.又f (-x )=1-(-x )2+(-x )2-1=1-x 2+x 2-1=f (x ),所以函数f (x )是偶函数.剖析 上述解法忽视了定义域关于原点对称的函数f (x )=0,既是奇函数又是偶函数.正解 函数定义域为{-1,1},此时f (x )=0,因而f (x )既是奇函数又是偶函数.四、不明分段函数奇偶性概念致错例7 判断f (x )=⎩⎪⎨⎪⎧ x 2+2x +3, x <0,3, x =0,-x 2+2x -3 x >0,的奇偶性.错解 当x >0时,-x <0,f (-x )=(-x )2+2(-x )+3=-(-x 2+2x -3)=-f (x ).当x <0时,-x >0,f (-x )=-(-x )2+2(-x )-3=-(x 2+2x +3)=-f (x ).所以f (x )是奇函数.剖析 尽管对于定义域内的每一个不为零的x ,都有f (-x )=-f (x )成立,但当x =0时,f (0)=3≠-f (0),所以函数f (x )既不是奇函数也不是偶函数.断函数单调性的方法一、用定义证明函数的单调性例1 证明:函数f (x )=-x 在定义域上是减函数.证明 f (x )=-x 的定义域为[0,+∞),设0≤x 1<x 2,则x 2-x 1>0,且f (x 2)-f (x 1)=(-x 2)-(-x 1)=x 1-x 2=(x 1-x 2)(x 1+x 2)x 1+x 2=x 1-x 2x 1+x 2, ∵x 1-x 2<0,x 1+x 2>0,∴f (x 2)-f (x 1)<0,即f (x 2)<f (x 1).∴f (x )=-x 在定义域[0,+∞)上是减函数.点评 (1)有的同学认为由0≤x 1<x 2,得0≤x 1<x 2多么直接呢,其实这种证明方法不正确,因为我们没有这样的性质作依据.其次,这种证明利用了函数y =x 的单调性,而y =x 的单调性,我们没有证明,因此不能直接使用.(2)在本题的证明中,我们使用了“分子有理化”这种证明技巧,在今后的学习中,我们还会经常遇到,因此要注意观察这类题目的结构特点,在今后的学习中学会使用这种方法.例2 已知定义在(0,+∞)上的函数f (x )对任意x ,y ∈(0,+∞),恒有f (xy )=f (x )+f (y ),且当0<x <1时f (x )>0,判断f (x )在(0,+∞)上的单调性.分析 抽象函数单调性的判断要紧扣定义,并且要注意对原题条件的应用.解 设x 1,x 2∈(0,+∞)且x 1<x 2,则f (x 1)-f (x 2)=f (x 1x 2·x 2)-f (x 2) =f (x 1x 2)+f (x 2)-f (x 2)=f (x 1x 2). ∵x 1,x 2∈(0,+∞)且x 1<x 2,∴0<x 1x 2<1,∴f (x 1x 2)>0. ∴f (x 1)>f (x 2).∴f (x )在(0,+∞)上是减函数.二、利用已知函数的单调性判断较复杂函数的单调性例3 求函数f (x )=-x 2+a x(a >0)的单调区间.分析 此函数可化为f (x )=-x +a x ,可根据y =1x的单调性判断. 解 f (x )=-x 2+a x =-x +a x. ∵a >0,y =a x的单调递减区间是(-∞,0)和(0,+∞), y =-x 在R 上单调递减,∴f (x )=-x 2+a x(a >0)的单调区间是(-∞,0)和(0,+∞). 点评 运用已知的结论,直接得到函数的单调性.如一次函数、二次函数、反比例函数的单调性均可直接说出.了解以下结论,对于直接判断函数的单调性有好处:①函数y =-f (x )与函数y =f (x )在相对应的区间上的单调性相反.②当f (x )恒为正或恒为负时,函数y =1f (x )与y =f (x )在相对应的区间上的单调性相反. ③在公共区间内,增函数+增函数=增函数,增函数-减函数=增函数等.三、图象法例4 求函数y =-x 2+2|x |+3的单调区间.分析 “脱去”绝对值符号,画出函数图象,由图象观察得出.解 当x ≥0时,y =-x 2+2x +3=-(x -1)2+4;当x <0时,y =-x 2-2x +3=-(x +1)2+4.画出图象如图所示:故在(-∞,-1]和[0,1]上,函数是增函数;在[-1,0]和[1,+∞)上,函数是减函数.函数单调性的应用一、比较大小例5 若函数f (x )=x 2+mx +n ,对任意实数x 都有f (2-x )=f (2+x )成立,试比较f (-1),f (2),f (4)的大小.解 依题意可知f (x )的对称轴为x =2,∴f (-1)=f (5).∵f (x )在[2,+∞)上是增函数,∴f (2)<f (4)<f (5),即f (2)<f (4)<f (-1).点评 (1)利用单调性可以比较函数值的大小,即增函数中自变量大函数值也大,减函数中自变量小函数值反而变大;(2)利用函数单调性比较大小应注意将自变量放在同一单调区间.二、解不等式例6 已知y =f (x )在定义域(-1,1)上是增函数,且f (t -1)<f (1-2t ),求实数t 的取值范围.解 依题意可得⎩⎪⎨⎪⎧ -1<t -1<1,-1<1-2t <1,t -1<1-2t ,解得0<t <23. 点评 (1)利用单调性解不等式就是利用函数在某个区间内的单调性,推出两个变量的大小,然后去解不等式;(2)利用单调性解不等式时应注意函数的定义域,即首先考虑使给出解析式有意义的未知数的取值范围;(3)利用单调性解不等式时,一定要注意变量的限制条件,以防出错.三、求参数的值或取值范围例7 已知a >0,函数f (x )=x 3-ax 是区间[1,+∞)上的单调函数,求实数a 的取值范围.解 任取x 1,x 2∈[1,+∞),且x 1<x 2,则Δx =x 2-x 1>0.Δy =f (x 2)-f (x 1)=(x 32-ax 2)-(x 31-ax 1)=(x 2-x 1)(x 21+x 1x 2+x 22-a ).∵1≤x 1<x 2,∴x 21+x 1x 2+x 22>3.显然不存在常数a ,使(x 21+x 1x 2+x 22-a )恒为负值.又f (x )在[1,+∞)上是单调函数,∴必有一个常数a ,使x 21+x 1x 2+x 22-a 恒为正数,即x 21+x 1x 2+x 22>a .当x 1,x 2∈[1,+∞)时,x 21+x 1x 2+x 22>3,∴a ≤3.此时,∵Δx =x 2-x 1>0,∴Δy >0,即函数f (x )在[1,+∞)上是增函数,∴a 的取值范围是(0,3].四、利用函数单调性求函数的最值例8 已知函数f (x )=x 2+2x +a x,x ∈[1,+∞). (1)当a =4时,求f (x )的最小值;(2)当a =12时,求f (x )的最小值; (3)若a 为正常数,求f (x )的最小值.解 (1)当a =4时,f (x )=x +4x+2,易知,f (x )在[1,2]上是减函数,在[2,+∞)上是增函数, ∴f (x )min =f (2)=6.(2)当a =12时,f (x )=x +12x+2. 易知,f (x )在[1,+∞)上为增函数.∴f (x )min =f (1)=72. (3)函数f (x )=x +a x+2在(0,a ]上是减函数, 在[a ,+∞)上是增函数.若a >1,即a >1时,f (x )在区间[1,+∞)上先减后增,∴f (x )min =f (a )=2a +2.若a ≤1,即0<a ≤1时,f (x )在区间[1,+∞)上是增函数,∴f (x )min =f (1)=a +3.五、利用函数单调性证明不等式例9 已知a ,b ,c 均为正数,且a +b >c .求证:a 1+a +b 1+b >c 1+c. 证明 设f (x )=x 1+x(x >0), 设0<x 1<x 2,则f (x 1)-f (x 2)=x 11+x 1-x 21+x 2=x 1-x 2(1+x 1)(1+x 2)<0. ∴f (x 1)<f (x 2),∴f (x )在(0,+∞)上单调递增.∵a +b >c ,∴f (a +b )>f (c ),即a +b 1+a +b >c 1+c.又f (a )+f (b )=a 1+a +b 1+b >a 1+a +b +b 1+a +b=a +b 1+a +b, ∴a 1+a +b 1+b >c 1+c. 点评 本题通过构造函数,利用函数单调性证明不等式.判断函数奇偶性的方法函数奇偶性是函数的一个重要性质,在各种考试中屡次出现,其表现形式多种多样,求解方法也不单一,不同的形式对应不同的解决策略.现介绍三种常见的方法,供同学们学习时参考.一、定义法首先求出函数的定义域,确定其定义域是否关于原点对称,若对称再利用f (-x )=f (x )(符合为偶函数)或f (-x )=-f (x )(符合为奇函数),否则既不是奇函数也不是偶函数.