八年级数学-分式讲义全
- 格式:doc
- 大小:327.50 KB
- 文档页数:7
第1讲分式的概念及性质【中考考纲】【知识框架】考点课标要求知识与技能目标了解理解掌握灵活应用分式的概念分式的概念√分式有意义的条件√分式值为零的条件√分式值的符号讨论√分式的基本性质分式的基本性质√分式的概念分式的基本性质分式有意义的条件分式值为零的条件分式值的符号讨论分式分式的概念1【知识精讲】一、分式的概念1.一般地,用A ,B 表示两个整式,A B 就可以表示成BA的形式.如果B 中含有字母,式子AB就叫做分式.2.分式有意义的条件:分式的分母不为零;3.分式的值为零的条件:分式的分子为零且分母不为零;4.分式值为正的条件:分式的分子分母符号相同(两种情况);5.分式值为负的条件:分式的分子分母符号不同(两种情况).【经典例题】【例1】下列各代数式:1x ,2x ,5xy ,()12a b +,x π,211x -,22a b a b --,13a-,1x y -中,整式有_____________,分式有_____________.【例2】若分式21x -有意义,则x 的取值范围是_____________.【例3】要使式子3234x x x x ++÷--有意义,则x 的取值是_____________.【例4】使分式2211a a -+有意义的a 的取值是__________.【例5】当3x =-时,下列分式中有意义的是().A.33x x +- B.33x x -+ C.()()()()3232x x x x +++- D.()()()()3232x x x x -++-【例6】x ,y 满足关系_____________时,分式x yx y-+ 无意义.【例7】当x =_________时,分式33x x -+的值是零.【例8】当x =_________时,分式293x x --的值为零.【例9】若分式223-1244x x x ++的值为0,则x 的值为_________.【例10】x 为何值时,分式2||656x x x ---:(1)值为零;(2)分式无意义?【例11】若分式21-2x x a+无论x 取何值时,分式的值恒为正,则a 的取值范围是_________.【例12】若使分式1-1m 的值为整数,这样的m 有几个?若使分式1-1m m +的值为整数,这样的m 有几个?【例13】若分式1||x a+对任何数x 的都有意义,求a 的取值范围.【例14】要使分式11x x-有意义,则x 的取值范围是_________.【例15】当x 取何值时,分式226x x -+的值恒为负?【例16】当x 取什么值时,分式25xx -值为正?2【知识精讲】一、分式的基本性质1.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变,用式子表示A A CB B C⋅=⋅,A A CB B C÷=÷(0C≠),其中A,B,C为整式.2.注意:(1)利用分式的基本性质进行分式变形是恒等变形,不改变分式值的大小,只改变形式;(2)应用基本性质时要注意0C≠,以及隐含的0B≠;(3)注意“都”,分子分母要同时乘以或除以.3.分式的通分和约分:关键是先分解因式.【经典例题】【例17】把分式yx中的x 和y 都扩大3倍,则分式的值______.【例18】如果把分式10xyx y+中的x ,y 都扩大十倍,则分式的值().A .扩大100倍B .扩大10倍C .不变D .缩小到原来的110【例19】对于分式11x -,恒成立的是().A.1212x x =--B .21111x x x +=--C .()21111x x x -=--D .1111x x -=-+【例20】下列各式中,正确的是().A .a m ab m b+=+B .0a ba b+=+C .1111ab b ac c +-=--D .221x y x y x y+=--【例21】与分式a ba b-+--相等的是().A .a b a b+-B .a b a b-+C .a b a b+--D .a b a b--+【例22】将分式253x yx y -+的分子和分母中的各项系数都化为整数,得().A .235x y x y -+B .1515610x y x y -+C .1530610x y x y -+D .253x y x y-+【例23】已知23a b =,求a bb+的值?【例24】化简:2323812a b cab c =________________.【例25】化简:22442y xy x x y-+=-________________.【例26】已知一列数1a ,2a ,3a ,4a ,5a ,6a ,7a ,且18a =,75832a =,356124234567a a a a a a a a a a a a =====,则5a 为().A .648B .832C .1168D .1944【例27】如果115x y +=,则2522x xy y x xy y-+=++____________.【例28】已知a b c d b c d a ===,则a b c da b c d-+-+-+的值是__________.