分式专题讲义
- 格式:docx
- 大小:168.34 KB
- 文档页数:10
分式1. 分式的概念:形如(A,B是整式,且B中含有字母)。
要使分式有意义,作为分母的整式B的值不能为0,即B≠0。
要使分式的值为0,只能分子的值为0,同时保证分母的值不为0,即A=0,且B≠0。
1、式子① ② ③ ④中,是分式的有( )A.①② B. ③④ C. ①③ D.①②③④2、分式中,当时,下列结论正确的是( )A.分式的值为零 B.分式无意义C. 若时,分式的值为零D. 若时,分式的值为零3. 若分式无意义,则x的值是( )A. 0B. 1C. -1D.4.如果分式的值为负数,则的x取值范围是( )A. B. C. D.2. 分式的基本性质:分式的分子,分母同时乘以,或除以一个不等于0的整式,分式的值不变。
即=,=(C≠0)1.不改变分式的值,使分式的各项系数化为整数,分子、分母应乘以()A.10 B.9 C.45 D.902.下列等式:①=-;②=;③=-;④=-中,成立的是( )A.①② B.③④ C.①③ D.②④3.不改变分式的值,使分子、分母最高次项的系数为正数,正确的是()A. B. C. D.4.对于分式,永远成立的是( )A. B. C. D.5.下列各分式正确的是( )A. B. C. D.3. 最简分式及分式的约分与通分:1) 最简分式:分子分母没有公因式的分式称之为最简分式。
2) 约分:利用分式的基本性质约去分子分母中所有公因式,使所得的结果为最简分式或是整式。
3) 通分:利用分式的基本性质,对分式的分子,分母同时乘以适当的整式,不改变分式的值,把几个不同分母的分式化成相同分母的分式,这样的分式变形称为通分。
通分的第一步是确定分式间的最简公分母,一般取各分母的所有因式的最高次幂的积作为公分母,即最简公分母。
总结:分式的通分,约分前都需要将分子,分母中的多项式因式分解1.化简分式的结果是________.2.约分:(1) , (2) , (3).3.把下列各式通分:(1) , (2).(3) , (3).4. 分式的运算:1) 分式的乘除法法则:分式乘分式,分子的积作为积得分子,分母的积作为积得分母;分式除以分式,把除式的分子,分母颠倒位置后与被除式相乘。
分式讲义(一)一、知识点: 1.分式的概念:(1)分式的定义:一般地A ,B 是两个_______,且_____中含有字母,那么BA 叫分式(2)分式有意义的条件是___________不等于0 (3)分式无意义的条件是___________等于0(4)分式为零的条件是________不等于0,且_________等于0 2.分式的基本性质:(1)分式的分子分母同乘(或除以)一个__________________,分式的值_________ (2)分子,分母的公因式,系数的_________与各______因式的_________的积(3)各分式的最简公分母,各分母系数的___________与_______因式___________的积 3.分式的运算法则:(1)乘法法则________________________________________ (2)除法法则________________________________________ 二、范例讲解:题型一:考查分式的定义【例1】下列代数式中:yx y x yx yxba b a y x x -++-+--1,,,21,22π,是分式的有: .题型二:考查分式有意义的条件【例2】当x 有何值时,下列分式有意义(1)44+-x x (2)232+xx (3)122-x(4)3||6--x x (5)xx 11-题型三:考查分式的值为0的条件【例3】当x 取何值时,下列分式的值为0.(1)31+-x x (2)42||2--xx (3)653222----x xx x题型四:考查分式的值为正、负的条件【例4】(1)当x 为何值时,分式x-84为正;(2)当x 为何值时,分式2)1(35-+-x x 为负;(3)当x 为何值时,分式32+-x x 为非负数.练习:1.当x 取何值时,下列分式有意义:(1)3||61-x (2)1)1(32++-x x (3)x111+2.当x 为何值时,下列分式的值为零:(1)4|1|5+--x x (2)562522+--x x x(二)分式的基本性质及有关题型1.分式的基本性质:MB M A MB M A B A ÷÷=⨯⨯=2.分式的变号法则:ba ba ba ba =--=+--=--题型一:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、分母的系数化为整数.(1)yx yx 41313221+-(2)ba b a +-04.003.02.0题型二:分数的系数变号【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.