广西各市2012年中考数学分类解析 专题10:四边形
- 格式:doc
- 大小:347.50 KB
- 文档页数:9
广西各市2012年中考数学试题分类解析汇编专题8:平面几何基础一、选择题3. (2012广西桂林3分)如图,与∠1是内错角的是【 】A .∠2B .∠3C .∠4D .∠5【答案】B 。
【考点】“三线八角”问题。
【分析】根据内错角的定义, 两直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置 关系的一对角是内错角。
因此,∠1的内错角是∠3。
故选B 。
4. (2012广西桂林3分)下面四个标志图是中心对称图形的是【 】【答案】B 。
【考点】中心对称对形。
【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。
因此,根据各图特点,只有选项B 符合。
故选B 。
5. (2012广西河池3分)如图,把一块含有45°角的直角三角板的两个顶点分别放在直尺的一组对边上.如果125??,那么2Ð的度数是【 】A .30°B .25°C .20°D .15°A B C D【答案】【考点】平行线的性质。
【分析】根据直角三角板的性质得出∠AFE的度数,再根据平行线的性质求出∠2的度数即可:如图,∵△GEF是含45°角的直角三角板,∴∠GFE=45°。
∵∠1=25°,∴∠AFE=∠GEF-∠1=45°-25°=20°。
∵AB∥CD,∴∠2=∠AFE=20°。
故选C。
6. (2012广西来宾3分)在下列平面图形中,是中心对称图形的是【】A.B.C.D.【答案】B。
【考点】中心称对形。
【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。
因此,只有选项B符合,故选B。
7. (2012广西柳州3分)小张用手机拍摄得到甲图,经放大后得到乙图,甲图中的线段AB在乙图中的对应线段是【】A.FG B.FH C.EH D.EF【答案】D。
广西各市2012年中考数学试题分类解析汇编专题2:代数式和因式分解一、选择题1. (2012广西北海3分)下列运算正确的是:【】A .x 3·x 5=x 15B .(2x 2)3=8x 6C .x 9÷x 3=x 3D .(x -1)2=x 2-12【答案】B 。
【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法,完全平方公式。
【分析】根据同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法的运算法则和完全平方公式对各选项分析判断后利用排除法求解:A 、x 3•x 5=x 3+5=x 8,故本选项错误;B 、(2x 2)3=23•x 2×3=8x 6,故本选项正确;C 、x 9÷x 3=x 9-3=x 6,故本选项错误;D 、(x -1)2=x 2-2x +1,故本选项错误。
故选B 。
2. (2012广西贵港3分)计算(-2a)2-3a 2的结果是【 】A .-a 2B .a 2C .-5a 2D .5a 2【答案】B 。
【考点】幂的乘方和积的乘方,合并同类项。
【分析】利用积的乘方的性质求得(-2a)2=4a 2,再合并同类项,即可求得答案:(-2a)2-3a 2=4a 2-3a 2=a 2。
故选B 。
3. (2012广西桂林3分)计算2xy 2+3xy 2的结果是【】A .5xy 2B .xy 2C .2x 2y 4D .x 2y 4【答案】A 。
【考点】合并同类项。
【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,进行运算即可:2xy 2+3xy 2=5xy 2。
故选A 。
4. (2012广西河池3分)下列运算正确的是【】A .236(2a )8a -=-B .a 2a a -=C .632a a a ?D .222(a b)a b +=+ 【答案】A 。
【考点】幂的乘方和积的乘方,合并同类项,同底数幂的除法,完全平方公式【分析】根据幂的乘方和积的乘方,合并同类项,同底数幂的除法运算法则和完全平方公式解答:A 、因为(()323236(2a )2a 8a ´-=-=-,故本选项正确;B 、因为a 2a a -=-,故本选项错误;C 、根据同底数幂的除法法则,底数不变,指数相减,可知63633a aa a -?=,故本选项错误; D 、根据完全平方公式,可知222(a b)a 2ab b +=++,故本选项错误。
