2017-2018学年广东省广州市天河区高一(上)期末数学试卷
- 格式:pdf
- 大小:801.97 KB
- 文档页数:16
上学期高一数学期末模拟试题06一、选择题:(每小题只有一个正确答案 ,每题5分,共60分) 1下面四个条件中,能确定一个平面的条件是( ) A .空间中任意三点B .空间中两条直线C .一条直线和一个点D .两条平行直线 2 直线053=+-y x 的倾斜角是( )A 30°B 120°C 60°D 150°3 设()338x f x x =+-,用二分法求方程3380(1,2)x x x +-=∈在内近似解的过程中, 计算得到(1)0,(1.5)0,(1.25)0,f f f <>< 则方程的根落在区间( )内.A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D.不能确定 4直线L 1:ax +3y+1=0, L 2:2x +(a +1)y+1=0, 若L 1∥L 2,则a =( ) A .-3 B .2 C .-3或2 D .3或-25点P(x ,y)在直线x +y-4=0上,O 是坐标原点,则│OP│的最小值是( ) A .7 B. 6 C.2 2 D. 56 设入射光线沿直线 y=2x +1 射向直线 y=x , 则被y=x 反射后,反射光线所在的 直线方程是( )A .x -2y-1=0B .x -2y+1=0C .3x -2y+1=0D .x +2y+3=0 7 下列命题中错误的是( ).A. 若//,,m n n m βα⊥⊂,则αβ⊥B. 若α⊥β,a ⊂α,则a ⊥βC. 若α⊥γ,β⊥γ,l αβ=,则l ⊥γD. 若α⊥β,αβ=AB ,a //α,a ⊥AB ,则a ⊥β8.三个平面两两垂直,它们的三条交线交于点O ,空间一点P 到三条交线的距离分别为2、5、7,则│O P│长为( )A.33B.22 C.23 D.329.如图,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆A.4πB.54πC.πD.32π 10直线5x-2y-10=0在x 轴上的截距为a,在y 轴上的截距为b,则( ) A .a=2,b=5 B .a=2,b=5- C .=2-,b=5 D .a=2-,b=5-11.A 、B 两点相距4cm ,且A 、B 与平面α的距离分别为3cm 和1cm ,则AB 与平面α所成的角是 ( ) A .30° B .90°C .30°或90°D .30°或90°或150°12在一个锥体中,作平行于底面的截面,若这个截面面积与底面面积之比为 1∶3,则锥体被截面所分成的两部分的体积之比为( )A .1∶3B .1∶9C .1∶ 33D .1∶)133(-第II 卷(非选择题 共90分)二、填空题:(本题共4小题,每小题5分,共20分)13.若方程0xa x a --=有两个解,则a 的取值范围 14.如图,在透明材料制成的长方体容器ABCD —A 1B 1C 1D 1 内灌注一些水,固定容器底面一边BC 于桌面上,再将容器倾斜 根据倾斜度的不同,有下列命题:(1)水的部分始终呈棱柱形; (2)水面四边形EFGH 的面积不会改变;(3)棱A 1D 1始终 与水面EFGH 平行;(4)当容器倾斜如图所示时,BE ·BF 是定值,其中所有正确命题的序号是 。
2.f(x)是( )D.4.设 0 <x 癸兀,且 J 1 —sin2x =sinx —cosx ,贝5.已知角e 的顶点与原点重合,始边与x 轴的正半轴重合, 终边在直线 y = 2x 上,则 sin2^ =(A. 一45)3 - 6.已知向量a = ( sn6,2), b =cos^ )且 a _L b ,其中0 w 侦,兀),则sin^ - cosB 等于(2、5 53.5 57.若x °是方程 x Ig x = 2的解,则x 。
属于区间A.1(0,2)B ・(2,1)C. 1,2D.2,38.已知JIsin(: -])7 2,cos2-10 7—,sin"=A.B.C.D.9.在^ABC 中,M 是BC 的中点,点P 在AM 上且满足 AA 2PM本文部分内容来自网络,本人不为其真实性负责,如有异议请及时联系,本人将予以删除上学期高一数学期末模拟试题012 也 2 - - _― 一,,设函数 f (x) =cos (x +—)—sin (x +—), x w R ,则函数 44A.最小正周期为兀的奇函数B.最小正周期为C.最小正周期为直的奇函数2D.最小正周期为直的偶函数23.