【例29】化简:43211x x x x -+++.【例30】已知2215x x =+,求241x x +的值.【随堂练习】【习题1】若分式42121x x x --+的值为0,则x 的值是___________.【习题2】求证:无论x 取什么数,分式223458x x x x ---+一定有意义.【习题3】已知()1xf x x=+,求下列式子的值.111()()()(1)(0)(1)(2)(2011)(2012)201220112f f f f f f f f f ++++++++++ 【习题4】x 取______________值时,112122x +++有意义.【习题5】已知34y x =,求代数式2222352235x xy y x xy y -++-的值.【课后作业】【作业1】已知,,0a b c ≠,且0a b c ++=,则111111a b c b c c a a b ⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值是__________.【作业2】已知20y x -=,求代数式()()()()22222222xy x xy y xxy yxy+-+++-的值.【作业3】若实数x ,y 满足0xy ≠,则y xm x y=-的最大值是多少?【作业4】已知a ,b 为实数,且1ab =,设11a b P a b =---,1111Q a b =---,试比较P 和Q 的大小.【作业5】如果整数a (1a ≠)使得关于x 的一元一次方程:232ax a a x -=++的解是整数,则该方程所有整数解的和为__________.【作业6】已知分式()()811x x x -+-的值为零,则x 的值是__________.【作业7】要使分式241312a a a-++有意义,则a 的值满足__________.【作业8】已知210a a --=,且4232232932112a xa a xa a -+=-+-,求x 的值.。
分式1. 分式的概念:形如BA(A,B 是整式,且B 中含有字母)。
要使分式有意义,作为分母的整式B 的值不能为0,即B ≠0。
要使分式的值为0,只能分子的值为0,同时保证分母的值不为0,即A=0,且B ≠0。
1、式子①x 2 ②5y x + ③a -21 ④1-πx中,是分式的有( )A .①② B. ③④ C. ①③ D.①②③④2、分式13-+x ax 中,当a x -=时,下列结论正确的是( )A .分式的值为零 B.分式无意义C. 若31-≠a 时,分式的值为零D. 若31≠a 时,分式的值为零3. 若分式1-x x无意义,则x 的值是( ) A. 0 B. 1 C. -1 D.1±4.如果分式x 211-的值为负数,则的x 取值范围是( )A.21≤xB.21<xC.21≥xD.21>x2. 分式的基本性质:分式的分子,分母同时乘以,或除以一个不等于0的整式,分式的值不变。
即B A =CB C A ⋅⋅ ,B A =CB C A ÷÷ (C ≠0) 1.不改变分式的值,使分式115101139x yx y -+的各项系数化为整数,分子、分母应乘以(• ) A .10 B .9 C .45 D .902.下列等式:①()a b c --=-a b c -;②x y x -+-=x y x -;③a b c -+=-a bc+;④m n m --=-m n m-中,成立的是( )A .①②B .③④C .①③D .②④3.不改变分式2323523x xx x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• )A .2332523x x x x +++-B .2332523x x x x -++-C .2332523x x x x +--+D .2332523x x x x ---+4.对于分式11-x ,永远成立的是( ) A .1211+=-x x B. 11112-+=-x x x C. 2)1(111--=-x x x D. 3111--=-x x 5.下列各分式正确的是( )A.22a b a b =B. b a b a b a +=++22C. a a a a -=-+-11122D. xx xy y x 2168432=--3. 最简分式及分式的约分与通分:1)最简分式:分子分母没有公因式的分式称之为最简分式。
八年级上数学分式知识点一、分式的概念分式也叫有理数,是数的一种表现形式,其中分子和分母都是整数,分母不能为0。
分式可以写成a/b的形式,a为分子,b为分母。
二、分式的化简1.因式分解法将分子和分母进行因式分解,然后将公因式约掉。
例如:(6a^2b)/(9ab^2) = (2a)/(3b)2.通分化简法将两个分母的最小公倍数作为分母,分子分别乘以分母的倍数,然后约掉公因式。
例如:(3/4) + (1/6) = (9/12) + (2/12) = (11/12) 3.除法化简法将除法转换成乘法,分子不变,分母倒过来。