例10 判断函数f (x )=4-x 2|x +3|-3的奇偶性. 解 要使函数有意义,则⎩⎪⎨⎪⎧4-x 2≥0,|x +3|-3≠0, 解得-2≤x ≤2且x ≠0,此函数的定义域[-2,0)∪(0,2]关于原点对称,且满足x +3>0,则函数f (x )=4-x 2|x +3|-3=4-x 2x , f (-x )=4-(-x )2-x=-4-x 2x =-f (x ), 故函数f (x )=4-x 2|x +3|-3是奇函数. 点评 判断函数的奇偶性时,首先一定要观察函数定义域是否关于原点对称,这是判断奇偶性的前提条件.二、等价转化法利用函数奇偶性定义的等价形式进行处理,往往借助f (-x )±f (x )=0来解决,方法比较简便.三、图象法奇函数的图象关于原点对称,偶函数的图象关于y 轴对称.例11 判断函数f (x )=|x +2|+|x -2|的奇偶性.解 f (x )=|x +2|+|x -2|=⎩⎪⎨⎪⎧ 2x , x >2,4, -2≤x ≤2,-2x , x <-2,其图象(如图)关于y 轴对称,该函数为偶函数.点评 利用图象法(数形结合法)解题,形象直观、清晰可见.同时数形结合思想一直都是高考考查的重点,同学们要注意领会.一道课本习题的拓展证明:(1)若f (x )=ax +b ,则f (x 1+x 22)=f (x 1)+f (x 2)2;(2)若f (x )=x 2+ax +b ,则f (x 1+x 22)≤f (x 1)+f (x 2)2. 探究 x 1+x 22为自变量x 1、x 2中点,x 1+x 22对应的函数值f (x 1+x 22)为“中点的纵坐标”.而12[f (x 1)+f (x 2)]为x 1、x 2对应的函数值所对应的点的中点,即“纵坐标的中点”.f (x )=ax +b 的图象为直线,所以“中点的纵坐标”等于“纵坐标的中点”,即有f (x 1+x 22)=f (x 1)+f (x 2)2.而f (x )=x 2+ax +b 的图象为开口向上的抛物线,图象向下凹进,由图象可得到“中点的纵坐标”不大于“纵坐标的中点”,即有f (x 1+x 22)≤f (x 1)+f (x 2)2. 拓展 在给定区间内,若函数f (x )的图象向上凸出,则函数f (x )在该区间上为凸函数,结合图象易得到f (x 1+x 22)≥f (x 1)+f (x 2)2;在给定区间内,若函数f (x )的图象向下凹进,则函数f (x )在该区间上为凹函数,结合图象易得到f (x 1+x 22)≤f (x 1)+f (x 2)2.这一性质,可以称为函数的凹凸性.活用函数的基本性质掌握函数与方程的互化,构造函数求值某些求值问题,若能根据问题的结构特征,注重揭示内在联系,挖掘隐含因素,用运动、变化、相互联系的函数观点来分析、处理变量之间的联系,利用函数的单调性,借助函数的奇偶性把问题解决.例12 已知实数x ,y 满足(x +x 2+1)·(y +y 2+1)=1,求x +y 的值.解 由已知条件可得x +x 2+1=-y +(-y )2+1.构造函数f (t )=t +t 2+1.显然f (t )=t +t 2+1是R 上递增函数.因为f (x )=f (-y ),所以x =-y ,即x +y =0.例13 已知(x +2y )5+x 5+2x +2y =0,求x +y 的值.解 已知方程化为(x +2y )5+(x +2y )=-(x 5+x ).①由①式的结构,构造函数f (t )=t 5+t .显然,f (t )是奇函数,且在R 上单调递增.由于①式可写成f (x +2y )=-f (x )=f (-x ),所以有x +2y =-x ,即x +y =0.三种数学思想在函数奇偶性中的应用一、数形结合思想例14 设奇函数f (x )的定义域为[-5,5].若当x ∈[0,5]时,f (x )的图象如图所示,则不等式f (x )<0的解集为______________.解析 注意到奇函数的图象关于原点成中心对称,用对称的思想方法画全函数f (x )在[-5,5]上的图象(如图所示),数形结合,得f (x )<0的解集为{x |-2<x <0或2<x ≤5}.答案 (-2,0)∪(2,5]二、分类讨论思想 例15 已知函数f (x )=x 2+a x(x ≠0,a ∈R ),试判断f (x )的奇偶性.解 当a =0时,f (x )=x 2,对任意x ∈(-∞,0)∪(0,+∞),f (-x )=(-x )2=x 2=f (x ),∴f (x )为偶函数.当a ≠0时,f (x )=x 2+a x(a ≠0,x ≠0), 取x =±1,得f (-1)+f (1)=2≠0,f (-1)-f (1)=-2a ≠0,∴f (-1)≠-f (1),f (-1)≠f (1),∴函数f (x )既不是奇函数,也不是偶函数.三、方程思想例16 已知f (x )是定义在R 上的奇函数,且f (x )=x +m x 2+nx +1,试求f (x ). 分析 利用奇函数的性质、定义求出参数m 、n 的值是关键.解 由f (0)=0知m =0.由f (x )是奇函数知f (-x )=-f (x ),即-x +0x 2-nx +1=-x +0x 2+nx +1, ∴x 2-nx +1=x 2+nx +1,∴n =0.∴f (x )=x x 2+1.二次函数在某区间上的最值——思维规律解读一、定函数在定区间上的最值例17 求函数f (x )=x 2-2x +2在区间[-1,4]上的最大值和最小值.解 f (x )=(x -1)2+1,其对称轴为x =1.因为函数对称轴x =1在区间[-1,4]内,又函数开口向上,所以当x =1时,f (x )取到最小值为1.又f (-1)=5,f (4)=10,所以在x =4时,f (x )取到最大值为10.二、定函数在动区间上的最值例18 函数f (x )=x 2-2x +2在区间[t ,t +1]上的最小值为g (t ),求g (t )的表达式.解 f (x )=(x -1)2+1,其对称轴为x =1.当t +1<1时,即t <0时,区间[t ,t +1]在对称轴的左侧,f (x )在此区间上是减函数.所以此时g (t )=f (t +1)=(t +1)2-2(t +1)+2=t 2+1.当t ≤1≤t +1,即0≤t ≤1时,对称轴x =1在此区间内,又函数开口向上.所以此时g (t )=f (1)=12-2+2=1.当t >1时,区间[t ,t +1]在对称轴的右侧,f (x )在此区间上是增函数.所以此时g (t )=f (t )=t 2-2t +2.综上得g (t )=⎩⎪⎨⎪⎧ t 2+1, t <0,1, 0≤t ≤1,t 2-2t +2, t >1.三、动函数在定区间上的最值例19 函数f (x )=x 2+ax +3在区间[-2,2]上的最大值为g (a ),求g (a )的表达式.解 f (x )=(x +a 2)2+3-a 24, 其对称轴为x =-a 2. 当对称轴x =-a 2在区间[-2,2]的右侧,即-a 2≥2,a ≤-4时,f (x )在此区间上是减函数. 所以此时g (a )=f (-2)=7-2a .当对称轴x =-a 2在区间[-2,2]内时,如果-2<-a 2<0, 即0<a <4时,x =2距离对称轴较远,所以此时f (x )在x =2时取到最大值,为g (a )=f (2)=7+2a ;如果0<-a 2<2,即-4<a <0时, 则x =-2距离对称轴较远,此时f (x )在x =-2时取到最大值,为g (a )=f (-2)=7-2a .当对称轴x =-a 2在区间[-2,2]的左边, 即-a 2≤-2,a ≥4时,f (x )在此区间上是增函数. 所以此时g (a )=f (2)=7+2a .综上得:g (a )=⎩⎪⎨⎪⎧ 7+2a , a >0,7-2a , a ≤0. 四、动函数在动区间上的最值例20 设a 为实数,函数f (x )=x 2+|x -a |+1(x ∈R ),求f (x )的最小值.解 ①当x ≤a 时,函数f (x )=x 2-x +a +1=⎝⎛⎭⎫x -122+a +34, 若a ≤12,则函数f (x )在(-∞,a ]上单调递减, 从而f (x )在(-∞,a ]上的最小值为f (a )=a 2+1;若a >12,则f (x )在(-∞,a ]上的最小值为 f ⎝⎛⎭⎫12=34+a .②当x ≥a 时,f (x )=x 2+x -a +1=⎝⎛⎭⎫x +122-a +34, 若a ≤-12,则函数f (x )在[a ,+∞)上的最小值为 f ⎝⎛⎭⎫-12=34-a ; 若a >-12,则函数f (x )在[a ,+∞)上单调递增,从而函数f (x )在[a ,+∞)上的最小值为f (a )=a 2+1. 