若函数f (x) =sin x + m —1是奇函数,贝U m=()A. 17 二A. 0〈X £B B .— <x < ——则PA •(面PC )等于(1. 、选择题(本大题共 12道题,每小题 —4 已知cosa = —,且是第四象限的角5 A . 4 B. 33 45分,共60分),则 tan(n -口)=(C.10.若f (x) =3sin(2x +中)+ a ,对任意实数x 都有f (三+ x) = f (兰—x), 3 3且f (当=-4,贝U 实数a 的值等于( ) 3 A. — 1 B. — 7 或—1 C. 7 或 1 D. ± 7 11 .已知 0 >0,函数 f (x) =sin(^x + 生) 4 在(二,n )上单调递减.则缶的 2 取值范围( )A . [―,。
上学期高一数学期末模拟试题032一 一1.直线3ax — y —1 = 0与直线(a — 3)x + y + 1 = 0垂直,则a 的值是()11A .— 1 或B . 1 或;331 、 1 、 c.— 3或—1D .— § 或 12 1解析:选 D.由 3a (a — 3) + ( — 1) x 1 = 0,得 a = — 3或 a = 1 2.有一个几何体的三视图及其尺寸如图 (单位:cm ),则该几何体的表面积及体积为3 .把直径分别为6 cm,8 cm,10 cm 的三个铁球熔成一个大铁球,则这个大铁球的半径为 A . 3 cmB. 6 cmC. 8 cmD. 12 cm=[2 — 1 — t _2+ [t — 1— t _2+ t — t 2t 厂2+ 9 t -5 +5 ,,d (A 、B )min = -,5即A B 两点之间的最短距离为誓5. (2011年咼考四川卷)1 1 , l 2 , 13是空间三条不同的直线,则下列命题正确的是 (2, 3 A . 24 n cm 12 n cm 23C. 24 n cm ' 36 n cm2B. 15 n cm ' 12 nD.以上都不正确解析:选A.由三视图知该几何体为一个圆锥,其底面半径为 4 cm ,求表面积时不要漏掉底面积. 3cm3 cm,母线长为5 cm,高为解析:选B.设大铁球的半径为 4 3 4R 则有 T n R = 3 n3 3Z6 3 483. (6)+ 4n•(2)+?3.4 /10、3 3n •(2), 解得R= 6.4 .已知点 A (1 — t, 1 — t , t ),A上5c症.5解析:选C.由距离公式d (A 、 B (2 , t , t ),则 A B 晋B 两点距离的最小值为(D. 2B) =■ 5t 2— 2t + 2 = 显然当t =B. 1 1 丄1 2 ,1 2 // 1 3 ? 1 1 丄 1 3C. 1 1 // 1 2 //1 3? 11, 12 , 1 3 共面D. 1 1 , 1 2 ,1 3 共点?1 1 , 1 2 , 1 3 共面AC ?平面ABC圆相交的条件得 3 — 2<| C^|<3 + 2,即 1<5m + 2m^ 1<25,解得—¥<m < — |或 0<m <26 .对于直线 m n 和平面a 、A . mln , rri^a, n 〃3 C. m 〃 n , n 丄 3 , m ? a3,能得出a 丄3的一个条件是( )B. ml n , D. m//n ,a n 3 = m n ? aml a , n 丄 3m// n]m l 3 解析:选C.n 丄3 3? a 丄 3m ? aJ解析:选B. A 答案还有异面或者相交, C D 不一定7 •在空间四边形 9. 若oC : x 2+ y 2— 2mx+ m = 4 和O C :x 2+ y 2+ 2x — 4my= 8 — 4吊相交,则 m 的取值范围 是( )12 2A .(—I, -5) B . (0,2)12 2 12C .(—"5", —5)U (0,2) D. ( —了 2) 当直线l 过点(—1,0)时, 当直线l 为圆的上切线时, 解析:选C.圆C 和C 2的圆心坐标及半径分别为 G (m,0) ,「1= 2, C 2( —1,2 m ) ,「2 = 3.由两 ABCDL 若AB= BC AD= CD E 为对角线 AC 的中点,下列判断正确的 是()A .平面ABDL 平面BDCC.平面ABC L 平面 ADC解析:选D.如图所示,连接B.平面 ABC 平面ABD D.平面ABC L 平面BED8.