例如:(3/4) ÷ (2/5) = (3/4) × (5/2) = (15/8)三、分式的加减1.通分后合并分子例如:(2/3) + (1/4) = (8/12) + (3/12) = (11/12) (1/2) - (1/3) = (3/6) - (2/6) = (1/6)2.需要先找到一个公因式例如:(1/4x) + (3/5) = (5/20x) + (12/20) = (5+12)/20x = (17/20x) (1/2y) - (2/3x) = (3/6y) - (4/6x) = (3x-4y)/6xy四、分式的乘法将分子相乘,分母相乘,然后约掉公因式。
例如:(3/4) × (2/5) = (6/20) = (3/10)五、分式的除法将除号转为乘号,然后取倒数,分子同分母约掉公因式。
例如:(3/4) ÷ (2/5) = (3/4) × (5/2) = (15/8)六、分式的绝对值分式的绝对值是分子分母的绝对值之商,如果分子分母符号相同,结果为正,如果符号不同,结果为负。
例如:|-2/3| = 2/3|-2/-3| = 2/3七、分式的倒数将分数的分子和分母交换位置,得到一个新的分数,即原分数的倒数。
例如:倒数是 4/5 的分数为 5/4以上就是八年级上数学分式知识点的详细介绍,希望同学们在学习数学的过程中能够掌握这些知识点,并且通过练习提高自己的数学水平。
第15章分式的计算与化简求值 人教版八年级上册数学讲义一、内容复习1、最简分式的定义:一个分式的分子与分母没有公因式时,叫最简分式.2、通分的定义:把几个异分母的分式分别化为与原来的分式相等的同分母的分式,这样的分式变形叫做分式的通分.通分的关键是确定最简公分母.①最简公分母的系数取各分母系数的最小公倍数.②最简公分母的字母因式取各分母所有字母的最高次幂的积.通分:,.二、知识点一 分式的乘、除法法则【知识梳理】1. 分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母,用式子表示为b a ·d c =bdac . 2. 分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示为b a ÷d c =b a ·c d =bcad . 【提醒】1. 分式与分式相乘,若分子、分母是单项式,可先将分子、分母分别相乘,然后约去公因式,化为最简分式;若分子、分母是多项式,先把分子、分母分解因式,看能否约分,然后再相乘.2.当整式与分式相乘时,要把整式(看做是分母为1的式子)与分式的分子相乘作为积的分子,分式的分母不变.当整式是多项式时,同样要先分解因式,看能否约分,然后再相乘.3.分式的除法运算可以转化为分式的乘法运算,若除式(或被除式)是整式时,可以看做是分母是1的式子,然后按照分式除法法则计算.4.分式的乘除运算结果要通过约分化为最简分式(分式的分子、分母没有公因式)或整式的形式.5.分式的乘除混合运算,如果没有其他附加条件(如括号等),则应按照由左到右的顺序进行计算.【例题精讲】例1、计算2x 3÷的结果是( )A .2x 2B .2x 4C .2xD .4【分析】原式利用除法法则变形,计算即可得到结果.【解答】解:原式=2x 3•x=2x 4,故选:B .【强化练习】1、(1)x m 86·m x 32 (2)3ab 2÷ab 62、化简的结果是( )A .B .C .D .知识点二 分式的乘方法则【知识梳理】分式的乘方法则:分式乘方要把分子、分母分别乘方。
八年级上册分式
八年级上册数学中,分式是其中的一个重要内容。
分式是数学中表示数量关系的一种代数式,其分子和分母都是代数式,分母不能为0。
分式的知识点包括分式的定义、分式的性质、分式的约分、通分以及分式的运算。
以下是对这些知识点的详细解释:
1.分式的定义:一般地,如果A、B(B不等于零)表示两个整式,且B中含有字
母,那么式子A/B就叫做分式,其中A称为分子,B称为分母。
2.分式的性质:
•分式的分子和分母同乘或除以同一个不为0的整式,分式的值不变。
即:BA =B×CA×C=BA÷C(C≠0)
•分式的符号变化规律:分子、分母、分式本身这三项,其中任何两项交换位置,分式不变。
3.分式的约分:把一个分式的分子和分母的公因数约去,这种变形称为分式的约
分。
约分的步骤是:找分子与分母的公因式;约去分子与分母的公因式。
4.分式的通分:通分就是把几个异分母的分式分别化为与原来的分式相等的同分
母的分式,这种变形称为分式的通分。
通分的步骤是:求出原来几个分式的最简公分母;根据等量代换的原则,把原来几个异分母的分式分别化为与原来的分式相等的同分母的分式。
5.分式的运算:包括加、减、乘、除等运算。
在进行这些运算时,要注意运算顺
序和运算法则。