(1)yx y x --+- (2)ba a ---(3)ba ---题型三:化简求值题【例3】已知:511=+y x ,求yxy x y xy x +++-2232的值.【例4】已知:21=-xx ,求221xx +的值.【例5】若0)32(|1|2=-++-x y x ,求yx 241-的值.练习:1.不改变分式的值,把下列分式的分子、分母的系数化为整数.(1)yx y x 5.008.02.003.0+- (2)ba ba 10141534.0-+2.已知:31=+xx ,求1242++x xx 的值. 3.已知:311=-ba,求aab b b ab a ---+232的值.4.若0106222=+-++b b a a ,求ba b a 532+-的值.(三)分式的运算1.确定最简公分母的方法:①最简公分母的系数,取各分母系数的最小公倍数; ②最简公分母的字母因式取各分母所有字母的最高次幂.2.确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数;②取分子、分母相同的字母因式的最低次幂.题型一:约分【例2】约分: (1)322016xyy x -; (3)nm mn--22; (3)6222---+x xx x题型二:通分【例1】将下列各式分别通分. (1)cb ac a bab c225,3,2--; (2)ab bb a a22,--;(3)22,21,1222--+--x xx x xx x ; (4)aa -+21,2三、作业:⒈当x 时,分式1223+-x x 有意义;当x 时,分式xx --112的值等于零.⒉分式ab c32、bc a3、acb25的最简公分母是 ;化简:242--x x = .⒊xx 231--=32(_____)-x =-32____)-x (⒋当x 、y 满足关系式________时,)(2)(5y x x y --=-255.若使下列各分式值为零,x 的值分别为:(1)2213xx +-,则x = ;(2)1233--x x ,则x = ;(3))2)(3(2+--x x x ,则x = ;(4))1)(3(1+--x x x ,则x = .6、分式xx ---112的结果是________.7、2241ba 与cab x36的最简公分母是__________.8、b a 1,1,31通分后,它们分别是_________, _________,________. 9、acb b ac c b a 107,23,5422的最简公分母是______,通分时,这三个分式的分子分母依次乘以______, , 。
第1讲分式的概念及性质【中考考纲】【知识框架】考点课标要求知识与技能目标了解理解掌握灵活应用分式的概念分式的概念√分式有意义的条件√分式值为零的条件√分式值的符号讨论√分式的基本性质分式的基本性质√分式的概念分式的基本性质分式有意义的条件分式值为零的条件分式值的符号讨论分式分式的概念1【知识精讲】一、分式的概念1.一般地,用A ,B 表示两个整式,A B 就可以表示成BA的形式.如果B 中含有字母,式子AB就叫做分式.2.分式有意义的条件:分式的分母不为零;3.分式的值为零的条件:分式的分子为零且分母不为零;4.分式值为正的条件:分式的分子分母符号相同(两种情况);5.分式值为负的条件:分式的分子分母符号不同(两种情况).【经典例题】【例1】下列各代数式:1x ,2x ,5xy ,()12a b +,x π,211x -,22a b a b --,13a-,1x y -中,整式有_____________,分式有_____________.【例2】若分式21x -有意义,则x 的取值范围是_____________.【例3】要使式子3234x x x x ++÷--有意义,则x 的取值是_____________.【例4】使分式2211a a -+有意义的a 的取值是__________.【例5】当3x =-时,下列分式中有意义的是().A.33x x +- B.33x x -+ C.()()()()3232x x x x +++- D.()()()()3232x x x x -++-【例6】x ,y 满足关系_____________时,分式x yx y-+ 无意义.【例7】当x =_________时,分式33x x -+的值是零.【例8】当x =_________时,分式293x x --的值为零.【例9】若分式223-1244x x x ++的值为0,则x 的值为_________.【例10】x 为何值时,分式2||656x x x ---:(1)值为零;(2)分式无意义?【例11】若分式21-2x x a+无论x 取何值时,分式的值恒为正,则a 的取值范围是_________.【例12】若使分式1-1m 的值为整数,这样的m 有几个?若使分式1-1m m +的值为整数,这样的m 有几个?【例13】若分式1||x a+对任何数x 的都有意义,求a 的取值范围.