综上,当a ≤-12时,函数f (x )的最小值为34-a ; 当-12<a ≤12时,函数f (x )的最小值为a 2+1; 当a >12时,函数f (x )的最小值为a +34. 点评 当二次函数在某个区间上求最值时,其关键在于明确函数的对称轴与自变量取值范围的相对位置关系,分对称轴在区间内、在区间左边、在区间右边三种情况讨论.形如“y =x +a x(a >0)”的函数图象的探究例21 试探究函数f (x )=x +a x(a >0),x ∈(0,+∞)的单调区间. 解 任取0<x 1<x 2,则f (x 1)-f (x 2)=x 1+a x 1-x 2-a x 2=(x 1-x 2)(x 1x 2-a )x 1x 2. 由于x 1-x 2及x 1x 2的符号已定,从而f (x 1)-f (x 2)的符号取决于x 1x 2-a 的符号.由于x 1,x 2只能取f (x )的某个单调区间上的值,因此考虑x 1=x 2这一极端情形,则x 1x 2-a =x 21-a ,若为零,得x 1=x 2=a ,从而将定义域(0,+∞)分为两个区间(0,a )及[a ,+∞),由此讨论它的单调性即可.任取0<x 1<x 2<a ,则x 1-x 2<0,0<x 1x 2<a ,所以x 1x 2-a <0.于是f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).所以函数f (x )在(0,a )上单调递减.同理可知,函数f (x )在[a ,+∞)上单调递增. 由f (x )是奇函数,知f (x )在(-∞,-a )上单调递增,在(-a ,0)上单调递减.由函数的单调性及奇偶性,可作出如下图象:知识延伸 (1)函数y =x +a x(a >0)是一个常用且重要的函数,其图象如图所示,记住这个图象和性质会给解题带来方便.(2)对形如f (x )=x 2+2x +3x这种“分式型”的函数,求它在区间[a ,b ]上的最值,常用“分离变量”法转化为y =x +a x(a >0)模型求解.谈复合函数的单调性设y =f (t )是t 的函数,t =g (x )是x 的函数,若t =g (x )的值域是y =f (t )定义域的子集,则y 通过中间变量t 构成x 的函数,称为x 的复合函数,记作y =f (t )=f [g (x )].如函数y =1-x ,若设t =1-x ,则y =t .这里t 是x 的函数,y 是t 的函数,所以y =1-x 是x 的复合函数,把t 称为中间变量.问题1 已知函数y =f (t )的定义域为区间[m ,n ],函数t =g (x )的定义域为区间[a ,b ],值域D ⊆[m ,n ].若y =f (t )在定义域内单调递增,t =g (x )在定义域内单调递增,那么y =f [g (x )]是否为[a ,b ]上的增函数?为什么?探究 y =f [g (x )]是区间[a ,b ]上的增函数.证明如下:任取x 1,x 2∈[a ,b ],且x 1<x 2,则t 1=g (x 1),t 2=g (x 2),且t 1,t 2∈[m ,n ].因为t =g (x )在[a ,b ]上递增,所以g (x 1)<g (x 2),即t 1<t 2,而y =f (t )在[m ,n ]递增,故f (t 1)<f (t 2),即f [g (x 1)]<f [g (x 2)],所以y =f [g (x )]在[a ,b ]上是增函数.问题2 若将g (x )在区间[a ,b ]上“递增”改为“递减”或将f (x )在区间[m ,n ]上“递增”改为“递减”等,这时复合函数y =f [g (x )]在区间[a ,b ]上的单调性又如何呢?探究 利用解决问题1的方法就可以得出相应的结论(你不妨一试).由此可得到如下复合函数单调性的结论:义域;要确定t =g (x )(常称内层函数)的值域,否则无法确定f (t )(常称外层函数)的单调性.例22 求函数y =1(x +1)2的单调区间.解 函数y =1(x +1)2的定义域为(-∞,-1)∪(-1,+∞), 设t =(x +1)2,则y =1t(t >0). 当x ∈(-∞,-1)时,t 是x 的减函数,y 是t 的减函数,所以(-∞,-1)是y =1(x +1)2的递增区间; 当x ∈(-1,+∞)时,t 是x 的增函数,y 是t 的减函数,所以(-1,+∞)是y =1(x +1)2的递减区间. 综上知,函数y =1(x +1)2的递增区间为(-∞,-1),递减区间为(-1,+∞). 试一试 求y =1x 2-2x -3的单调区间. 解 由x 2-2x -3≠0,得x ≠-1或x ≠3,令t =x 2-2x -3(t ≠0),则y =1t, 因为y =1t在(-∞,0),(0,+∞)上为减函数, 而t =x 2-2x -3在(-∞,-1),(-1,1)上为减函数,在(1,3),(3,+∞)上是增函数,所以函数y =1x 2-2x -3的递增区间为(-∞,-1),(-1,1), 递减区间为(1,3),(3,+∞).函数基本性质如何考?1.(辽宁高考)设f (x )是连续的偶函数,且当x >0时是单调函数,则满足f (x )=f ⎝⎛⎭⎪⎫x +3x +4的所有x 之和为( )A .-3B .3C .-8D .8 解析 因为f (x )是连续的偶函数,且x >0时是单调函数,由偶函数的性质可知若f (x )=f ⎝⎛⎭⎪⎫x +3x +4,只有两种情况:①x =x +3x +4; ②x +x +3x +4=0. 由①知x 2+3x -3=0,故两根之和为x 1+x 2=-3.由②知x 2+5x +3=0,故两根之和为x 3+x 4=-5.因此满足条件的所有x 之和为-8.答案 C2.(全国Ⅱ高考)函数f (x )=1x-x 的图象关于( ) A .y 轴对称 B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称解析 f (x )=1x-x 的定义域为{x |x ≠0}, ∵f (-x )=-1x+x =-⎝⎛⎭⎫1x -x =-f (x ). ∴f (x )是一个奇函数.∴f (x )的图象关于原点对称.答案 C3.(重庆高考)若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是( )A .f (x )为奇函数B .f (x )为偶函数C .f (x )+1为奇函数D .f (x )+1为偶函数解析 令x 1=x 2=0,得f (0)=2f (0)+1,所以f (0)=-1.令x 2=-x 1,得f (0)=f (x 1)+f (-x 1)+1,即f (-x 1)+1=-f (x 1)-1.所以f (x )+1为奇函数.答案 C4.(湖南高考)若f (x )=-x 2+2ax 与g (x )=a x +1在区间[1,2]上都是减函数,则a 的取值范围是( ) A .(-1,0)∪(0,1) B .(-1,0)∪(0,1]C .(0,1)D .(0,1]解析 结合图象,由f (x )在[1,2]上为减函数知a ≤1,由g (x )在[1,2]上是减函数知a >0.∴0<a ≤1.答案 D5.(上海高考)若函数f (x )=(x +a )(bx +2a )(常数a 、b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )=____________.解析 ∵f (-x )=f (x )且f (x )=bx 2+(2a +ab )x +2a 2,∴b (-x )2+(2a +ab )(-x )+2a 2=bx 2+(2a +ab )x +2a 2,∴-(2a +ab )=2a +ab ,即2a +ab =0,∴a =0或b =-2.当a =0时,f (x )=bx 2,∵f (x )值域为(-∞,4],而y =bx 2值域不可能为(-∞,4],∴a ≠0.当b =-2时,f (x )=-2x 2+2a 2,值域为(-∞,2a 2].∴2a 2=4,∴a 2=2.∴f (x )=-2x 2+4.答案 -2x 2+46.(上海高考)若函数f (x )=a |x -b |+2在[0,+∞)上为增函数,则实数a 、b ,的取值范围是________.解析 f (x )=⎩⎪⎨⎪⎧ ax -ab +2 (x ≥b ),-ax +ab +2 (x <b ). ∵函数f (x )在[0,+∞)上为增函数,∴必有a >0,且[0,+∞)是[b ,+∞)的子集,即a >0,且b ≤0.答案 a >0且b ≤0。