已知直线 A . ( — 2,2) C. [1 ,2)解析:选C.I : y = x + m 与曲线y = p 1 — x 2有两个公共点,则实数 m 的取值范围是()B . (— 1,1) D. ( —<2,品 曲线y =圧丁表示单位圆的上半部分,画出直线的图象,可观察出仅当直线 I与曲线有两个交点.l 与曲线在同一坐标系中 在过点(一1,0)与点(0,1)的直线与圆的上切线之间时,直线 I m= 1; m= • 2(注:m=— _ 2,直线I 为下切线).BEBEL ACDEL AC?©平面 BD?平面ABCL 平面BDE解析:选B.如图所示,设圆柱底面半径为 r,则其高为3R- 3r ,全面积S = 2 n r 2+ 2n r (3R 23 2 9 , 3 ,亠 9°—3r ) = 6 n Rr - 4 n r =-4 n (r — 4F ) + 4 n R ,故当 r = [R 时全面积有最大值 4 n 巨12.如图所示,三棱锥 P — ABC 的高PO= 8, AC= BG= 3,/ ACB= 30°, M N 分别在 BC 和PO 上,且CM= x , PN= 2x (x € [0,3]),下列四个图象大致描绘了三棱锥 N — AMC 勺体积V 与 x 的变化关系,其中正确的是 ( )1 11 1解析:选 A.V = -S A AMC - NO= -(- X3x X Sin30 ° ) - (8 — 2x ) =— 2(x — 2)2 + 2, x € [0,3],3 3 2 2故选A.二、填空题(本大题共4小题,请把答案填在题中横线上 )10.已知圆 C : (x — a ) + (y — 2) = 4(a >0)及直线I : x — y + 3 = 0,当直线l 被圆C 截得 的弦长为2 3时,a 的值等于( )A. 2B. 2 — 1C. 2— 2D. 2+1解析:选 B.圆心(a,2)到直线I : x — y + 3= 0的距离d =1a—丁 3| =迂裂,依题意2= 4,解得 a = 2 — 1.11.已知圆锥的底面半径为 A . 2n R 2 R,高为3R,在C.f n F 2TR 2R兀 兀9-45-2B DD13. 三角形ABC的边ACAB的高所在直线方程分别为2x —3y+ 1 = 0,x + y= 0,顶点A(1,2), 求BC边所在的直线方程.解:AC边上的高线2x—3y+ 1 = 0,所以k Ac= —|.3所以AC的方程为y —2=—|(x—1),即3x + 2y —7 = 0,同理可求直线AB的方程为x —y + 1 = 0.下面求直线BC的方程,3x + 2y—7 = 0,由得顶点C(7,—7),x+ y = 0,x—y +1 = 0,由* 得顶点B( —2,—1).2x —3y+ 1 = 0,2 2所以k Bc= —3,直线BC: y+ 1 = —^(x + 2),即2x + 3y + 7 = 0.14. _____________________________________________________________________ 过点A(1 , —1) , B( —1,1)且圆心在直线x + y—2 = 0上的圆的方程是 _____________________ .解析:易求得AB的中点为(0,0),斜率为一1,从而其垂直平分线为直线y = x,根据圆的几何性质,这条直线应该过圆心,将它与直线x + y—2= 0联立得到圆心Q1,1),半径r = | OA=2.答案:(x —1)2+ (y —1)2= 415.如图所示,AB是O O的直径,PAL平面O O, C为圆周上一点,AB= 5 cm AC= 2 cm 则B到平面PAC勺距离为_______________ .解析:连接BC•/ C为圆周上的一点,AB为直径,••• BC L AC 又••• PA!平面O O, BC?平面O O •PA! BC,又T PA P AC=代•BC L平面PAC C为垂足,•BC即为B到平面PAC的距离.在Rt △ ABC中,BC=Q AB-A C=Q52- 22= ^2i(cm).答案:,21 cm16.下列说法中正确的是__________ .①一条直线和一个平面平行,它就和这个平面内的无数条直线平行;②一条直线和一个平面平行,它就和这个平面内的任何直线无公共点;③过直线外一点,有且仅有一个平面和已知直线平行;④如果直线I和平面a平行,那么过平面a内一点和直线I平行的直线在a内.解析:由线面平行的性质定理知①④正确;由直线与平面平行的定义知②正确•因为经过直线外一点可作一条直线与已知直线平行,而经过这条直线可作无数个平面.故③错误.答案:①②④三、解答题(本大题共6小题,解答时应写出必要的文字说明、证明过程或演算步骤)17.如图,在四棱锥P— ABCD^,平面PAD_平面ABCD AB= AD / BAD= 60°, E F 分别是AP AD的中点,求证:(1)直线EF//平面PCD⑵平面BEFL平面PAD证明:⑴因为E F分别是AP AD的中点,••• EF// PD 又••• P,。