2012年全国中考数学试题分类解析汇编(159套63专题)专题54:图形的旋转变换一、选择题1. (2012天津市3分)将下列图形绕其对角线的交点逆时针旋转900,所得图形一定与原图形重合的是【 】(A )平行四边形 (B )矩形 (C )菱形 (D )正方形 【答案】D 。
【考点】旋转对称图形【分析】根据旋转对称图形的性质,可得出四边形需要满足的条件:此四边形的对角线互相垂直、平分且相等,则这个四边形是正方形。
故选D 。
2. (2012广东佛山3分)如图,把一个斜边长为2且含有300角的直角三角板ABC 绕直角顶点C 顺时针旋转900到△A 1B 1C ,则在旋转过程中这个三角板扫过的图形的面积是【 】A .πB ..3+42π.11124π【答案】D 。
【考点】旋转的性质,勾股定理,等边三角形的性质,扇形面积。
【分析】因为旋转过程中这个三角板扫过的图形的面积分为三部分扇形ACA 1、 BCD 和△ACD 计算即可:在△ABC 中,∠ACB=90°,∠BAC=30°,AB=2,∴BC=12AB=1,∠B=90°-∠BAC=60°。
∴AC =∴AB C 1S B C A C 22∆=⨯⨯=设点B 扫过的路线与AB 的交点为D ,连接CD , ∵BC=DC,∴△BCD 是等边三角形。
∴BD=CD=1。
∴点D 是AB 的中点。
∴AC D AB C 11S S 2224∆∆==⨯=S 。
∴1AC D AC A BC D ABC S S S ∆∆=++扇形扇形的面扫过积26013113603604464124ππππ⨯⨯=+=++=+故选D 。
3. (2012广东汕头4分)如图,将△ABC 绕着点C 顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是【 】A .110° B.80° C.40° D.30° 【答案】B 。
2 012年全国中考数学分类解析汇编 专题7:三角形四边形存在性问题一、解答题1. (2012海南省I13分)如图,顶点为P (4,-4)的二次函数图象经过原点(0,0),点A 在该图象上, OA 交其对称轴l 于点M ,点M 、N 关于点P 对称,连接AN 、ON (1)求该二次函数的关系式.(2)若点A 的坐标是(6,-3),求△ANO 的面积.(3)当点A 在对称轴l 右侧的二次函数图象上运动,请解答下列问题: ①证明:∠ANM=∠ONM②△ANO 能否为直角三角形?如果能,请求出所有符合条件的点A 的坐标,如果不能,请说明理由.【答案】解:(1)∵二次函数图象的顶点为P (4,-4),∴设二次函数的关系式为()2y=a x 44--。
又∵二次函数图象经过原点(0,0),∴()20=a 044--,解得1a=4。
∴二次函数的关系式为()21y=x 444--,即21y=x 2x 4-。
(2)设直线OA 的解析式为y=kx ,将A (6,-3)代入得3=6k -,解得1k=2-。
∴直线OA 的解析式为1y=-x 2。
把x=4代入1y=x 2-得y=2-。
∴M (4,-2)。
又∵点M 、N 关于点P 对称,∴N (4,-6),MN=4。
∴ANO 1S 64122∆=⋅⋅=。
(3)①证明:过点A 作AH ⊥l 于点H ,,l 与x 轴交于点D 。
则设A (20001x x 2x 4- ,),则直线OA 的解析式为200001x 2x 14y=x=x 2x x 4-⎛⎫- ⎪⎝⎭。
则M (04 x 8-,),N (04 x -,),H (20014x 2x 4- ,)。
∴OD=4,ND=0x ,HA=0x 4-,NH=2001x x 4-。
∴()()()00022000000004x 44x 4x 4OD 4HA4tan ONM=tan ANM===1ND x NH x x 4x x 4x +64x x 4---∠=∠==--- ,。
广西各市2012年中考数学试题分类解析汇编专题3:方程(组)和不等式(组)一、选择题1. (2012广西北海3分)分式方程7x 8-=1的解是:【 】 A .-1B .1C .8D .15【答案】D 。
【考点】解分式方程。