【例14】要使分式11x x-有意义,则x 的取值范围是_________.【例15】当x 取何值时,分式226x x -+的值恒为负?【例16】当x 取什么值时,分式25xx -值为正?2【知识精讲】一、分式的基本性质1.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变,用式子表示A A CB B C⋅=⋅,A A CB B C÷=÷(0C≠),其中A,B,C为整式.2.注意:(1)利用分式的基本性质进行分式变形是恒等变形,不改变分式值的大小,只改变形式;(2)应用基本性质时要注意0C≠,以及隐含的0B≠;(3)注意“都”,分子分母要同时乘以或除以.3.分式的通分和约分:关键是先分解因式.【经典例题】【例17】把分式yx中的x 和y 都扩大3倍,则分式的值______.【例18】如果把分式10xyx y+中的x ,y 都扩大十倍,则分式的值().A .扩大100倍B .扩大10倍C .不变D .缩小到原来的110【例19】对于分式11x -,恒成立的是().A.1212x x =--B .21111x x x +=--C .()21111x x x -=--D .1111x x -=-+【例20】下列各式中,正确的是().A .a m ab m b+=+B .0a ba b+=+C .1111ab b ac c +-=--D .221x y x y x y+=--【例21】与分式a ba b-+--相等的是().A .a b a b+-B .a b a b-+C .a b a b+--D .a b a b--+【例22】将分式253x yx y -+的分子和分母中的各项系数都化为整数,得().A .235x y x y -+B .1515610x y x y -+C .1530610x y x y -+D .253x y x y-+【例23】已知23a b =,求a bb+的值?【例24】化简:2323812a b cab c =________________.【例25】化简:22442y xy x x y-+=-________________.【例26】已知一列数1a ,2a ,3a ,4a ,5a ,6a ,7a ,且18a =,75832a =,356124234567a a a a a a a a a a a a =====,则5a 为().A .648B .832C .1168D .1944【例27】如果115x y +=,则2522x xy y x xy y-+=++____________.【例28】已知a b c d b c d a ===,则a b c da b c d-+-+-+的值是__________.【例29】化简:43211x x x x -+++.【例30】已知2215x x =+,求241x x +的值.【随堂练习】【习题1】若分式42121x x x --+的值为0,则x 的值是___________.【习题2】求证:无论x 取什么数,分式223458x x x x ---+一定有意义.【习题3】已知()1xf x x=+,求下列式子的值.111()()()(1)(0)(1)(2)(2011)(2012)201220112f f f f f f f f f ++++++++++ 【习题4】x 取______________值时,112122x +++有意义.【习题5】已知34y x =,求代数式2222352235x xy y x xy y -++-的值.【课后作业】【作业1】已知,,0a b c ≠,且0a b c ++=,则111111a b c b c c a a b ⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值是__________.【作业2】已知20y x -=,求代数式()()()()22222222xy x xy y xxy yxy+-+++-的值.【作业3】若实数x ,y 满足0xy ≠,则y xm x y=-的最大值是多少?【作业4】已知a ,b 为实数,且1ab =,设11a b P a b =---,1111Q a b =---,试比较P 和Q 的大小.【作业5】如果整数a (1a ≠)使得关于x 的一元一次方程:232ax a a x -=++的解是整数,则该方程所有整数解的和为__________.【作业6】已知分式()()811x x x -+-的值为零,则x 的值是__________.【作业7】要使分式241312a a a-++有意义,则a 的值满足__________.【作业8】已知210a a --=,且4232232932112a xa a xa a -+=-+-,求x 的值.。