分式的化简 求值 与证明考点•方法•破译1. 分式的化简、求值先化简,后代入求值是代数式化简求值问题的基本策略,有条件的化简求值题,条件可直接使用,变形使用,或综合使用,要与目标紧紧结合起来;无条件的化简求值题,要注意挖掘隐含条件,或通过分式巧妙变形,使得分子为0或分子与分母构成倍分关系特殊情况,课直接求出结果.2. 分式的证明证明恒等式,没有统一的方法,具体问题还要具体分析,一般分式的恒等式证明分为两类:一类是有附加条件的,另一类是没有附加条件的,对于前者,更要善于利用条件,使证明简化.经典•考题•赏析【例1】先化简代数式(11x x -++221x x -)÷211x -,然后选取一个使原式有意义的x 的值代入求值.【解法指导】本题化简并不难,关键是x 所取的值的选择,因为原式的分母为:x +1,x 2-1,要是原式有意义,则x +1≠0且x 2-1≠0故x ≠1,因而x 可取的值很多,但不能取x ≠1解:(11x x -++221x x -)÷211x - =[2(1)(1)(1)x x x -+-+2(1)(1)x x x +-]·(x +1)(x -1)=(x -1)2+2x =x 2+1 当x =0时,原式=1. 【变式题组】01.先化简,再求值222366510252106a a a a a a a a--+÷•++++,其中a =.02.已知x =2,y =22211x y x y x y x y xy ⎛⎫⎛⎫+--•- ⎪ ⎪-+⎝⎭⎝⎭的值03.先化简:222a b a ab --÷(a +22ab b a+),当b =-1时,请你为a 任选一个适当的数代入求值.04.先将代数式(x -1x x +)÷(1+211x -)化简,再从-3<x <3的范围内选取一个合适的整数x 代入求值.【例2】已知1x+1y =5,求2322x xy y x xy y -+++的值.【解法指导】解法1:由已知条件115x y+=,知xy ≠0.将所求分式分子、分母同除以xy ,用整体代入法求解.解法2:由已知条件1x+1y =5,求得x +y =5xy ,代入求值. 解:方法1:∵1x+1y =5,,∴x ≠0,y ≠0,xy ≠0将待求分式的分子、分母同除以xy . 原式=(232)(2)x xy y xy x xy y xy -+÷++÷=112()311()2x y x y+-++=2552⨯+=1.方法2:由1x+1y =5知x ≠0,y ≠0,两边同乘以xy ,得x +y =5xy 故2322x xy y x xy y -+++=2()()2x y x y xy +++=25352xy xy xy xy ⨯-⨯+=77xy xy=1.【变式题组】 01.(天津)已知1a -1b =4,则2227a ab ba b ab---+的值等于( ) A .6 B .-6 C . 215 D . 27-02.若x +y =12,xy =9,求的22232x xy yx y xy+++值.03.若4x -3y -6z =0,x +2y -7z =0,求22222223657x y z x y z ++++的值.【例3】(广东竞赛)已知231xx x -+=1,求24291x x x -+的值. 【解法指导】利用倒数有时会收到意外的效果.解:∵2131x x x =-+∴231x x x -+=1∴x -3+1x =1∴x +1x =4. 又∵42291x x x -+=x 2-9+21x =(x -1x )2-11=16-11=5. ∴24291x x x -+=15. 【变式题目】01.若x +1x=4,求2421x x x ++的值.02.若a 2+4a +1=0,且4232133a ma a ma a++++=5求m .【例4】已知ab a b +=13,bc b c +=14,ac a c +=15,求abcab ac bc++的值. 【解法指导】将已知条件取倒数可得a b ab +=3,b c bc +=4,a cac+=5,进而可求111a b c++的值,将所求代数式也取倒数即可求值. 解:由已知可知ac 、bc 、ab 均不为零,将已知条件分别取倒数,得345a babb c bca cac+⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩,即113114115a b c b a c ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ 三式相加可得1a +1b +1c =6,将所求代数式取倒数得ab ac bc abc ++=1a +1b +1c =6,∴abc ab ac bc ++=16.【变式题组】 01.实数a 、b 、c 满足:ab a b +=13,bc b c +=14,ac a c +=15,则ab +bc +ac = . 02.已知xy x y +=2,xzx z+=3,yz y z +=4,求7x +5y -2z 的值.【例5】若a b c +=c b a +=a c b +,求()()()a b c b a c abc+++的值. 【解法指导】观察题目易于发现,条件式和所求代数式中都有a +b ,c +b ,a +c 这些比较复杂的式子,若设a b c +=c b a +=a cb+=k ,用含k 的式子表示a +b ,c +b ,a +c 可使计算简化. 解:设a b c +=c b a +=a c b+=k ,则a +b =ck ,c +b =ak ,a +c =bk ,三式相加,得2(a+b +c )=(a +c +b )k .