【分析】首先去掉分母,观察可得最简公分母是x -8,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解: 7=1x 8=7x=15x 8⇒-⇒-,检验,合适。
故选D 。
2. (2012广西桂林3分)二元一次方程组x+y=32x=4⎧⎨⎩的解是【 】 A .x=3y=0⎧⎨⎩ B .x=1y=2⎧⎨⎩ C .x=5y=2⎧⎨-⎩ D .x=2y=1⎧⎨⎩ 【答案】D 。
【考点】解二元一次方程组。
【分析】x y 32x 4+=⎧⎨=⎩①②,解方程②得:x=2,把x=2代入①得:2+y=3,解得:y=1。
∴方程组的解为:x=2y=1⎧⎨⎩。
故选D 。
3. (2012广西桂林3分)关于x 的方程x 2-2x +k =0有两个不相等的实数根,则k 的取值范围是【 】A .k <1B .k >1C .k <-1D .k >-1【答案】A 。
【考点】一元二次方程根的判别式。
【分析】∵关于x 的方程x2-2x+k=0有两个不相等的实数根,∴△>0,即4-4k >0,k <1。
故选A 。
4. (2012广西河池3分)一元二次方程2x 2x 20++=的根的情况是【 】A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .无实数根【答案】D 。
【考点】一元二次方程根的判别式。
【分析】∵2x 2x 20++=中,a=1,b=2,c=2,∴△22b 4ac=2412=40<=--⨯⨯-。
∴2x 2x 20++=无实数根。
故选D 。
5. (2012广西河池3分)若a b 0>>,则下列不等式不一定...成立的是【 】 A .ac bc >B .a c b c +>+C .11a b <D .2ab b > 【答案】A 。
2012年全国各地中考数学真题分类汇编第25章多边形与平行四边形1.(2012•某某)已知平行四边形ABCD中,∠B=4∠A,则∠C=()A.18°B.36°C.72°D.144°考点:平行四边形的性质;平行线的性质。
专题:计算题。
分析:关键平行四边形性质求出∠C=∠A,BC∥AD,推出∠A+∠B=180°,求出∠A的度数,即可求出∠C.解答:解:∵四边形ABCD是平行四边形,∴∠C=∠A,BC∥AD,∴∠A+∠B=180°,∵∠B=4∠A,∴∠A=36°,∴∠C=∠A=36°,故选B.点评:本题考查了平行四边形性质和平行线的性质的应用,主要考查学生运用平行四边形性质进行推理的能力,题目比较好,难度也不大.2.(2012•中考)如图,点A是直线l外一点,在l上取两点B、C,分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,分别连接AB、AD、CD,则四边形ABCD一定是()A.平行四边形B.矩形C.菱形D.梯形解答:解:∵别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,∴A D=BC AB=CD∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形).故选A.点评:本题考查了平行四边形的判定,解题的关键是熟记平行四边形的判定方法.3.(2012某某)如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为()A.53°B.37°C.47°D.123°考点:平行四边形的性质。
解答:解:∵在平行四边形ABCD中,过点C的直线CE⊥AB,∴∠E=90°,∵∠EAD=53°,∴∠EFA=90°﹣53°=37°,∴∠DFC=37∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BCE=∠DFC=37°.故选B.4.(2012•聊城)如图,四边形ABCD是平行四边形,点E在边BC上,如果点F是边AD上的点,那么△CDF与△ABE不一定全等的条件是()A.DF=BE B.AF=CE C.CF=AE D.CF∥AE考点:平行四边形的性质;全等三角形的判定。
2012年各地中考数学汇编三角形四边形精选1~10_解析版【1. 2012某某】22.如图,点A.F、C.D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形,(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.考点:相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;平行四边形的判定;菱形的判定。