上学期高一数学期末模拟试题08满分150分,时间为120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中只有一项是符合要求的)1、0600sin 的值是 ( ) A 21 B 23 C 23- D 21- 2、化简=--+CD AC BD AB ( ) A AD B DA C BC D 03、已知角α的终边过点)0(),3,4(≠-m m m P ,则=+ααcos sin 2 ( )A 或1-B 52或 52-C 或 52-D 1-或 52 4、若一个扇形的圆心角为060,弧长为4,则扇形的面积是 ( ) A π24 B π12C π12D π245、 若2||,2||==b a ;且a b a ⊥-)(,则a 与b 的夹角是 ( ) A 6π B 4π C 3π D 125π 6、函数1)32sin(4++=πx y 的相邻两条对称轴之间的距离为 ( ) A 2π B π C π2 D π4 第1页7、为得到)63sin(2π+=x y 的图象,只需把函数x y sin 2=的图象上所有的点 ( ) A 向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) B 向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) C 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) D 向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的错误!不能通过编辑域代码创建对象。
倍(纵坐标不变)8、在]2,0[π内,使x x cos sin >成立的x 的取值范围是A )45,()2,4(ππππ⋃ B ),4(ππ C )45,4(ππ D ),4(ππ)23,45(ππ⋃ 9、要得到函数x y sin =的图象,只需将函数)3cos(π-=x y 的图象A 向右平移6π个单位 B 向右平移3π个单位 C 向左平移3π个单位 D 向左平移6π个单位10、把函数)42sin(π-=x y 的图象向右平移8π,所得的图象对应的函数为 A 奇函数 B 偶函数 C 既是奇函数又是偶函数 D 非奇非偶函数11、若错误!不能通过编辑域代码创建对象。
上学期高一数学期末模拟试题031.直线3ax-y-1=0与直线(a-23)x+y+1=0垂直,则a的值是()A.-1或13B.1或13C.-13或-1 D.-13或1解析:选D.由3a(a-23)+(-1)×1=0,得a=-13或a=12.有一个几何体的三视图及其尺寸如图(单位:cm),则该几何体的表面积及体积为A.24π cm2,12π cm3B.15π cm2,12π cm3C.24π cm2,36π cm3D.以上都不正确解析:选A.由三视图知该几何体为一个圆锥,其底面半径为 3 cm,母线长为 5 cm,高为4 cm,求表面积时不要漏掉底面积.3.把直径分别为 6 cm,8 cm,10 cm的三个铁球熔成一个大铁球,则这个大铁球的半径为A.3 cm B.6 cmC.8 cm D.12 cm解析:选B.设大铁球的半径为R,则有43πR3=43π·(62)3+43π· (82)3+43π·(102)3,解得R=6.4.已知点A(1-t,1-t,t),B(2,t,t),则A、B两点距离的最小值为()A.55B.555C.355D.2解析:选 C.由距离公式d(A、B)=[2-1-t]2+[t-1-t]2+t-t2=5t2-2t+2=5t-152+95,显然当t=15时,d(A、B)min=355,即A、B两点之间的最短距离为35 5.5.(2011年高考四川卷)l1,l2,l3是空间三条不同的直线,则下列命题正确的是() A.l1⊥l2,l2⊥l3?l1∥l3B.l1⊥l2,l2∥l3?l1⊥l3C.l1∥l2∥l3?l1,l2,l3共面D.l1,l2,l3共点?l1,l2,l3共面解析:选B. A答案还有异面或者相交,C、D不一定6.对于直线m、n和平面α、β,能得出α⊥β的一个条件是()A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,n?αC.m∥n,n⊥β,m?