..C.D.【答案】A4.已知函数y =21,02,0x x x x ì+£í->î,则使函数值为5的x 的值是( )A .2-或2B .2或52-C .2-D .2或2-或52-【答案】C【解析】当0x £时,令5y =,得215x +=,解得2x =-;当0x >时,令5y =,得25x -=,解得52x =-,不合乎题意,舍去.综上所述,2x =-,故选C.5.(2020·浙江高一课时练习)某学校要召开学生代表大会,规定各班每10人推选一名代表 ,当各班人数除以10的余数大于6时再增选一名代表,那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y=[x]([x]表示不大于x 的最大整数)可以表示为 ()A .y 10x éù=êúëûB .3y 10x +éù=êúëûC .4y 10x +éù=êúëûD .5y 10x +éù=êúëû【答案】B【解析】根据规定每10人推选一名代表,当各班人数除以10的余数大于6时增加一名代表,即余数分别为7,8,9时可以增选一名代表,也就是x 要进一位,所以最小应该加3,因此利用取整函数可表示为310x y +éù=êúëû,也可以用特殊取值法,若56,5x y ==,排除C ,D ,若57,6x y ==,排除A ,故选B .6.设函数f (x )(x ∈R)为奇函数,f (1)=21,f (x +2)=f (x )+f (2),则f (5)等于( C )A .0 B .1 C .25 D .5【答案】C【解析】令x =-1,得f (1)=f (-1)+f (2).∵f (x )为奇函数,∴f (-1)=-f (1),∴f (1)=-f (1)+f (2),∴21=-21+f (2),∴f (2)=1.令x =1,得f (3)=f (1)+f (2)=21+1=23.令x =3,得f (5)=f (2)+f (3)=257.(2020·甘肃城关兰州一中高三二模(文))已知函数()f x 是定义在R 上的偶函数,当0x ³时,2()4f x x x =-,则不等式(2)5f x +<的解集为( )A .(3,7)-B .()4,5-C .(7,3)-D .()2,6-【答案】C【解析】当0x ³时,2()45f x x x =-<的解为05x <≤;当0x <时,根据偶函数图像的对称性知不等式()5f x <的解为5x 0-<<,所以不等式()5f x <的解集为{}55x x -<<,所以不等式(2)5f x +<的解集为{}{}52573x x x x -<+<=-<<.故选:C8.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4等于( C )A .-6 B .6C .-8D .8【答案】C【解析】f (x )在R 上是奇函数,所以f (x -4)=-f (x )=f (-x ),故f (x )关于x =-2对称,f (x )=m 的根关于x =-2对称,∴x 1+x 2+x 3+x 4=4×(-2)=-8.二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分)9.下列各组函数表示的是同一个函数的是( BD )A .f (x )=32x -与g (x )=x ·x 2-B .f (x )=|x |与g (x )=x 2C .f (x )=x +1与g (x )=x +x 0D .f (x )=xx 与g (x )=x 0【答案】BD【解析】对于A ,f (x )=32x -与g (x )=x ·x 2-的对应关系不同,故f (x )与g (x )表示的不是同一个函数;对于B ,f (x )=|x |与g (x )=x 2的定义域和对应关系均相同,故f (x )与g (x )表示的是同一个函数;对于C ,f (x )的定义域为R ,g (x )的定义域为{x |x ≠0},故f (x )与g (x )表示的不是同一个函数;对于D ,f (x )=xx 与g (x )=x 0的对应关系和定义域均相同,故f (x )与g (x )表示的是同一个函数.10.下列函数既是定义域上的减函数又是奇函数的是( BD )A .f (x )=x 1B .f (x )=-x 3C .f (x )=x |x | D .f (x )=-3x【答案】BD 【解析】A .f (x )=x1在定义域(-∞,0)∪(0,+∞)上是奇函数,且在每一个区间上是减函数,不能说函数在定义域上是减函数,∴不满足题意;对于B ,f (x )=-x 3在定义域R 上是奇函数,且是减函数,∴满足题意,对于C ,f (x )=x |x |=⎪î⎪íì<-³0,0,22x x x x ,在定义域R 上是奇函数,且是增函数,∴不满足题意;对于D ,f (x )=-3x 在定义域R 上是奇函数,且是减函数,∴满足题意.故选BD .11.已知函数f (x )=31++-x x ,则( ABD )A .f (x )的定义域为[-3,1] B .f (x )为非奇非偶函数C .f (x )的最大值为8D .f (x )的最小值为2【答案】ABD分,共20分.将答案填在题中横线上)(31)4,,1a x a x x ax x -+ì=í-³î【解析】因为函数()f x 是定义在R 上的减函数,所以3100314a a a a a -<ì⎪-<í⎪-+³-î,解得1183a £<.14.函数f (x )=xx +-11的定义域为___,单调递减区间为___.【答案】(-∞,-1)∪(-1,+∞),(-∞,-1)【解析】函数f (x )的定义域为(-∞,-1)∪(-1,+∞).任取x 1,x 2∈(-1,+∞)且x 1<x 2,则f (x 1)-f (x 2)=)1)(1()22121x x x x ++-(>0,即f (x 1)>f (x 2),故f (x )在(-1,+∞)上为减函数;同理,可得f (x )在(-∞,-1)上也为减函数.15.函数y =f (x )是R 上的增函数,且y =f (x )的图像经过点A (-2,-3)和B (1,3),则不等式|f (2x -1)|<3的解集为____.【答案】1(,1)2-【解析】因为y =f (x )的图像经过点A (-2,-3)和B (1,3),所以f (-2)=-3,f (1)=3.又|f (2x -1)|<3,所以-3<f (2x -1)<3,即f (-2)<f (2x -1)<f (1).因为函数y =f (x )是R 上的增函数,所以-2<2x-1<1,即îíì<-->-112212x x ,即⎪î⎪íì<->121x x ,所以-21<x <1.16.对于任意定义在R 上的函数f (x ),若实数x 0满足f (x 0)=x 0,则称x 0是函数f (x )的一个不动点.现给定一个实数a ∈(4,5),则函数f (x )=x 2+ax +1的不动点共有___个.【答案】2【解析】由定义,令x 2+ax +1=x ,则x 2+(a -1)x +1=0,当a ∈(4,5)时,Δ=(a -1)2-4>0,所以方程有两根,相应地,函数f (x )=x 2+ax +1(a ∈(4,5))有2个不动点.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知幂函数39*()m y x m N -=Î的图象关于y 轴对称且在()0,¥+上单调递减,求满足()()33132mma a +<---的a 的取值范围.【解析】因为函数39*()m y x m N -=Î在()0,¥+上单调递减,所以390m -<,解得3m <.又因为*m N Î,所以1m =,2;因为函数的图象关于y 轴对称,所以39m -为偶数,故1m =.则原不等式可化为()()1133132a a +<---,因为13y x -=在(),0-¥,()0,¥+上单调递减,所以1320a a +>->或3210a a -<+<或1032a a +<<-,解得2332a <<或1a <-.故a 的取值范围是1a <-或2332a <<.18.(10分)(2019·陕西高一期中)已知函数21()1x f x x -=+(1)试判断函数在(-1,+¥)上的单调性,并给予证明;(2)试判断函数在[3,5]x Î的最大值和最小值【解析】(1)∵()213211x y f x x x -===-++,∴函数()f x 在()1,-+¥上是增函数,证明:任取1x ,()21x Î-+¥,,且12x x <,则()()1212213333221111f x f x x x x x æöæö-=---=-ç÷ç÷++++èøèø()()()1212311x x x x -=++,∵121x x -<<,∴120x x -<,()()12110x x ++>,∴()()120f x f x -<,即()()12f x f x <,∴()f x 在()1,-+¥上是增函数.