解答:(1)证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF.在△ABC和△DEF中,,∴△ABC≌DEF(SAS),∴BC=EF,∠ACB=∠DFE,∴BC∥EF,∴四边形BCEF是平行四边形.(2)解:连接BE,交CF与点G,∵四边形BCEF是平行四边形,∴当BE⊥CF时,四边形BCEF是菱形,∵∠ABC=90°,AB=4,BC=3,∴AC==5,∵∠BGC=∠ABC=90°,∠ACB=∠BCG,∴△ABC∽△BGC,∴=,即=,∴CG=,∵FG=CG,∴FC=2CG=,∴AF=AC﹣FC=5﹣=,∴当AF=时,四边形BCEF是菱形.【2. 2012义乌市】23.在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质。
解答:解:(1)由旋转的性质可得:∠A1C1B=∠ACB=45°,BC=BC1,∴∠CC1B=∠C1CB=45°,..…(2分)∴∠CC1A1=∠CC1B+∠A1C1B=45°+45°=90°.…(3分)(2)∵△ABC≌△A1BC1,∴BA=BA1,BC=BC1,∠ABC=∠A1BC1,∴,∠ABC+∠ABC1=∠A1BC1+∠ABC1,∴∠ABA1=∠CBC1,∴△ABA1∽△CBC1.…(5分)∴,∵S△ABA1=4,∴S△CBC1=;…(7分)(3)过点B作BD⊥AC,D为垂足,∵△ABC为锐角三角形,∴点D在线段AC上,在Rt△BCD中,BD=BC×sin45°=,…(8分)①如图1,当P在AC上运动至垂足点D,△ABC绕点B旋转,使点P的对应点P1在线段AB 上时,EP1最小,最小值为:EP1=BP1﹣BE=BD﹣BE=﹣2;…(9分)②当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大,最大值为:EP1=BC+AE=2+5=7.…(10分)【3. 2012•某某】21.如图,在梯形ABCD中,AD∥BC,AB=CD,分别以AB,CD为边向外侧作等边三角形ABE 和等边三角形DCF,连接AF,DE.(1)求证:AF=DE;(2)若∠BAD=45°,AB=a,△ABE和△DCF的面积之和等于梯形ABCD的面积,求BC的长.考点:等腰梯形的性质;全等三角形的判定与性质;等边三角形的性质。
广西各市2012年中考数学试题分类解析汇编专题11:圆一、选择题1. (2012广西北海3分)已知两圆的半径分别是3和4,圆心距的长为1,则两圆的位置关系为:【】A.外离B.相交C.内切D.外切【答案】C。
【考点】两圆的位置关系。
【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。
因此,∵两圆半径之差为1,等于圆心距,∴两圆的位置关系为内切。
故选C。
2. (2012广西贵港3分)如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠P=40°,则∠ACB的度数是【】A.80°B.110°C.120°D.140°【答案】B。
3. (2012广西桂林3分)已知两圆半径为5cm和3cm,圆心距为3cm,则两圆的位置关系是【】A.相交B.内含C.内切D.外切【答案】A。
【考点】两圆的位置关系。
【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。
因此,∵两圆半径之差2cm<圆心距3cm<两圆半径之和8cm,∴两圆的位置关系是相交。
故选A。
4. (2012广西河池3分)如图,已知AB为⊙O的直径,∠CAB=300,则∠D的度数为【】A.30°B.45°C.60°D.80°【答案】C。
【考点】圆周角定理,三角形内角和定理。
【分析】∵AB为⊙O的直径,∴∠ACB=90°。
∵∠CAB=30°,∴∠B=90°-∠CAB=60°。
(最新最全)2012年全国各地中考数学解析汇编第二十二章 多边形与平行四边形22.1多边形的内角与外角(2012北海,16,3分)16.一个多边形的每一个外角都等于18°,它是___________边形。