αD.m∥n,m⊥α,n⊥β解析:选C.m∥nn⊥β?m⊥βm?α?α⊥β7.在空间四边形ABCD中,若AB=BC,AD=CD,E为对角线AC的中点,下列判断正确的是()A.平面ABD⊥平面BDC B.平面ABC⊥平面ABDC.平面ABC⊥平面ADC D.平面ABC⊥平面BED解析:选D.如图所示,连接BE、DE.BE⊥ACDE⊥AC?AC⊥平面BDEAC?平面ABC?平面ABC⊥平面BDE.8.已知直线l:y=x+m与曲线y=1-x2有两个公共点,则实数m的取值范围是() A.(-2,2) B.(-1,1)C.[1,2) D.(-2,2)解析:选C. 曲线y=1-x2表示单位圆的上半部分,画出直线l与曲线在同一坐标系中的图象,可观察出仅当直线l在过点(-1,0)与点(0,1)的直线与圆的上切线之间时,直线l与曲线有两个交点.当直线l过点(-1,0)时,m=1;当直线l为圆的上切线时,m=2(注:m=-2,直线l为下切线).9.若⊙C1:x2+y2-2mx+m2=4和⊙C2:x2+y2+2x-4my=8-4m2相交,则m的取值范围是()A.(-125,-25) B.(0,2)C.(-125,-25)∪(0,2) D.(-125,2)解析:选C.圆C1和C2的圆心坐标及半径分别为C1(m,0),r1=2,C2(-1,2m),r2=3.由两圆相交的条件得3-2<|C1C2|<3+2,即1<5m2+2m+1<25,解得-125<m<-25或0<m<2β.10.已知圆C:(x-a)2+(y-2)2=4(a>0)及直线l:x-y+3=0,当直线l被圆C截得的弦长为23时,a的值等于()A. 2B.2-1C.2- 2 D.2+1解析:选B.圆心(a,2)到直线l:x-y+3=0的距离d=|a-2+3|2=|a+1|2,依题意|a+1|22+2322=4,解得a=2-1.11.已知圆锥的底面半径为R,高为3R,在它的所有内接圆柱中,全面积的最大值是A.2πR2 B.94πR2C.83πR2 D.52πR2解析:选B.如图所示,设圆柱底面半径为r,则其高为3R-3r,全面积S=2πr2+2πr(3R-3r)=6πRr-4πr2=-4π(r-34R)2+94πR2,故当r=34R时全面积有最大值94πR2.12. 如图所示,三棱锥P-ABC的高PO=8,AC=BC=3,∠ACB=30°,M、N分别在BC和PO上,且CM=x,PN=2x(x∈[0,3]),下列四个图象大致描绘了三棱锥N-AMC的体积V与x的变化关系,其中正确的是()解析:选A.V=13S△AMC·NO=13(12×3x×sin30°)·(8-2x)=-12(x-2)2+2,x∈[0,3],故选 A.二、填空题(本大题共4小题,请把答案填在题中横线上)13.三角形ABC的边AC,AB的高所在直线方程分别为2x-3y+1=0,x+y=0,顶点A(1,2),求BC边所在的直线方程.解:AC边上的高线2x-3y+1=0,所以k AC=-3 2 .所以AC的方程为y-2=-32(x-1),即3x+2y-7=0,同理可求直线AB的方程为x-y+1=0. 下面求直线BC的方程,由3x+2y-7=0,x+y=0,得顶点C(7,-7),由x-y+1=0,2x-3y+1=0,得顶点B(-2,-1).所以k BC=-23,直线BC:y+1=-23(x+2),即2x+3y+7=0.14.过点A(1,-1),B(-1,1)且圆心在直线x+y-2=0上的圆的方程是________.解析:易求得AB的中点为(0,0),斜率为-1,从而其垂直平分线为直线y=x,根据圆的几何性质,这条直线应该过圆心,将它与直线x+y-2=0联立得到圆心O(1,1),半径r=|OA|=2.答案:(x-1)2+(y-1)2=415. 如图所示,AB是⊙O的直径,P A⊥平面⊙O,C为圆周上一点,AB=5 cm,AC=2 cm,则B到平面P AC的距离为________.解析:连接BC.∵C为圆周上的一点,AB为直径,∴BC⊥AC.又∵PA⊥平面⊙O,BC?平面⊙O,∴PA⊥BC,又∵P A∩AC=A,∴BC⊥平面P AC,C为垂足,∴BC即为B到平面P AC的距离.在Rt△ABC中,BC=AB2-AC2=52-22=21(cm).答案:21 cm16.下列说法中正确的是________.①一条直线和一个平面平行,它就和这个平面内的无数条直线平行;②一条直线和一个平面平行,它就和这个平面内的任何直线无公共点;③过直线外一点,有且仅有一个平面和已知直线平行;④如果直线l和平面α平行,那么过平面α内一点和直线l平行的直线在α内.解析:由线面平行的性质定理知①④正确;由直线与平面平行的定义知②正确.