(2)∵()f x 在()1,-+¥上是增函数,∴()f x 在[3]5,上单调递增,它的最大值是()25135512f ´-==+,最小值是()23153314f ´-==+.19.(12分)设函数f (x )=ax 2+(b -8)x -a -ab 的两个零点分别是-3和2.(1)求函数f (x );(2)当函数f (x )的定义域是[0,1]时,求函数f (x )的值域.【解析】(1)∵f (x )的两个零点是-3和2,∴-3和2是方程ax 2+(b -8)x -a -ab =0的两根,∴有9a -3(b -8)-a -ab =0,① 4a +2(b -8)-a -ab =0.② ①-②得b =a +8.③将③代入②得4a +2a -a -a (a +8)=0,即a 2+3a =0.∵a ≠0,∴a =-3,∴b =a +8=5,∴f (x )=-3x 2-3x +18.(2)由(1)得f (x )=-3x 2-3x +18=-3(x +21)2+43+18.图像的对称轴是直线x =-21.∵0≤x ≤1,∴f (x )min =f (1)=12,f (x )max =f (0)=18,∴此时函数f (x )的值域是[12,18].20.(12分)已知函数()()311ax f x a a -=¹-.(1)若0a >,求()f x 的定义域;(2)若()f x 在区间(]0,1上是减函数,求实数a 的取值范围.【解析】(1)当0a >且1a ¹时,由30ax -³得3x a £,即函数()f x 的定义域是3,a æù-¥çúèû.(2)当10a ->即1a >时,令3t ax =-要使()f x 在(]0,1上是减函数,则函数3t ax =-在(]0,1上为减函数,即0a -<,并且且310a -´³,解得13a <£;当10a -<即1a <时 ,令3t ax =-要使()f x 在(]0,1上是减函数,则函数3t ax =-在(]0,1为增函数,即0a ->并且310a -´³,解得0a <综上可知,所求实数a 的取值范围是()(],01,3-¥U .21.(12分)已知函数f (x )=x m x+,且此函数图象过点(1,2).(1)求实数m 的值;(2)判断函数f (x )的奇偶性并证明;(3)讨论函数f (x )在(0,1)上的单调性,并证明你的结论.【解析】(1)∵函数f (x )=x m x +,且此函数图象过点(1,2),∴2=1+m ,∴m =1;(2)f (x )=x 1x+,定义域为:()()00-¥È+¥,,,又f (﹣x )=﹣x 1x +=--f (x ),∴函数f (x )是奇函数;(3)函数f (x )在(0,1)上单调递减,设0<x 1<x 2<1,则()()()()211212121212121212111x x x x f x f x x x x x x x x x x x x x ---=+--=-+=-×××,∵0<x 1<x 2<1,∴x 1﹣x 2<0,0<x 1x 2<1,x 1x 2﹣1<0,∴()()()1212121210x x f x f x x x x x --=-×>,即f (x 1)>f (x 2),∴f (x )在(0,1)上的单调递减.22.(12分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为了鼓励销售商订购,决定每一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰好为51元?(2)当销售商一次订购x 个零件时,该厂获得的利润为P 元,写出P =f (x )的表达式.【解析】(1)设每个零件的实际出厂价格恰好为51元时,一次订购量为x 0个,则60-0.02(x 0-100)=51,解得x 0=550,所以当一次订购量为550个时,每个零件的实际出厂价恰好为51元.(2)设一次订量为x 个时,零件的实际出厂单价为W ,工厂获得利润为P ,由题意P =(W -40)·x ,当0<x ≤100时,W =60;当100<x <550时,W =60-0.02(x -100)=62-50x ;当x ≥550时,W =51.当0<x ≤100时, f (x )=(60-40)x =20x ;∴当100<x <550时, f (x )=(22-50x )x =22x -501x 2;当x ≥550时, f (x )=(51-40)x =11x .故f (x )=⎪⎪î⎪⎪íìγÎ<<-Σ<+++),550(,11),550100(5022),1000(202N x x x N x x x x N x x x。
(数学1必修)第一章(上) 集合[基础训练A 组]一、选择题1.下列各项中,不可以组成集合的是( ) A .所有的正数 B .等于2的数 C .接近于0的数 D .不等于0的偶数 2.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .},01|{2R x x x x ∈=+- 3.下列表示图形中的阴影部分的是( )A .()()A CBC U I UB .()()A B AC U I U C .()()A B B C U I UD .()A B C U I4.下面有四个命题:(1)集合N 中最小的数是1;(2)若a -不属于N ,则a 属于N ;(3)若,,N b N a ∈∈则b a +的最小值为2;(4)x x 212=+的解可表示为{}1,1; 其中正确命题的个数为( )A .0个 B .1个 C .2个 D .3个 5.若集合{},,M a b c =中的元素是△ABC 的三边长, 则△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形6.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( ) A .3个 B .5个 C .7个 D .8个二、填空题1.用符号“∈”或“∉”填空 (1)0______N , 5______N , 16______N(2)1______,_______,______2R Q Q e C Q π-(e 是个无理数) (3{}|,,x x a a Q b Q =∈∈2. 若集合{}|6,A x x x N =≤∈,{|}B x x =是非质数,C A B =I ,则C 的非空子集的个数为 。
3.若集合{}|37A x x =≤<,{}|210B x x =<<,则A B =U _____________.A B C4.设集合{32}A x x =-≤≤,{2121}B x k x k =-≤≤+,且A B ⊇,则实数k 的取值范围是 。
高一数学函数的基本性质试题答案及解析1.若函数是偶函数,则的增区间是.【答案】或【解析】由条件,得,即,所以原函数为,所以函数的增区间为.【考点】函数的奇偶性与单调性.2.(12分)已知是定义在R上的奇函数,当时,,其中且. (1)求的值;(2)求的解析式;【答案】(1)0(2)【解析】(1)因是奇函数,所以有,所以=0.……4分(2)当时,,,由是奇函数有,,……12分【考点】本小题主要考查利用函数的奇偶性求函数值和函数解析式的求取,考查学生对函数性质的应用能力.点评:对于分段函数,当已知一段函数的表达式要求另一段时,要利用函数的性质,并且要注意“求谁设谁”的原则.3.已知函数是定义在实数集R上的不恒为零的偶函数,且对任意实数都有,则的值是A.B.C.D.【答案】A【解析】令,可得,令,得所以,令,得,同理令可得,所以【考点】本小题主要考查函数的奇偶性和抽象函数的求值问题,考查学生的运算求解能力.点评:解决抽象函数问题,常用的方法是“赋值法”.4.已知函数的定义域为,为奇函数,当时,,则当时,的递减区间是.【答案】【解析】因为为奇函数,所以的图象关于对称,当时,,所以当时,函数的单调递减区间为,因为图象关于对称,所以当时,的递减区间是.【考点】本小题主要考查函数图象和性质的应用,考查学生数形结合思想的应用和推理能力.点评:解决本小题的关键是分析出函数的图象关于对称,在关于对称的两个区间上单调性相同.5.(本小题12分)已知函数,(1)判断函数在区间上的单调性;(2)求函数在区间是区间[2,6]上的最大值和最小值.【答案】(1)函数是区间上的减函数;(2),【解析】(1)设是区间上的任意两个实数,且,则-==.由得,,于是,即.所以函数是区间上的减函数. ……6分(2)由(1)知函数函数在区间的两个端点上分别取得最大值与最小值,即当时,;当时,. ……12分【考点】本小题主要考查利用定义判断函数的单调性和利用函数的单调性求函数的最值,考查学生对定义的掌握和利用能力以及数形结合思想的应用.点评:利用单调性的定义判断或证明函数的单调性时,要把结果划到最简,尽量不要用已知函数的单调性判断未知函数的单调性.6.设偶函数的定义域为,当时是增函数,则的大小关系是()A.B.C.D.【答案】A【解析】因为是偶函数,所以,而当时是增函数,所以.【考点】本小题主要考查函数奇偶性和单调性的综合应用,考查学生的逻辑推理能力.点评:函数的奇偶性和单调性经常结合考查,要熟练准确应用.7.已知是偶函数,且当时,,则当时,【答案】【解析】由题意知,当时,,所以,又因为是偶函数,所以,所以当时,.【考点】本小题主要考查利用函数的奇偶性求函数的解析式,考查学生的运算求解能力.点评:此类问题要注意求谁设谁.8.(本小题满分13分)已知定义域为的函数是奇函数。