《分式》讲义一.考点解析考点1:分式的运算1.分式:整式A 除以整式B ,可以表示成A B 的形式,如果除式B 中含有字母,那么称A B为分式. 注:(1)若B ≠0,则A B 有意义;(2)若B=0,则A B 无意义;(2)若A=0且B ≠0,则A B =0 2.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. 用式子表示为:(其中M≠0)3.约分:把一个分式的分子和分母的公团式约去,这种变形称为分式的约分. 4.通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.5.分式的加减法法则:(1)同分母的分式相加减,分母不变,把分子相加减;(2)异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算. 分式的加、减法法则c a ±c b =c b a ±,b a ±d c =bd ad ±bd bc =bdbc ad ±. 6.分式的乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.分式的乘、除法法则b a ·dc =bd ac ,d c b a ÷=b a ·c d =bcad . 7. 分式的乘方法则:分式的乘方就是把分子、分母各自乘方分式的乘方法则nb a ⎪⎭⎫ ⎝⎛=n n b a (n 为正整数) 8通分注意事项:(1)通分的关键是确定最简公分母,最简公分母应为各分母系救的最小公倍数与所有相同因式的最高次幂的积;(2)易把通分与去分母混淆,本是通分,却成了去分母,把分式中的分母丢掉.9分式的混合运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.10于化简求值的题型要注意解题格式,要先化简,再代人字母的值求值.考点2:分式方程及其应用1.分式方程.分母中含有未知数的方程叫做分式方程.2.分式方程的解法:解分式方程的关键是大分母(方程两边都乘以最简公分母人将分式方程转化为整式方程.3.分式方程的增根问题:⑴ 增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根l 增根;⑵ 验根:因为解分式方程可能出现增根,所以解分式方程必须验根.4.解可化为一元一次方程的分式方程的一般方法和步骤:① 去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程;② 解这个整式方程;③ 验根:把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.5.列分式方程解应用题的一般步骤:(1) 审:审清题意;(2) 设:设未知数;(3) 找:找出等量关系;(4) 列:列出分式方程;(5) 解:解这个分式方程;(6) 验:既要验证根是否为原分式方程的根,又要检验根是否符合题意;(7) 答:写出答案.二、经典考题剖析:例1 当x 取何值时,下列分式有意义?(1)51-x ; (2))2)(5(2+-+x x x ; (3)3||92+-x x ; (4)x111+. 解 (1)要使分式51-x 有意义,必须x -5≠0, ∴ x ≠5.∴ 当x ≠5时,分式51-x 有意义. (2)要使分式)2)(5(2+-+x x x 有意义,必须 (x -5)(x +2)≠0, ∴ x ≠5且x ≠-2, (3)要使分式3||92+-x x 有意义,必须|x|+3≠0.∵ |x|+3>0, ∴ x 取任意数时,分式3||92+-x x 都有意义. (4)要使分式x 111+有意义,必须1+x 1≠0, x ≠-1, x ≠0, x ≠0.∴ 当x ≠-1且x ≠0时,分式x111+有意义. 例2 (1)x 为何值时,分式62||2-+-x x x 的值为零;(2)x 为何值时,分式512-+x x 的值为-1. 解 |x|-2=0, …… ① x 2+x -6≠0,…… ②解①式得x =±2,解②式得(x -2)( x +3)≠0,即x ≠2且x ≠-3.∴ x =-2.当x =-2时,分式62||2-+-x x x 的值为零. 2x +1=-(x -5), …… ① x -5 ≠0, …… ②由①得 2x +1+x =5,即x =34, 由②得x ≠5,∴ x =34时,分式512-+x x 的值为-1. ∴ (2) 由题意得 (1) 由题意得例3 若分式xx x +-||1||的值为零,求x 的值. 解 ∵ 分式xx x +-||1||的值为零, |x|-1=0, …… ① |x|+x ≠0, …… ②由①式得|x|=1, ∴ x ±1.当x =1时,|x|+x =|1|+1=2≠0,满足②式;当x =-1时,|x|+x =|-1|-1=0,不满足②式;∴ x =1.例4 若分式xx +-12的值为负数,试确定x 的取值范围. 分析 分式xx +-12值为负数,即分式的分子2-x 与分母1+x 的符号相反. 解 ∵ xx +-12<0, ∴ 分子2-x 与分母1+x 的符号相反,2-x >0, 2-x <0, 1+x <0, 1+x >0.x <2, x >2, x <-1, x >1.