因为经过直线外一点可作一条直线与已知直线平行,而经过这条直线可作无数个平面.故③错误.答案:①②④三、解答题(本大题共6小题,解答时应写出必要的文字说明、证明过程或演算步骤)17.如图,在四棱锥P-ABCD中,平面P AD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点,求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面P AD.证明:(1)因为E、F分别是AP、AD的中点,∴EF∥PD,又∵P,D∈面PCD,E,F?面PCD,∴直线EF∥平面PCD.(2)∵AB=AD,∠BAD=60°,F是AD的中点,∴BF⊥AD,又平面P AD⊥平面ABCD,面PAD∩面ABCD=AD,∴BF⊥面PAD,∴平面BEF⊥平面P AD.18.在棱长为1的正方体ABCD-A1B1C1D1中,F为BD的中点,G在CD上,且CG=CD4,H为C1G的中点,求:(1)FH的长;(2)三角形FHB的周长.解:如图,以D为坐标原点,DA所在直线为x轴,DC所在直线为y轴,DD1所在直线为z轴,建立空间直角坐标系.由于正方体的棱长为1,则有D(0,0,0),B(1,1,0),G(0,3 4,0),C1(0,1,1).(1)因为F和H分别为BD和C1G的中点,所以F(12,12,0),H(0,78,12).所以FH=12-02+12-782+0-122=41 8.(2)由(1)可知FH=41 8,又BH=1-02+1-782+0-122`=98,BF=2 2,所以三角形FHB 的周长等于42+41+98.19.已知1,011log aaxx x f a且(1)求x f 的定义域; (2)证明x f 为奇函数;(3)求使x f >0成立的x 的取值范围. (14分)19;解:(1).011,011,011x xx x xx 即11,11,x f x 的定义域为(2)证明:x f xx xx xx xf xxxf aaaa 11log 11log 11log ,11log 1xf 中为奇函数.(3)解:当a>1时, x f >0,则111xx ,则12,0111x x x x10,012x x x 因此当a>1时,使0xf 的x 的取值范围为(0,1). 10a 当时, 1110,0xx xf 则则,011,0111xx x x 解得1x因此10a当时, 使0xf 的x 的取值范围为(-1,0).20.已知圆C :x 2+y 2-2x +4y -4=0,问是否存在斜率为1的直线l ,使l 被圆C 截得弦AB ,以AB 为直径的圆经过原点O ?若存在,写出直线l 的方程;若不存在,说明理由.解:法一:假设存在且令l 为y =x +m.圆C 化为(x -1)2+(y +2)2=9,圆心C(1,-2),则AB 中点N 是两直线x -y +m =0与y +2=-(x -1)的交点,即N(-m +12,m -12).以AB 为直径的圆过原点,|AN|=|ON|.又CN ⊥AB ,|CN|=|1+2+m|2,所以|AN|=CA2-CN2=9-3+m22.又|ON|=-m+122+m-122,由|AN|=|ON|,得m=1或m=-4.所以存在直线l,方程为x-y+1=0或x-y-4=0. 法二:假设存在,令y=x+m,由y=x+m,x2+y2-2x+4y-4=0,消去y,得2x2+(2m+2)x+m2+4m-4=0.①因为以AB为直径的圆过原点,所以OA⊥OB.设A(x1,y1),B(x2,y2),k OA·k OB=y1x1·y2x2=-1,即x1x2+y1y2=0.由方程①,得x1+x2=-m-1,x1x2=m2+4m-42.②y1y2=(x1+m)(x2+m)=x1x2+m(x1+x2)+m2,所以x1x2+y1y2=2x1x2+m(x1+x2)+m2=0.把②代入,m2+3m-4=0.解得m=1或m=-4.将m=1和m=-4分别代入方程①,检验得Δ>0,所以存在直线l,方程为x-y+1=0或x-y-4=0.21. 如图△ABC中,AC=BC=22AB,四边形ABED是边长为a的正方形,平面ABED⊥平面ABC,若G、F分别是EC、BD的中点.(1)求证:GF∥平面ABC;(2)求证:平面EBC⊥平面ACD;(3)求几何体ADEBC的体积V.解:(1)证明:如图,取BE的中点H,连接HF,GH.∵G,F分别是EC和BD的中点,∴HG∥BC,HF∥DE.又∵四边形ADEB为正方形,∴DE∥AB,从而HF∥AB.∴HF∥平面ABC,HG∥平面ABC.