(数学1必修)第一章(下) 函数的基本性质[基础训练A 组]一、选择题1. 已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数, 则m 的值是( )A . 1B . 2C . 3D . 42. 若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )A . )2()1()23(f f f <-<-B . )2()23()1(f f f <-<-C . )23()1()2(-<-<f f fD . )1()23()2(-<-<f f f3. 如果奇函数)(x f 在区间[3,7] 上是增函数且最大值为5,那么)(x f 在区间[]3,7--上是( )A . 增函数且最小值是5-B . 增函数且最大值是5-C . 减函数且最大值是5-D . 减函数且最小值是5-4. 设)(x f 是定义在R 上的一个函数,则函数)()()(x f x f x F --=在R 上一定是( )A . 奇函数B . 偶函数C . 既是奇函数又是偶函数D . 非奇非偶函数.5. 下列函数中,在区间()0,1上是增函数的是( )A . x y =B . x y -=3C . xy 1= D . 42+-=x y 6. 函数)11()(+--=x x x x f 是( )A . 是奇函数又是减函数B . 是奇函数但不是减函数C . 是减函数但不是奇函数D . 不是奇函数也不是减函数二、填空题1. 设奇函数)(x f 的定义域为[]5,5-,若当[0,5]x ∈时, )(x f 的图象如右图,则不等式()0f x <的解是2. 函数2y x =________________.3. 已知[0,1]x ∈,则函数y =的值域是 .4. 若函数2()(2)(1)3f x k x k x =-+-+是偶函数,则)(x f 的递减区间是 . 5. 下列四个命题(1)()f x =有意义; (2)函数是其定义域到值域的映射;(3)函数2()y x x N =∈的图象是一直线;(4)函数22,0,0x x y x x ⎧≥⎪=⎨-<⎪⎩的图象是抛物线, 其中正确的命题个数是____________.三、解答题1. 判断一次函数,b kx y +=反比例函数xk y =,二次函数c bx ax y ++=2的 单调性.2. 已知函数()f x 的定义域为()1,1-,且同时满足下列条件:(1)()f x 是奇函数;(2)()f x 在定义域上单调递减;(3)2(1)(1)0,f a f a -+-<求a 的取值范围.3. 利用函数的单调性求函数x x y 21++=的值域;4. 已知函数[]2()22,5,5f x x ax x =++∈-. ① 当1a =-时,求函数的最大值和最小值;② 求实数a 的取值范围,使()y f x =在区间[]5,5-上是单调函数.(数学1必修)第一章下 [基础训练A 组]参考答案一、选择题1. B 奇次项系数为0,20,2m m -==2. D 3(2)(2),212f f =--<-<- 3. A 奇函数关于原点对称,左右两边有相同的单调性4. A ()()()()F x f x f x F x -=--=-5. A 3y x =-在R 上递减,1y x=在(0,)+∞上递减, 24y x =-+在(0,)+∞上递减,6. A ()(11)(11)()f x x x x x x x f x -=----+=+--=-为奇函数,而222,12,01(),2,102,1x x x x f x x x x x -≥⎧⎪-≤<⎪=⎨-≤<⎪⎪<-⎩为减函数. 二、填空题1. (](2,0)2,5-U 奇函数关于原点对称,补足左边的图象2. [2,)-+∞ 1,x y ≥-是x 的增函数,当1x =-时,min 2y =-3.- 该函数为增函数,自变量最小时,函数值最小; 自变量最大时,函数值最大4. [)0,+∞ 210,1,()3k k f x x -===-+ 5. 1 (1)21x x ≥≤且,不存在;(2)函数是特殊的映射;(3)该图象是由离散的点组成的;(4)两个不同的抛物线的两部分组成的,不是抛物线.三、解答题1. 解:当0k >,y kx b =+在R 是增函数,当0k <,y kx b =+在R 是减函数;当0k >,k y x=在(,0),(0,)-∞+∞是减函数, 当0k <,k y x=在(,0),(0,)-∞+∞是增函数; 当0a >,2y ax bx c =++在(,]2b a -∞-是减函数,在[,)2b a -+∞是增函数,当0a <,2y ax bx c =++在(,]2b a -∞-是增函数,在[,)2b a-+∞是减函数. 2. 解:22(1)(1)(1)f a f a f a -<--=-,则2211111111a a a a -<-<⎧⎪-<-<⎨⎪->-⎩,∴01a <<3. 解:1210,2x x +≥≥-,显然y 是x 的增函数,12x =-,min 1,2y =- 1[,)2y ∴∈-+∞ 4.解:2(1)1,()22,a f x x x =-=-+对称轴min max 1,()(1)1,()(5)37x f x f f x f =====∴max m ()37,()1in f x f x ==(2)对称轴,x a =-当5a -≤-或5a -≥时,()f x 在[]5,5-上单调 ∴5a ≥或5a ≤-.。
新课程高中数学测试题组(必修1)全套含答案(1)特别说明:《新课程高中数学训练题组》是由李传牛老师根据最新课[综合训练B组],[提高训练C组]目录:数学1(必修)数学1(必修)第一章:(上)集合[训练A、B、C]数学1(必修)第一章:(中)函数及其表[训练A、B、C]数学1(必修)第一章:(下)函数的基本性质[训练A、B、C]数学1(必修)第二章:基本初等函数(I)[基础训练A组]数学1(必修)第二章:基本初等函数(I)[综合训练B 组]数学1(必修)第二章:基本初等函数(I)[提高训练C组]数学1(必修)第三章:函数的应用[基础训练A组]数学1(必修)第三章:函数的应用[综合训练B组]数学1(必修)第三章:函数的应用[提高训练C 组]函数是描述客观世界变化规律的重要数学模型。
高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,函数的思想方法将贯穿高中数学课程的而不愠,不亦君子乎?来,不亦乐乎?人不知亦说乎?有朋自远方子曰:学而时习之,不始终。
新(数学1必修)第一章(上)集合[基础训练A组]一、选择题1.下列各项中,不可以组成集合的是()A.所有的正数B.等于2的数C.接近于0的数D.不等于0的偶数2.下列四个集合中,是空集的是()A.{某|某33}B.{(某,y)|y2某2,某,yR}C.{某|某20}D.{某|某2某10,某R}3.下列表示图形中的阴影部分的是()ABA.(AC)(BC)B.(AB)(AC)C.(AB)(BC)CD.(AB)C4.下面有四个命题:(1)集合N中最小的数是1;(2)若a不属于N,则a属于N;(3)若aN,bN,则ab的最小值为2;(4)某12某的解可表示为1,1;2其中正确命题的个数为()A.0个B.1个C.2个D.3个5.若集合Ma,b,c中的元素是△ABC的三边长,则△ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形6.若全集U0,1,2,3且CUA2,则集合A的真子集共有()A.3个B.5个C.7个D.8个二、填空题1.用符号“”或“”填空(1)0______N,(2)5______N,16______N 1______Q,_______Q,e______CRQ(e是个无理数)2(3)2323________某|某a6b,aQ,bQ2.若集合A某|某6,某N,B{某|某是非质数},CAB,则C的非空子集的个数为3.若集合A某|3某7,B某|2某10,则AB_____________.4.设集合A{某3某2},B{某2k1某2k1},且AB,则实数k的取值范围是5.已知Ayy某22某1,Byy2某1,则AB_________。