当a +b +c ≠0时,k =2;当a +b +c =0时,a +b =-c ,1a bc+=-,∴k =-1.∴当k =2时,()()()a b c b a c abc +++=k 3=8;当k =-1时,()()()a b c b a c abc+++=k3=-1.【变式题组】01.已知x 、y 、z 满足2x=3y z -=5z x +,则52x y y z -+的值为( ) A .1 B . 13 C . 13- D . 1202.已知a 、b 、c 为非零实数,且a +b +c ≠0,若a b c c +-=a b c b -+=a b ca-++,求()()()a b b c c a abc+++的值.【例6】已知abc =1,求证:1a ab a +++1b bc b +++1cac c ++=1【解法指导】反复整体利用,选取其中一个的分母不变,将另外两个的分母化为与它的分母相同再相加.证明:∵1a ab a ++=a ab a abc ++=11b bc ++1c ac c ++=c ac c abc ++=11a ab ++=abc a abc ab ++=1cbbc b++∵1a ab a +++1b bc b +++1c ac c ++=11bc b +++1b bc b +++1bc bc b ++=1 【变式题组】01.已知1a b +=1b c +=1c a+,a ≠b ≠c 则a 2+b 2+c 2=( ) A .5 B . 72 C .1 D . 1202.已知不等于零的三个数a b c 、、满足1111a b c a b c++=++.求证:a 、b 、c 中至少有两个数互为相反数.03.若:a 、b 、c 都不为0,且a +b +c =0,求222222222111b c a c a b a b c+++-+-+-的值.演练巩固 反馈提高01.已知x -1x=3,那么多项式x 3-x 2-7x +5的值是( ) A .11 B .9 C .7 D . 5 02.若M =a +b ,N =a -b ,则式子M N M N +--M NM N-+的值是( )A . 22a b ab -B . 222a b ab -C . 22a b ab+ D . 003.已知5x 2-3x -5=0,则5x 2-2x -21525x x --= . 04.设a >b >0,a 2+b 2-6ab =0,则a b b a+-= .05.已知a =1+2n ,b =1+12n ,则用含a 的式子表示b 是 .06. a +b =2,ab =-5,则b aa b+= .07.若a =534-⎛⎫- ⎪⎝⎭,b =-534⎛⎫ ⎪⎝⎭,c =534-⎛⎫⎪⎝⎭,试把a 、b 、c 用“<”连接起来为 .08.已知1n m -⎛⎫⎪⎝⎭=53,求的222m m n m n m n m n +-+--值为 . 09.若2x =132,13y⎛⎫⎪⎝⎭=81,则x y 的值为 .10.化简24322242c b c b a b a ca -⎛⎫⎛⎫⎛⎫•-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为 .11.先化简,再求值:221122x y x y x x y x +⎛⎫--+ ⎪+⎝⎭,其中x,y =3.12.求代数式的值:222222144x x x x x x -++÷--,其中x =2.13.先化简,再求值:22121124x x x x ++⎛⎫-÷⎪+-⎝⎭,其中x =-3.14.已知:2352331x A Bx x x x -=+---+,求常数A 、B 的值. 15.若a +1a =3,求2a 3-5a 2-3+231a +的值.培优升级 奥赛检测01.若a b =20,b c =10,则a b b c++的值为( ) A . 1121 B . 2111C . 11021D . 2101102.已知x +y =x -1+y -1≠0,则xy 的值为( )A . -1B . 0C . 1D . 203.已知x +1x =7(0<x <1)的值为( ) A . -7 B .-5 C . 7 D . 5 04.已知正实数a 、b 满足ab =a +b ,则b aab a b+-=( ) A . -2 B .12 C . 12- D . 2 05.已知1a -a =1,则1a+a 的值为( )A .B .C .D .1 06.已知abc ≠0,并且a +b +c =0,则a (1b +1c )+b (1a +1c )+c (1b +1a)的值为( ) A . 0 B . 1 C . -1 D .-3 07.设x 、y 、z 均为正实数,且满足z x y x y y z z x<<+++,则x 、y 、z 三个数的大小关系是( )A . z <x <yB . y <z <xC . x <y <zD . z <y <x08.如果a 是方程x 2-3x +1=0的根,那么分式543226213a a a a a-+--的值是 .09.甲乙两个机器人同时按匀速进行100米速度测试,自动记录表表明:当甲距离终点差1米,乙距离终点2米;当甲到达终点时,乙距离终点1.01米,经过计算,这条跑道长度不标准,则这条跑道比100米多 . 