∴ x <-1或x >2,∴ x 的取值范围是x <-1或x >2.例5 不改变分式的值,把下列各式中的分子、分母的各项系数都化为整数. (1)x y y x 31413251-+; (2)b a b a +-2.05.03.0. 解 (1)x y y x 31413251-+=60)3141(60)3251(⨯-⨯+x y y x =x y y x 20154012-+; (2)b a b a +-2.05.03.0=10)2.0(10)5.03.0(⨯+⨯-b a b a =ba b a 10253+-. 说明 解决这类问题,一般用下列方法:若分子、分母中各项系数都为分数,则分子、分母都乘以各项系数中分母的最小公倍数;若分子、分母中各项系数都是小数,则分子、分母同时乘以10n ;若分子、分母中各项系数有分数,又有小数,则把小数化为分数,再把分子、分母同时乘以各项系数分母的最小公倍数。
分式概念、通分、通分约分经典讲义【概念巩固】1.判断下列各式哪些是整式,哪些是分式?(1)2x+3, (2)x 7 , (3)209y +,(4) 54-m , (5) 238y y -,(6)91-x 是分式的有 ;2.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式? (1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时。
(3)x 与y 的差于4的商是 .2、对于BA 分式而言 (1)当 时,分式有意义;(2)当 时,分式无意义;(3)当 时,分式的值为0;(4)当 时,分式的值为1;(5)当 时,分式的值为-1;(6)当 时,分式的值大于0; 0;例1 、 对于分式53-x , (1)当 时,分式有意义;(2)当 时,分式无意义;(3)当 时,分式的值为0;(4)当 时,分式的值为1;(5)当 时,分式的值为-1;(6)当 时,分式的值大于0;(7)当 时,分式的值小于0; 【强化性练习】1、当x 取何值时,分式 2312-+x x (1)当 时,分式有意义;(2)当 时,分式无意义;(3)当 时,分式的值为0;(4)当 时,分式的值为1;(5)当 时,分式的值为-1;(6)当 时,分式的值大于0;(7)当 时,分式的值小于0;x -1||3、当x 取何值时,下列分式有意义? (1)x 25 (2)x x 235-+ (3)2522+-x x 答案:(1) ;(2) ;(3) ;【知识点归纳】3、分式的基本性质:4、分式的约分(1)约分的概念:(2)分式约分的依据:(3)分式约分的方法:(4)最简分式的概念:5、分式的通分※思考:分数通分的方法及步骤是什么?6、最简公分母:※找最简公分母的步骤:(1).(2).(3).(4).※分解因式找公因式的步骤:(1) 找系数:(2) 找字母:例1: 约分:()532164.1abc bc a - ()()()x y a y x a --322.2例2:不改变分式的值,把下列各式的分子分母中的各项系数都化为整数,且分子分母不含公因式=-+b a b a 41323121)1( =-+y x y x 6.02125.054)2(把下列各式约分:()x x x 525.122-- ()634.222-+++a a a a (3) db ac b a 32232432-(4) )(25)(152b a b a +-+- (5) b a ab a --2; (6) 2242xx x ---;1.约分的主要步骤:先把分式的分子,分母分解因式,然后约去分子分母中的相同因式的最低次幂,(包括分子分母中系数的最大公约数).2.约分的依据是分式的基本性质:约去分子与分母的公因式相当于被约去的公因式同时除原分式的分子分母,根据分式的基本性质,所得的分式与原分式的值相等。
《分式的乘除》讲义一、分式的概念在开始学习分式的乘除运算之前,我们先来了解一下什么是分式。
如果 A、B 表示两个整式,并且 B 中含有字母,那么式子 A/B 就叫做分式。
其中 A 叫做分子,B 叫做分母。
需要注意的是,分母 B 不能为 0,因为除数不能为 0。
例如,1/x 就是一个分式,而 2/3 虽然形式类似,但由于分母 3 是常数,不含有字母,所以它不是分式。
二、分式的基本性质分式的基本性质是分式运算的重要依据。
分式的分子与分母同时乘以(或除以)同一个不等于 0 的整式,分式的值不变。
用式子表示为:A/B = A×C/B×C,A/B = A÷C/B÷C(C 为不等于 0 的整式)例如,对于分式 2/3x,如果分子分母同时乘以 2,就变成 4/6x,分式的值不变。
利用分式的基本性质,可以对分式进行约分和通分。
约分是把一个分式的分子和分母的公因式约去,使分式化为最简分式或整式。
通分是把几个异分母的分式分别化为与原来分式相等的同分母分式。