∴平面HGF∥平面ABC.∴GF∥平面ABC.(2)证明:∵ADEB为正方形,∴EB⊥AB. 又∵平面ABED⊥平面ABC,∴BE⊥平面ABC.∴BE⊥AC.又∵CA2+CB2=AB2,∴AC⊥BC.∴AC⊥平面BCE.从而平面EBC⊥平面ACD.(3)取AB的中点N,连接CN,∵AC=BC,∴CN⊥AB,且CN=12AB=12a.又平面ABED⊥平面ABC,∴CN⊥平面ABED.∵C-ABED是四棱锥,∴V C-ABED=13S ABED·CN=13a2·12a=16a3.22.已知圆x2+y2-2x-4y+m=0.(1)此方程表示圆,求m的取值范围;(2)若(1)中的圆与直线x+2y-4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m 的值;(3)在(2)的条件下,求以MN为直径的圆的方程.解:(1)方程x2+y2-2x-4y+m=0,可化为(x-1)2+(y-2)2=5-m,∵此方程表示圆,∴5-m>0,即m<5.(2)x2+y2-2x-4y+m=0,x+2y-4=0,消去x得(4-2y)2+y2-2×(4-2y)-4y+m=0,化简得5y2-16y+m+8=0.设M(x1,y1),N(x2,y2),则y1+y2=165,①y1y2=m+85. ②由OM⊥ON得y1y2+x1x2=0 即y1y2+(4-2y1)(4-2y2)=0,∴16-8(y1+y2)+5y1y2=0.将①②两式代入上式得16-8×165+5×m+85=0,解之得m=8 5 .(3)由m =85,代入5y 2-16y +m +8=0,。
天河区2017-2018年第一学期期末联考试题高一数学一、选择题:本大题共12小题,每小题5分,共60分,在每小题所给的四个选项中,只有一项是符合题目要求的.1.直线0x y +的倾斜角为( ) A .45°B .60°C .120°D .135°2.已知集合{}{}=1,2,3,4,5,6,B=A y y x A ∈,则A B =( )A .{}1,2B .{}1,2,3C .{}1,3,5D .{}1,2,3,4,5,63.函数()lg 3f x x x =+-的零点所在的区间是( ) A .()0,1B .()1,2C .()2,3D .()3,44.如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是( )A B CD .12π 5.已知0.70.820.8,log 0.7, 1.3a b c === ,则()23x f x x =+ 的大小关系是( )A .a b c >>B .b a c >>C .c b a >>D .c a b >>6.已知直线1:210l x my +-=与直线2:(2)20l m x my --+=平行,则实数m 的值是( ) A .32B .32或0 C .23D .23或0 7.如图,长方体1111ABCD A B C D -中,12AA AB ==,1AD =,,,E F G 分别是11,,DD AB CC 的中点,则异面直线1A E 与GF 所成角为( )A .30°B .45°C .60°D .90°8.已知圆的圆心为(-2,1),其一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是( )A .224250x y x y ++--=B .224250x y x y +-+-=C .22420x y x y ++-=D .22420x y x y +-+=9.已知lg lg 0(0,0)a b a b +=>>,则函数()x f x a =与函数()log b g x x =-的图象可能是( )A .B .C .D .10.给出下列命题:①如果不同直线m n 、都平行于平面α,则m n 、一定不相交; ②如果不同直线m n 、都垂直于平面α,则m n 、一定平行; ③如果平面αβ、互相平行,若直线m α⊂,直线n β⊂,则//m n ; ④如果平面αβ、互相垂直,且直线m n 、也互相垂直,若m α⊥,则n β⊥; 其中正确的个数为( ) A .1个B .2个C .3个D .4个11.已知圆22:(3)(4)1C x y -+-=和两点(,0),(,0)(0)A m B m m ->,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为( )A .7B .6C .5D .412.偶函数()()f x x R ∈满足(5)(2)0f f -==,且在区间[0,4]与[4,)+∞上分别递增和递减,则不等式()0x f x ⋅<的解集为( ) A .