10.若a +1b =1,b +1a =1,求c +1a的值.11.已知a 、b 、c 、x 、y 均为实数,且满足ab +a b =341-x y ,+bc b c =31x ,+cac a=341+x y ,++abc ab bc ca =112(y )(其中)求x 的值.12.当x 分别取值12009,12008,12007, (1)2,1,2,……2007,2008,2009时,分别计算代数式221-1+x x的值,将所得的结果相加,其和是多少?13.在一列数x 1,x 2,x 3…中,已知x 1=1,且当k ≥2时,x k =x k -1+1-4([14k --24k -])(取整符号[a ]表示不超过实a 数的最大整数,例如[2.6]=2,[0.2]=0)求x 2010的值.14. 已知对于任意正整数n ,都有a 1+a 2+…+a n =n 3,求211a -+311a -+…+10011a -的值.。
分式一、从分数到分式:(1).分式定义:一般地,形如A B的式子叫做分式,其中A 和B 均为整式,B 中含有字母。
整式和分式称为有理式。
注意:判断代数式是否是分式时不需要化简。
例:下列各式πa ,11x +,15x y +,22a b a b --,23x -,0•中,是分式的有___ ________;是整式的有_____ ______;是有理式的有___ ______.练习:1.下列各式:①312-x ;②x x 22;③21x;④πv .其中分式有 。
2.在代数式m 1,41,xy y x 22,y x +2,32a a +中,分式的个数是 。
(2)分式有意义的条件:分母不等于0.例:下列分式,当x 取何值时有意义.(1)2132x x ++; (2)2323x x +-. 练习:1.当___________________时,分式)2)(1(--x x x 有意义. 2.当____________________时,分式2)2(--x x x 无意义. 3.当m____________时,分式m m 4127-+有意义. 4.下列各式中,不论字母x 取何值时分式都有意义的是( ) A.121+x B.15.01+x C.231x x - D.12352++x x 5.下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x+ D .2221x x + 7.使分式||1x x -无意义,x 的取值是( ) A .0 B .1 C .1- D .1±8.应用题:一项工程,甲队独做需a 天完成,乙队独做需b 天完成,问甲、乙两队合作,需________天完成.(3)分式的值为0:分子等于0,分母不等于0例:1.当x=____________时,分式xx x -2的值为0, 2.当x _______时,分式2212x x x -+-的值为零.3.当x _______时,分式15x -+的值为正;当x ______时,分式241x -+的值为负. 4.下列各式中,可能取值为零的是( ) A .2211m m +- B .211m m -+ C .211m m +- D .211m m ++ 练习:1.分式24x x -,当x _______时,分式有意义;当x _______时,分式的值为零. 2.若分式34922+--x x x 的值为零,则x 的值为 3.当m =________时,分式2(1)(3)32m m m m ---+的值为零. 4.若分式23xx -的值为负,则x 的取值是( ) A.x <3且x≠0 B.x>3 C.x <3 D.x >-3且x≠05.分式31x a x +-中,当x a =-时,下列结论正确的是( ) A .分式的值为零; B .分式无意义C .若13a -≠时,分式的值为零;D .若13a ≠时,分式的值为零 6.下列各式中,可能取值为零的是( ) A .2211m m +- B .211m m -+ C .211m m +- D .211m m ++7.已知123x y x-=-,x 取哪些值时:(1)y 的值是正数;(2)y 的值是负数;(3)y 的值是零;(4)分式无意义.8.若分式212x x -+的值是正数、负数、0时,求x 的取值围.9.已知34=y x ,求2222532253yxy x y xy x -++-的值. 10.已知13x y 1-=,求5352x xy y x xy y +---的值.二、分式的基本性质:分式的分子或分母同时乘以或除以一个不等于0的整式,分式的值不变。
例:1.不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数:y x y x 32213221-+= b a b a -+2.05.03.0= 2.不改变分式的值,使下列分式的分子与分母都不含“-”号。