【解析】根据多边形外角和为360°,而多边形的每一个外角都等于18°,所以它的边数为2018360【答案】二十【点评】本题考查的是多边形的外角和为360°,外角个数和边数相同。
难度较小。
(2012广安中考试题第14题,3分)如图5,四边形ABCD 中,若去掉一个60o 的角得到一个五边形,则∠1+∠2=_________度.思路导引:根据题意,结合平角定义以及三角形的内角和,三角形的外角性质进行解答 解析:∠1+∠2=360°-(180°-∠A )=180°+∠A =240°点评:灵活运用三角形的内角和、三角形的外角以及多边形的内角和、外角和是解答与多边形有关的角度计算问题的基础.(2012南京市,10,2)如图,∠1、∠2、∠3、∠4是五边形ABCDE 的4个外角,若∠A =1200,则∠1+∠2+∠3+∠4= .ED CB A 4321解析:由于多边形的外角和均为3600,因而∠1、∠2、∠3、∠4 及其∠A 的领补角这五个角的和为3600,∠A 的领补角为600,所以∠1+∠2+∠3+∠4=3600-600=3000.答案:3000.点评:多边形的外角和均为3600,常用这一结论求多边形的边数、外角的度数等问题.(2012年广西玉林市,5,3)正六边形的每个内角都是()A.60°B.80°C.100°D.120°分析:先利用多边形的内角和公式(n-2)•180°求出正六边形的内角和,然后除以6即可;或:先利用多边形的外角和除以正多边形的边数,求出每一个外角的度数,再根据相邻的内角与外角是邻补角列式计算.解:(6-2)•180°=720°,所以,正六边形的每个内角都是720°÷6=120°,或:360°÷6=60°,180°-60°=120°.故选D.点评:本题考查了多边形的内角与外角,利用正多边形的外角度数、边数、外角和三者之间的关系求解是此类题目常用的方法,而且求解比较简便.(2012广东肇庆,5,3)一个多边形的内角和与外角和相等,则这个多边形是A.四边形B.五边形C.六边形D.八边形【解析】多边形的内角和为(n-2)×180°,外角和为360°,列方程很容易求出边数为4.【答案】A【点评】本题考查了多边形内角和定理及外角和的应用.对多边形考查,其内角和公式是基础,公式的应用通常有已知边数求内角和或已知内角和求边数.学习的关键是对公式意义的理解.(2012北京,3,4)正十边形的每个外角等于A.18︒B.36︒C.45︒D.60︒【解析】多边形外角和为360°,因为是正十边形,360°÷10=36°【答案】B【点评】本题考查了多边形问题,多边形的外角和为360°,正多边形的每个内角相等,每个外角也相等,设每个外角为x°,10x=360,x=10°(2011江苏省无锡市,6,3′)若一个多边形的内角和为1080°,则这个多边形的边数为( )A .6B .7C .8D .9【解析】由(n -2) ·180°=1080°,则n =8。
广西各市2012年中考数学试题分类解析汇编专题10:四边形一、选择题1. (2012广西北海3分)如图,梯形ABCD中AD//BC,对角线AC、BD相交于点O,若AO∶CO=2:3,AD=4,则BC等于:【】A.12 B.8 C.7 D.6【答案】D。
【考点】梯形的性质,平行的性质,相似三角形的判定和性质。
【分析】∵梯形ABCD中AD∥BC,∴∠ADO=∠OBC,∠AOD=∠BOC。
∴△AOD∽△COB。
∵AO:CO=2:3,AD=4,∴AD :BC =AO :CO =2 3 ,4:即BC =2 : 3 。
解得BC=6。
故选D。
2. (2012广西贵港3分)如图,在直角梯形ABCD中,AD//BC,∠C=90°,AD=5,BC=9,以A为中心将腰AB顺时针旋转90°至AE,连接DE,则△ADE的面积等于【】A.10 B.11 C.12 D.13【答案】A。
【考点】全等三角形的判定和性质,直角梯形的性质,矩形的判定和性质,旋转的性质。
【分析】如图,过A作AN⊥BC于N,过E作EM⊥AD,交DA延长线于M,∵AD∥BC,∠C=90°,∴∠C=∠ADC=∠ANC=90°。
∴四边形ANCD是矩形。
∴∠DAN=90°=∠ANB=∠MAN,AD=NC=5,AN=CD。
3. (2012广西贵港3分)如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE交于点M,延长DE到H使DE=BM,连接AM、AH。