高中数学必修1第一章基础训练题(有详解) 一、单选题 1.已知定义在R 上的奇函数()f x 和偶函数()g x ,则( ) A .()()f x g x +是奇函数 B .()()f x g x ⋅是奇函数 C .()()f x g x ⋅是偶函数 D .()()f x g x ⋅是偶函数 2.已知奇函数()f x 定义在(1,1)-上,且对任意1212,(1,1)()x x x x ∈-≠都有2121()()0f x f x x x -<-成立,若(21)(32)0f x f x -+->成立,则x 的取值范围为( )A .(0,1)B .1(,1)3C .13(,)35D .3(0,5 3.已知函数()f x 是定义在R 上的偶函数,且在[)0,∞+上是增函数,若对任意[)x 1,∞∈+,都有()()f x a f 2x 1+≤-恒成立,则实数a 的取值范围是( ) A .[]2,0- B .(],8∞-- C .[)2,∞+ D .(],0∞- 4.已知函数是定义在上的奇函数,对于任意的,且,有.若,则的解集为( ) A . B . C . D . 5.设奇函数在上为单调递减函数,且,则不等式的解集为 ( ) A . B . C . D . 6.定义在的偶函数,当时,,则的解集为( ) A . B . C . D . 7.设奇函数在上是减函数,且,若不等式对所有的都成立,则的取值范围是( ) A . B . C . D .8.函数,则下列结论错误的是( ) A .是偶函数 B .的值域是 C .方程的解只有 D .方程的解只有 二、填空题 9.给定映射22f a b a b a b →+-:(,)(,),则在映射f 下,31(,)的原象是______.10.若函数f (x )同时满足: ①对于定义域上的任意x 恒有f (x )+f (﹣x )=0,②对于定义域上的任意x 1,x 2,当x 1≠x 2时,恒有0,则称函数f (x )为“理想函数”.给出下列四个函数中①f (x ); ②f (x ); ③f (x );④f (x ),能被称为“理想函数”的有_______________(填相应的序号).11.给出下列五个命题:①函数f (x )=22a x ﹣1﹣1的图象过定点(12,﹣1);②已知函数f (x )是定义在R 上的奇函数,当x≥0时,f (x )=x (x+1),若f (a )=﹣2则实数a =﹣1或2.③若log a 12>1,则a 的取值范围是(12,1);④若对于任意x ∈R 都f (x )=f (4﹣x )成立,则f (x )图象关于直线x =2对称; ⑤对于函数f (x )=lnx ,其定义域内任意12x x ≠都满足f (122x x +)()()122f x f x +≥其中所有正确命题的序号是_____.12.下列结论中:①定义在R 上的函数f (x )在区间(-∞,0]上是增函数,在区间[0,+∞)上也是增函数,则函数f (x )在R 上是增函数;②若f (2)=f (-2),则函数f (x )不是奇函数;③函数y=x -0.5是(0,1)上的减函数;④对应法则和值域相同的函数的定义域也相同;⑤若x 0是二次函数y=f (x )的零点,且m<x 0<n ,那么f (m )f (n )<0一定成立.写出上述所有正确结论的序号:_____. 13.已知函数,若函数过点,那么函数一定经过点____________ 14.已知是R 上的增函数,则的取值范围是__________; 15.函数在区间上的最小值为___________.三、解答题 16.已知函数. (Ⅰ)用定义证明是偶函数; (Ⅱ)用定义证明在上是减函数; (Ⅲ)作出函数的图像,并写出函数当时的最大值与最小值. 17.设函数y =f (x )的定义域为R ,并且满足f (x +y )=f (x )+f (y ),f ()=1,当x >0时,f (x )>0. (1)求f (0)的值; (2)判断函数的奇偶性; (3)如果f (x )+f (2+x )<2,求x 的取值范围. 18.已知全集为R ,集合, . (1)求, ; (2)若,且,求a 的取值范围. 19.已知f (x )为一次函数,g (x )为二次函数,且f[g (x )]=g[f (x )]. (1)求f (x )的解析式; (2)若y=g (x )与x 轴及y=f (x )都相切,且g (0)= ,求g (x )的解析式. 20.已知函数. (1)求; (2)求值域.参考答案1.D【解析】【分析】逐个选项去判断是否是奇函数或者偶函数。
高中数学-必修一-第一章集合与函数概念-第三节函数的基本性质-课后同步练习-课后作业一、单选题(选择一个正确的选项)1 、下列命题正确的是()A、奇函数的图象一定过原点B、是偶函数C、是奇函数D、是奇函数2、设函数f(x)为定义在R上的奇函数,当x≤0时,(b为常数),则f(1)=()A、3B、1C、﹣3D、﹣13 、已知偶函数满足条件:当时恒有,且时为增函数,则( )A、B、C、D、4 、若函数在区间单调递增,则的范围是()A、B、C、D、5 、定义在R上的偶函数y=f(x)满足f(x+2)=f(x),且当x∈(0,1]时单调递增,则()A、B、C、D、6 、已知函数为奇函数,且当时,则当时,的解析式为()A、B、C、D、7 、若函数为偶函数,则=()A、B、C、D、8 、已知函数是奇函数,则()A、B、C、D、9 、若函数是奇函数,则实数的值为().A、B、C、2D、-210 、函数的定义域为R,若与都是奇函数,则( )A、是偶函数B、是奇函数C、D、是奇函数11 、下列函数中,在区间(0,1)上是增函数的是()A、B、C、D、12、下列函数中,在其定义域内既是增函数又是奇函数的是()A、B、y=﹣log2xC、y=3xD、y=x3+x13 、下列函数中既是奇函数,又在区间上单调递增的是( )A、B、C、D、14 、若函数的图象经过二、三、四象限,则( )A、B、C、D、15 、函数为偶函数,那么在上是()。
A、增函数B、减函数C、先减后增D、先增后减16 、列函数中是奇函数,且在上为增函数的是()A、B、C、D、17 、若函数的图象的对称轴为,则非零实数的值是()A、-2B、2C、D、18 、已知函数的定义域为,对任意实数满足,且,当时,,则()A、B、C、D、19 、若一系列函数的解析式相同,值域相同但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为,值域为的“孪生函数”共有()A 、个B、个C 、个D 、个20 、已知最小正周期为2的函数,当时,. 则函数的图象与的图象的交点个数为( )A、2个B、3个C、4个D、6个参考答案单选题答案1. C2. A3. D4. B5. B6. B7. C8. A9. A10. D11. A12. D13. D14. B15. A16. D17. C18. D19. C20. C点击查看更多试题详细解析:/index/list/1/20#list。
高中数学必修一函数性质专项习题及答案必修1函数的性质1.在区间(0,+∞)上不是增函数的函数是A.y=2x+1B.y=3x2+1C.y=1/xD.y=2x2+x+12.函数f(x)=4x2-mx+5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数。
则f(1)等于()A.-7B.1C.17D.253.函数f(x)在区间(-2,3)上是增函数,则y=f(x+5)的递增区间是()A.(3,8)B.(-7,-2)C.(3,8)D.(0,5)4.函数f(x)=ax+1在区间(-2,+∞)上单调递增,则实数a的取值范围是()x+2A.(0,11/22)B.(11/22,+∞)C.(-2,+∞)D.(-∞,-1)∪(1,+∞)5.函数f(x)在区间[a,b]上单调,且f(a)f(b)<0,则方程f(x)=0在区间[a,b]内()A.至少有一实根B.至多有一实根C.没有实根D.必有唯一的实根6.若f(x)=x+px+q满足f(1)=f(2)=5,则f(1)的值是()A.5B.-5C.6D.-67.若集合A={x|1<x<2},B={x|x≤a},且A∩B≠Ø,则实数a的集合()A.{a|a<2}B.{a|a≥1}C.{a|a>1}D.{a|1≤a≤2}8.已知定义域为R的函数f(x)在区间(-∞,5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),那么下列式子一定成立的是()A.f(-1)<f(9)<f(13)B.f(13)<f(9)<f(-1)C.f(9)<f(-1)<f(13)D.f(13)<f(-1)<f(9)9.函数f(x)=|x|和g(x)=x(2-x)的递增区间依次是()A.(-∞,0],[2,∞)B.(-∞,0],[0,2]C.[0,2],[2,∞)D.[0,2],[-∞,0)10.若函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,则实数a的取值范围()A.a≤3B.a≥-3C.a≤5D.a≥311.函数y=x+4x+c,则()A.f(1)<c<f(-2)B.f(1)>c>f(-2)C.c>f(1)>f(-2)D.c<f(-2)<f(1)12.已知定义在R上的偶函数f(x)满足f(x+4)=-f(x),且在区间[0,4]上是减函数,则f(2)的符号为()A.正数B.负数C.零一、文章格式已经修正,删除了明显有问题的段落,并对每段话进行了小幅度改写。