三、分式的乘法分式的乘法法则为:分式乘以分式,用分子的积做积的分子,分母的积做积的分母。
用式子表示为:(A/B)×(C/D) = AC/BD例如:(2x/3y)×(5y/7x) =(2x×5y)/(3y×7x) = 10xy/21xy在进行分式乘法运算时,先约分再相乘可以简化计算。
四、分式的除法分式的除法法则为:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
用式子表示为:(A/B)÷(C/D) =(A/B)×(D/C) = AD/BC例如:(4x/5y)÷(8y/15x) =(4x/5y)×(15x/8y) = 6x²/y²同样,在进行分式除法运算时,也可以先将除法转化为乘法,然后进行约分和计算。
五、分式乘除的应用分式的乘除在实际生活中有很多应用。
一、知识框架 :二、知识概念:1.分式:形如A B,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a b c c c ±±= ⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a c ad cb b d bd±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c ac b d bd⨯= ⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d ad b d b c bc÷=⨯= ⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:n n n a a b b ⎛⎫= ⎪⎝⎭8.整数指数幂:⑴m n m n a a a+⨯=(m n 、是正整数) ⑵()n m mn a a =(m n 、是正整数)⑶()nn n ab a b =(n 是正整数) ⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >)⑸n nna ab b⎛⎫=⎪⎝⎭(n是正整数)⑹1nnaa-=(0a≠,n是正整数)9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).。
《分式的乘除》讲义一、引入同学们,在数学的世界里,我们已经学习了整式的运算,那今天咱们要一起来探索分式的乘除。
分式的乘除是分式运算中的重要内容,掌握好这部分知识,对于我们后续解决更复杂的数学问题将有很大的帮助。
二、分式的乘法(一)定义与法则分式的乘法法则是:分式乘以分式,用分子的积做积的分子,分母的积做积的分母。
用字母表示为:\(\frac{a}{b} \times \frac{c}{d} =\frac{ac}{bd}\)(其中\(b\neq 0\),\(d\neq 0\))(二)示例讲解例如:计算\(\frac{2x}{3y} \times \frac{9y^2}{4x^2}\)首先,我们按照乘法法则,分子相乘得到:\(2x \times 9y^2 =18xy^2\)分母相乘得到:\(3y \times 4x^2 = 12x^2y\)所以,原式的结果为:\(\frac{18xy^2}{12x^2y} =\frac{3y}{2x}\)再看一个例子:\(\frac{a^2 1}{a + 1} \times \frac{a}{a 1}\)先对分子进行因式分解:\(\frac{(a + 1)(a 1)}{a + 1} \times \frac{a}{a 1}\)约分可得:\(a\)(三)注意事项1、乘法运算时,能约分的先约分,可以简化计算。
2、约分要彻底,确保结果是最简分式。
三、分式的除法(一)定义与法则分式的除法法则是:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
用字母表示为:\(\frac{a}{b} \div \frac{c}{d} =\frac{a}{b} \times \frac{d}{c} =\frac{ad}{bc}\)(其中\(b\neq 0\),\(c\neq 0\),\(d\neq 0\))(二)示例讲解例如:计算\(\frac{x^2 4}{x + 2} \div \frac{x 2}{x}\)将除法转化为乘法:\(\frac{x^2 4}{x + 2} \times \frac{x}{x 2}\)对分子进行因式分解:\(\frac{(x + 2)(x 2)}{x + 2} \times \frac{x}{x 2}\)约分可得:\(x\)再看一个例子:\(\frac{2a}{a^2 4} \div \frac{1}{a 2}\)转化为乘法:\(\frac{2a}{(a + 2)(a 2)}\times (a 2)\)约分可得:\(\frac{2a}{a + 2}\)(三)注意事项1、做除法运算时,一定要将除式颠倒位置后再相乘。