则以下四个结论:①△BDF≌△DCE;②∠BMD=120°;③△AMH是等边三角形;④S四边形ABMD=34AM2。
其中正确结论的个数是【】A.1 B.2 C.3 D.4【答案】C。
【考点】菱形的性质,全等三角形的判定和性质,等边三角形的判定和性质,平行的性质。
【分析】在菱形ABCD中,∵AB=BD,∴AB=BD=AD。
∴△ABD是等边三角形。
∴根据菱形的性质可得∠BDF=∠C=60°。
∵BE=CF,∴BC-BE=CD-CF,即CE=DF。
在△BDF和△DCE中,CE=DF;∠BDF=∠C=60°;BD=CD,∴△BDF≌△DCE(SAS)。
故结论①正确。
∴∠DBF=∠EDC。
∵∠DMF=∠DBF+∠BDE=∠EDC+∠BDE=∠BDC=60°,∴∠BMD=180°-∠DMF=180°-60°=120°,故结论②正确。
∵∠DEB=∠EDC+∠C=∠EDC+60°,∠ABM=∠ABD+∠DBF=∠DBF+60°,∴∠DEB =∠ABM 。
又∵AD ∥BC ,∴∠ADH =∠DEB ,∴∠ADH =∠ABM 。
在△ABM 和△ADH 中,AB =AD ;∠ADH =∠ABM ;DH =BM ,∴△ABM ≌△ADH (SAS )。
∴AH =AM ,∠BAM =∠DAH 。
∴∠MAH =∠MAD +∠DAH =∠MAD +∠BAM =∠BAD =60°。
∴△AMH 是等边三角形。
故结论③正确。
∵△ABM ≌△ADH ,∴△AMH 的面积等于四边形ABMD 的面积。
又∵△AMH 的面积=12AM·32AM =34AM 2, ∴S 四边形ABMD =34AM 2,S 四边形ABCD ≠S 四边形ABMD 。
故结论④小题错误。
综上所述,正确的是①②③共3个。
故选C 。
4. (2012广西河池3分)用直尺和圆规作一个以线段AB 为边的菱形,作图痕迹如图所示,能得到四边形ABCD 是菱形的依据是【 】A .一组邻边相等的四边形是菱形B .四边相等的四边形是菱形C .对角线互相垂直的平行四边形是菱形D .每条对角线平分一组对角的平行四边形是菱形【答案】B 。
【考点】菱形的判定,作图(复杂作图)。
【分析】由作图痕迹可知,四边形ABCD 的边AD=BC=CD=AB ,根据四边相等的四边形是菱形可得四边形ABCD 是菱形。
故选B 。
5. (2012广西南宁3分)如图,在平行四边形ABCD 中,AB=3cm ,BC=5cm ,对角线AC ,BD 相交于点O ,则OA 的取值范围是【 】A .2cm <OA <5cmB .2cm <OA <8cmC .1cm <OA <4cmD .3cm <OA<8cm【答案】C。
【考点】平行四边形的性质,三角形三边关系。
【分析】∵平行四边形ABCD中,AB=3cm,BC=5cm,∴OA=OC=12AC(平行四边形对角线互相平分),BC-AB<AC<BC+AB(三角形三边关系),即2cm<AC<8cm。
∴1cm<OA<4cm。
故选C。
6. (2012广西玉林、防城港3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,且AC≠BD,则图中全等三角形有【】二、填空题1. (2012广西南宁3分)有若干张边长都是2的四边形纸片和三角形纸片,从中取一些纸片按如图所示的顺序拼接起来(排在第一位的是四边形),可以组成一个大的平行四边形或一个大的梯形.如果所取的四边形与三角形纸片数的和是5时,那么组成的大平行四边形或梯形的周长是▲ ;如果所取的四边形与三角形纸片数的和是n,那么组成的大平行四边形或梯形的周长是▲ .【答案】20;3n+5或3n+4。
【考点】分类归纳(图形的变化类)。
【分析】第1张纸片的周长为8,第2张纸片所组成的图形的周长比第1张纸片的周长增加了2.第3张纸片所组成的图形的周长比前2张纸片所组成的图形的周长增加了4,按此规律可知:①纸张张数为1,图片周长为8=3×1+5;纸张张数为3,图片周长为8+2+4=3×3+5;纸张张数为5,图片周长为8+2+4+2+4=3×5+5;…;当n为奇数时,组成的大平行四边形或梯形的周长为3n+5;②纸张张数为1,图片周长为8+2=3×2+4;纸张张数为4,图片周长为8+2+4+2=3×4+4;纸张张数为6,图片周长为8+2+4+2+4+2=3×6+4;…;当n为偶数时,组成的大平行四边形或梯形的周长为3n+4。
当n=5时,3n+5=20,∴如果所取的四边形与三角形纸片数的和是5时,那么组成的大平行四边形或梯形的周长是20。