2014-2015学年高中必修一函数基本性质周末小练习一1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2 D .y =2x 2+x +12.函数()214,y x x x x Z =--≤≤∈的值域为( )A .[]0,12B .1124⎡⎤-⎢⎥⎣⎦,C .{}0,2,6,12D .{}2,6,123.已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A .1B .1或32C .1,32或3± D .3 4.设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( )A .10B .11C .12D .135.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( ).6.下列四个图象中,不是函数图象的是( ).7.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x )( )A .在区间(-1,0)上是减函数B .在区间(0,1)上是减函数C .在区间(-2,0)上是增函数D .在区间(0,2)上是增函数 8.函数x xx y +=的图象是( )x y 0-2 2x y 0 -2 22 xy 0 -2 22 xy 0 -2 2 2x O y xy y yO O OA. B. C. D.9.函数222(03)()6(20)x x x f x x x x ⎧-≤≤⎪=⎨+-≤≤⎪⎩的值域是( )A .RB .[)9,-+∞C .[]8,1-D .[]9,1-10.函数)23(,32)(-≠+=x x cx x f 满足,)]([x x f f =则常数c 等于( ) A .3 B .3- C .33-或 D .35-或11.设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 。
(数学1必修)第一章(下) 函数的基本性质
[基础训练A 组] 一、选择题
1. 已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,
则m 的值是( )
A . 1
B . 2
C . 3
D . 4
2. 若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )
A . )2()1()2
3(f f f <-<-
B . )2()2
3()1(f f f <-
<-
C . )23()1()2(-<-<f f f
D . )1()2
3()2(-<-
<f f f
3. 如果奇函数)(x f 在区间[3,7] 上是增函数且最大值为5, 那么)(x f 在区间[]3,7--上是( )
A . 增函数且最小值是5-
B . 增函数且最大值是5-
C . 减函数且最大值是5-
D . 减函数且最小值是5- 4. 设)(x f 是定义在R 上的一个函数,则函数)()()(x f x f x F --=
在R 上一定是( )
A . 奇函数
B . 偶函数
C . 既是奇函数又是偶函数
D . 非奇非偶函数. 5. 下列函数中,在区间()0,1上是增函数的是( )
A . x y =
B . x y -=3
C . x
y 1=
D . 42
+-=x y
6. 函数)11()(+--=x x x x f 是( ) A . 是奇函数又是减函数 B . 是奇函数但不是减函数 C . 是减函数但不是奇函数 D . 不是奇函数也不是减函数
二、填空题
1. 设奇函数)(x f 的定义域为[]5,5-,若当[0,5]x ∈时, )(x f 的图象如右图,则不等式
()0f x <的解是
2. 函数2y x =+________________.
3. 已知[0,1]x ∈,则函数y =的值域是 .
4. 若函数2()(2)(1)3f x k x k x =-+-+是偶函数,则)(x f 的递减区间是 .
5. 下列四个命题
(1)()f x =
; (2)函数是其定义域到值域的映射;
(3)函数2()y x x N =∈的图象是一直线;(4)函数22
,0
,0
x x y x x ⎧≥⎪=⎨-<⎪⎩的图象是抛物线,
其中正确的命题个数是____________.
三、解答题
1. 判断一次函数,b kx y +=反比例函数x
k y =
,二次函数c bx ax y ++=2的
单调性.
2. 已知函数()f x 的定义域为()1,1-,且同时满足下列条件:(1)()f x 是奇函数; (2)()f x 在定义域上单调递减;(3)2(1)(1)0,f a f a -+-<求a 的取值范围.
3. 利用函数的单调性求函数x x y 21++=的值域;
4. 已知函数[]2
()22,5,5f x x ax x =++∈-.
① 当1a =-时,求函数的最大值和最小值;
② 求实数a 的取值范围,使()y f x =在区间[]5,5-上是单调函数.
(数学1必修)第一章下 [基础训练A 组]
参考答案
一、选择题
1. B 奇次项系数为0,20,2m m -== 2. D 3(2)(2),212f f =--<-
<-
3. A 奇函数关于原点对称,左右两边有相同的单调性 4. A ()()()()F x f x f x F x -=--=- 5. A 3y x =-在R 上递减,1y x
=
在(0,)+∞上递减,
2
4y x =-+在(0,)+∞上递减,
6. A ()(11)(11)()f x x x x x x x f x -=----+=+--=-
为奇函数,而2
2
2,12,01
(),2,102,1x x x x f x x x x x -≥⎧⎪-≤<⎪=⎨-≤<⎪⎪<-⎩
为减函数.
二、填空题
1. (](2,0)2,5- 奇函数关于原点对称,补足左边的图象 2. [2,)-+∞ 1,x y ≥-是x 的增函数,当1x =-时,min 2y =- 3.
该函数为增函数,自变量最小时,函数值最小;
自变量最大时,函数值最大
4. [)0,+∞ 2
10,1,()3k k f x x -===-+
5. 1 (1)21x x ≥≤且,不存在;(2)函数是特殊的映射;(3)该图象是由
离散的点组成的;(4)两个不同的抛物线的两部分组成的,不是抛物线.
三、解答题
1. 解:当0k >,y kx b =+在R 是增函数,当0k <,y kx b =+在R 是减函数;
当0k >,k y x =在(,0),(0,)-∞+∞是减函数, 当0k <,k y x
=
在(,0),(0,)-∞+∞是增函数;
当0a >,2
y ax bx c =++在(,]2b a
-∞-
是减函数,在[,)2b a
-
+∞是增函数,
当0a <,2y ax bx c =++在(,]2b a
-∞-
是增函数,在[,)2b a
-
+∞是减函数.
2. 解:22(1)(1)(1)f a f a f a -<--=-,则2211111111a a a a -<-<⎧⎪
-<-<⎨⎪->-⎩
,
∴01a <<
3. 解:1210,2
x x +≥≥-,显然y 是x 的增函数,12
x =-
,m in 1,2
y =-
1
[,)
2y ∴∈-+∞ 4.解:2(1)1,()22,a f x x x =-=-+对称轴min max 1,()(1)1,()(5)37x f x f f x f =====
∴max m ()37,()1in f x f x ==
(2)对称轴,x a =-当5a -≤-或5a -≥时,()f x 在[]5,5-上单调 ∴5a ≥或5a ≤-.。