分式专题一:分式有无意义、X 取值范围例1、当x 满足什么条件时,分式有意义?(1)12+x x(2)1122+-x x(3))1)(2(12-+-x x x(4)xx -1变式训练:当x 满足什么条件时,分式有意义? (1)521-+x x(2)x x -+243例1、已知xx 321--,x 取哪些值时;(1)y 的值是0?(2)分式无意义;(3)y 的值是正数变式训练:已知分式31822+-x x ,(1)若分式有意义,求x 的取值范围;(2)当x 取什么值时,分式为0?(3)若分式值为负数,求x 的取值范围练习题1、(1)当x 取何值时,分式21--x x 的值是非负数(2)当x 取何值时,分式mx mx -+的值是0?2、(1)已知分式91862-+-a a 的值是正整数,求a ; (2)等式)1)(1()1(1+++=+b a b a a a 成立的条件。
3、已知x 为整数,且分式1222-+x x 的值为整数,求x 的取值范围。
4、使代数式12-x x有意义的x 的取值范围是 5、已知x 为整数,且分式96291222--+--x x x 的值为整数,求满足条件的x 的和为多少?6、当x 时,分式42-x x有意义。
当x= ____时,分式xx --112的值为零。
7、已知:分式91862---a a 的值为正整数,则整数a 的值为__________。
8、m 取_________________整数值时,分式172-+m m 的值是正整数。
分式专题二:分式中的待定系数例1、当2=x 时,分式mx kx +-的值为1,求k ,m 满足的条件变式训练:分式22222)(n m anam n a m a n m ++•--的值等于5,求a例2、已知3553=-+-mAm 那么A=变式训练:1、已知)1)(3(5313+--=++-x x x x B X A ,求A 、B 的值2、已知21)2)(1(12++-=+-+x Bx A x x x ,求A 、B 的值3、.若分式12323942--+=---x Bx A x x x (A ,B 为常数),请求出A ,B 的值4、若22222222222b a b ab a b a x b a ab b ++-++=+-,求x 的值例3、若12)1)(2(14-++=-+-x xx m x x x ,则整式m=例4、已知分式ax x x +--532,当6<a 时,使分式无意义的x 的值有几个?例5、=-+=+-++-b a a b b a a 22221,01213则分式专题三:分式的化简求值例1、先化简,再求值:3962+++a a a ,其中1=a变式训练:1、先化简再计算:2,1,332=-=-+y x xx xyy 其中2、先化简再计算:1,5,4442222-==-+--y x y xy x y x 其中3、先化简再计算:1,316844422422==+-+-b a b b a a b ab a ,其中4、先化简再计算:22112=⎪⎭⎫⎝⎛--•-x x x x x ,其中5、先化简再计算:4342322=--•⎪⎭⎫ ⎝⎛---x x x x x x,其中6、先化简再计算:a a a a 11112•⎪⎪⎭⎫ ⎝⎛-+-,21-=a 其中例2、先化简再计算:13,13,22222-=+=-+-y x y x y xy x 其中变式训练:1、先化简后计算:3391629968122-=+•+-÷++-a a a a a a a ,其中2、先化简再计算:21214422222-=+=+--÷--y x y xy x y x y x y x ,,其中3、先化简再计算:321,32122-=+=---y x y x y y x x ,其中4、先化简再计算:222,21222222-=+=++-++y x yx y x y x y x ,其中5、先化简再计算:47443168922-=+-+-÷++-x x xx x x x x ,其中6、先化简再计算:102314)2015(212232-⎪⎭⎫⎝⎛+--=+++÷⎪⎭⎫ ⎝⎛++-πx x x x x x ,其中7、 2222444222-+÷⎪⎪⎭⎫ ⎝⎛--+--a a a a a a a再对a 选一个你喜欢的值代入求值分式专题四、分式与非负数、不等式、方程的结合例1、若a ,b 为实数,且0416)2(22=+-+-b b a ,则=-b a 3变式训练:1、已知()0212=-+++-y x y x ,则=--+-+-)4)(4(yx xyy x y x xy y x2、已知0)233(122=+++-b a b a ,求)()1(22b a a a b a a b a b --•--÷+的值.3、已知1962-+-b a a 与互为相反数,求式子)(b a a b b a +÷⎪⎭⎫⎝⎛-的值 4、已知0)413(3212=+++--y y x x ,求代数式132123--+y x5、已知0136422=+--+y x y x ,求22433)()1()(y x xy x y •-÷-的值例2、x x x x x 12122-÷+-,并判断当x 满足该不等式组⎩⎨⎧->-<+6)1(212x x 时代数式的符号变式训练:1、444)212(2+--÷---+x x x x x x x ,其中x 是不等式173>+x 的负整数解2、若1<x<2,化简下列各式:(1))1)(2(2+--x x x (2)1322--+x x x x3、先化简2214()244x x x x x x x +---÷--+,然后从不等式组1522x x --≥-⎧⎨>-⎩的解集中,选取一个你认 为符合题意的整数x 的值代入求值例3、已知实数的值为,那么满足、1111122+++=b a ab b a例4、已知m =例5、不解方程组⎩⎨⎧=+=-,134,32n m n m 求m m m m n n m n m -÷+----⋅-2186)2(2)2(5)4(232的值。
例6、已知3:2:=y x ,求222()[()()]x y x y xx y xy x y--÷+⋅÷的值.分式专题五、降次(整体代入)例1、若的值,求且22222220,0623,032z y x z y x xyz z y x z y x -+++≠=--=+-变式训练:1、222222222111,0x z y y z x z y x z y x -++-++-+=++求已知:的值2、已知:1=++c zb y a x ,0=++zc y b x a ,则222222cz b y a x ++的值为______。
3、已知=+++++=++)11()11()11(0ba c c abc b a c b a ,则例2、已知的值为,则yxy x y xy x y x ---+=-55311变式训练:若的值为,则yxy x xyy x y x --+-=-222311例3、先化简再求值:121)231(2+-+-÷+-x x x x x x ,其中012=--x x x 满足变式训练:1、已知0142=+-x x x 满足,求xx x x 64)1(2+---的值2、已知的值是则分式12,12422+-=--a a a a a3、已知0132=+-a a ,求⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-a a a a 1122的值4、已知06522=--b ab a ,则2222b a ab b ab a +-+-的值是 。
5、已知实数x 满足01442=+-x x ,则代数式xx 212+的值是_________。
例4、已知的值是则分式12,31242++=+a a a a a .变式训练:若2222,2b a b ab a b a ++-=则=分式专题六、新定义运算、规律题例1、已知2,42,212+=-=-=x xC x B x A ,将他们组合成C B A C B A ÷-÷-或)(的形式,请任选一种进行运算,先化简,再求值,其中3=x例2、对于正数,11)(,x x f x +=规定例如,544111)41(=+=f 则 )20151()20141(......)21()1()2(......)2014()2015(f f f f f f f +++++++++=例3、如果记21111)1(,1)(2222=+=+=f x x x f 比如,试求(1)的值,)1()0(-f f (2))()(x f x f -与有何关系?请说明理由。
例4、我们把分子为“1”的分数叫单位分数,如: (3)121,,任何一个单位分数都可以拆成两个不同单位分数的和,如613121+=,,1214131+=......(1)根据以上式子的观察,你会发现⊕+⊗=1151,请写出⊕⊗,表示的数(2)进一步思考,单位分数n1(n 是不小于2的正整数)=()()11+,请写出括号中的式子并说明理由。
例5、已知321)12(21)2(211)11(11)1()1(1)(•=+•=•=+•=+•=f f x x x f ,,则..........已知1514)(......)3()2()1(=++++n f f f f ,求n 的值例6、已知......)3,21()1(12,,=+=n n a n ,如41)11(121=+=a ,91)12(122=+=a ,...... 记)1)......(1)(1(2)1)(1(2)1(22121211n n a a a b a a b a b ---=--=-=,,,则n b b ,2为多少?分式专题七、其他情况1、已知的值求式子x x x x x x x x +÷⎪⎭⎫⎝⎛+-----=1111,201823,小丽觉得直接代入太繁琐了,你有简便方法帮她解决问题吗?2、当小明将2=x 代入代数式1111222+-÷-+-x x x x x 求值时,由于疏忽,小明代入的是2-=x ,结果与其他同学一样,小明有些纳闷,你能帮他解决问题吗?。