1.a b 65--= 2.y x 3-= 3.nm -2= 4. x yz ---= 3.填空:(1)ab b a 3)(32=; (2))(3432b a ab = 4.当a_____________时,aa a a a a 51)1)(1(52++-+=+成立. 5.对有理数x ,下列结论中一定正确的是( )A.分式的分子与分母同乘以|x|,分式的值不变B.分式的分子与分母同乘以x 2,分式的值不变C.分式的分子与分母同乘以|x+2|,分式的值不变D.分式的分子与分母同乘以x 2+1,分式的值不变6.对于分式11+a ,总有( ) A.2211-=-a a B.11112-+=-a a a (a≠-1) C.11112--=-a a a D.1111+-=-a a 7.填空:(1))(3432ab ac b a =; (2))()(2b a b a b a -=+-. 分式约分:化简分式(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.分式约分的基本步骤:1 分子分母能进行因式分解的式子分解因式。
2 找出分子分母的最大公因式。
3 分子分母同时除以最大公因式。
4 最间分式的分子分母不含有公因式或公因数。
例:1.找出下列分式中分子分母的公因式: ⑴ac bc 128 ⑵233123ac c b a ⑶ ()2xy y y x + ⑷ ()22y x xy x ++ ⑸()222y x y x -- 2把下列分式化为最简分式:a a 1282=_____ c ab bc a 23245125=_______ ()()b a b a ++13262=_________ 221326b a b a -+=________ab a b a +-222= 练习1.分式434y x a +,2411x x --,22x xy y x y-++,2222a ab ab b +-中是最简分式的有( ) A .1个 B .2个 C .3个 D .4个2.下列分式中是最简分式是( ) A .2222n m n m +- B .9322-+m m m C.322)(y x y x +- D. 222)(n m n m -- 3.约分:(1)22248ab b a (2)()()a ab a b a --1241822 (3)12122+--x x x4.约分:(1)45322515ba b a - (2)242+-x x5.不改变分式的值,使分式的分子、分母不含负号. (1)x x 233---= (2)232+--x =6.化简求值: (1)xyx y x 84422--其中41,21==y x 。
(2)96922+--a a a 其中5=a分式通分:把几个异分母的分数化成同分母的分数,而不改变分数的值,叫做分数的通分。
步骤:先求出几个异分母分式的分母的最简公分母,作为它们的公分母,把原来的各分式化成用这个公分母做分母的分式。
找最简公分母的步骤:(1)把分式的分子与分母分解因式;(2)取各分式的分母中系数最小公倍数;(3)各分式的分母中所有字母或因式都要取到;(4)相同字母(或因式)的幂取指数最大的;(5)所得的系数的最小公倍数与各字母(或因式)的最高次幂的积(其中系数都取正数)即为最简公分母。
例:1.求分式4322361,41,21xy y x z y x 的最简公分母。
2. 求分式2241x x -与412-x 的最简公分母。
3. 通分:(1)xy y x x y 41,3,22; (2)22225,103,54ac b b a c c b a -(3)42,361,)42(222---x x x x x x , (4)232,1122+--x x x x练习:1、通分:y x y y x +-22;)1( 1;1)2(23----x x x x (3)21,42b a ac(4)221,939a a a --- (5)))((1,))((1,))((1b ac a a c c b c b b a ------2.求下列各组分式的最简公分母:(1)22265,41,32bc c a ab ; (2)c m n m mn 32291,61,21;(3)))((1,1b a a b b a +--; (4)2)3(21,)3)(2(1,)2(31++--x x x x x ; (5)11,1,2222-++x x x x x 。
3.通分: (1)z x y z x y 43,3,2; (2)c b a ab c a b 23326,43-; (3)232465,32,81xz z y x y x -。
(4))2(,)2(++x b x x a y ; (5)y x x y x 221,)(1--; (6)2)2(34,)2(25x x --;(7)222231,)(1y xy x y x +--; (8)2293,125a a a a a --+。
(9)21,2,23122423-+--+-a a a a a a a ;(10)203,125,1584222----+-+-+x x x x x x x x x ;(11)))((,))((a b c b c b c b b a b a --+--+;(12)))((1,))((1,))((1b c a c a b c b c a b a ------。