如果所取的四边形与三角形纸片数的和是n,那么组成的大平行四边形或梯形的周长是3n+5或3n+4。
2. (2012广西钦州3分)如图,在等腰梯形ABCD中,AB∥CD,AC⊥BC,∠B=60°,BC=8,则等腰梯形ABCD的周长为▲ .【答案】40。
【考点】等腰梯形的性质,锐角克角函数定义,特殊角的三角函数值。
【分析】∵∠B=60°,DC∥AB,AC⊥BC,∴∠CAB=30°=∠ACD,∠DAC=30°。
∴AD=DC=BC=8。
在R t△ABC 中,BC 8AB 161cos B 2===∠。
∴等腰梯形ABCD 的周长=AD+DC+BC+AB=40。
3. (2012广西玉林、防城港3分)如图,矩形OABC 内接于扇形MON ,当CN=CO 时,∠NMB 的度数是 ▲.【答案】30°。
【考点】矩形的性质,锐角三角函数定义,特殊角的三角函数值,圆周角定理。
【分析】连接OB ,∵CN=CO ,∴OB=ON=2OC 。
∵四边形OABC 是矩形,∴∠BCO=90°。
∴OC 1cos BOC OB 2∠==。
∴∠BOC=60°。
∴∠NMB=12∠BOC=30°。
三、解答题1. (2012广西贵港8分)如图,在□ABCD 中,延长CD 到E ,使DE =CD ,连接BE 交AD 于点F ,交AC 于点G 。
(1)求证:AF =DF ;(2)若BC =2AB ,DE =1,∠ABC =60°,求FG 的长。
【答案】解:(1)证明:如图1,连接BD 、AE ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD 。
∵DE =CD ,∴AB ∥DE ,AB =DE 。
∴四边形ABDE 是平行四边形。
∴AF =DF 。
(2)如图2,在BC 上截取BN =AB =1,连接AN ,∵∠ABC =60°,∴△ANB 是等边三角形。
∴AN =1=BN ,∠ANB =∠BAN =60°。
∵BC =2AB =2,∴CN =1=AN 。
∴∠ACN =∠CAN =12×60°=30°。
∴∠BAC =90°。
由勾股定理得:AC =22-12=3。
∵四边形ABCD 是平行四边形,∴AB ∥CD 。
∴△AGB ∽△CGE 。
∴BG GE =AB CE =AG CG 。
∴11+1=AG 3-AG ,解得AG =33。
在△BGA 中,由勾股定理得:BG =12+⎝⎛⎭⎫332=233。
∵BG GE =12, ∴GE =433,BE =433+233=23。
∵四边形ABDE 是平行四边形,∴BF =12BE =3。
∴FG =3-233=33。
【考点】平行四边形的判定和性质,全等、相似三角形的判定和性质,等边三角形的判定和性质,三角形的内角和定理,三角形中位线定理,勾股定理。
【分析】(1)连接AE 、BD 、根据AB ∥CD ,AB =CD =DE ,得出平行四边形ABDE ,即可推出答案。
(2)在BC 上截取BN =AB =1,连接AN ,推出△ANB 是等边三角形,求出CN=1=AN ,根据三角形的内角和定理求出∠BAC =90°,由勾股定理求出AC ,根据△AGB ∽△CGE ,得出BG GE=AB CE =AG CG,求出AG ,在△BGA 中,由勾股定理求出BG ,求出GE 、BE ,根据□BDEA 求出BF ,即可求出答案。
2. (2012广西来宾8分)如图,在 ABCD 中,BE 交对角线AC 于点E ,DF ∥BE 交AC 于点F .(1)写出图中所有的全等三角形(不得添加辅助线);(2)求证:BE=DF.【答案】(1)解:全等三角形有:△ABE≌△CDF,△AFD≌△CEB,△ABC≌△CDA。
(2)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC。
∴∠DAF=∠BCE。
又∵DF∥BE,∴∠AFD=∠CEB。
∴△AFD≌△CEB(AAS)。
∴BE=DF。
【考点】平行四边形的性质,平行线的性质,全等三角形的判定和性质。
【分析】(1)根据平行四边形性质推出AD=BC,AB=CD,根据SSS证出△ABC≌△CDA 即可;根据平行线性质推出∠AFD=∠CEB,∠DAF=∠BCE,根据AAS证出△AFD≌△CEB 即可;求出∠AEB=∠DFC,∠BAE=∠DCF,根据AAS证出△ABE≌△CDF即可。