(,5)(2,2)(5,)-∞--+∞ B .(5,2)(2,5)-- C .(0,2)(5,)+∞D .(5,2)(0,2)(5,)--+∞二、填空题:本大题共4小题,每小题5分,共20分. 13.函数21()log (1)21f x x x =++-的定义域为 14.已知一个四棱柱,其底面是正方形,侧楞垂直于底面,它的各个顶点都在一个表面积为4π2cm 的球面上.如果该四棱柱的底面边长为1cm ,则其侧楞长为 cm . 15.已知m R ∈,过原点O 作圆22(2)48160x m y x y m ++---=的切线,则此时的切线方程为16.已知函数(2)1(1)()(1)x a x x f x a x -+<⎧=⎨≥⎩满足对任意的12x x <,都有12()()f x f x <恒成立,那么实数a 的取值范围是三、解答题:本大题共6小题,满分70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)已知直线1:(2)80l m x my -+-=与直线2:30l mx y +-=,其中m 为常数. (1)若12l l ⊥,求m 的值;(2)若点(1,2)P m 在2l 上,直线l 过P 点,且在两坐标轴上的截距之和为0,求直线l 的方程.如图,三棱柱111ABC A B C -内接于一个圆柱,且底面是正三角形,如果圆柱的体积是2π,底面直径与母线长相等. (1)求圆柱的侧面积;(2)求三棱柱111ABC A B C -的体积.19.(本小题满分12分)已知函数()b f x ax c x =++是奇函数(,,a b c 是常数),且满足9(1)3,(2)2f f ==.(1)求,,a b c 的值;(2)试判断函数()f x 在区间上的单调性,并用定义证明.如图,在四棱锥P ABCD -中,//AB CD ,AB AD ⊥,2CD AB =,平面PAD ⊥底面ABCD ,PA AD ⊥,E 和F 分别是CD 和PC 的中点,求证:(1)//BE 平面PAD ;(2)PA BC ⊥;(3)平面BEF ⊥平面PCD .21.(本小题满分12分)已知圆C 的圆心为点(0,3)C ,点(D 在圆C 上,直线l 过点(1,0)A -且与圆C 相交于PQ 两点,点M 是线段PQ 的中点.(1)求圆C 的方程;(2)若3AM =,求直线l 的方程.已知函数2()log (41)()x f x kx k R =++∈是偶函数,24()log (2)3x g x a a =⋅-(其中0a >). (1)求函数()g x 的定义域;(2)求k 的值;(3)若函数()f x 与()g x 的图象有且只有一个交点,求a 的取值范围.数学参考答案说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,选择题和填空题不给中间分.一、选择题二、填空题13.),21()21,1(+∞- ; 14.; 15. 0340x x y =-=或; 16. 3[,2)2.三、解答题(本大题共6个小题,共70分.解答应写出文字说明、演算步聚或推理过程.) 17.(本小题满分10分) (I )∵21l l ⊥∴0)2(=+-m m m 解得0=m 或1=m(II )当0=m 时,P 为(1,0),3:2=y l ,不合题意; 当1=m 时,P 为(1,2),03:2=-+y x l ,符合题意. ∵直线l 在两坐标轴上的截距之和为0(1)当直线l 过原点时,可设l 的方程为kx y =,将点P (1,2)带入得2=k ∴此时l 为x y 2=(2)(2)当直线l 不经过原点时,可设l 的方程为λ=-y x ,将点P (1,2)带入得1-=λ ∴此时l 为01=+-y x综上可得直线l 的方程为x y 2=或01=+-y x . 18.(本小题满分12分)解:(I )设底面圆的直径为r 2,由题可知ππ222=⋅=r r V 圆柱∴1=r∴圆柱的侧面积ππ422=⋅=r r S(II )因为△ABC 位正三角形,底面圆的半径为1, ∴可得边长AB=3∴三棱柱111C B A ABC -的体积233223321=⨯⨯⨯=V 19.(本小题满分12分) 解:(I )∵c x b ax x f ++=)(是奇函数,且29)2(,3)1(==f f . ∴⎪⎩⎪⎨⎧-=+--=-=++==++=3)1(2922)2(3)1(c b a f c b a f c b a f解得⎪⎩⎪⎨⎧===012c b a∴a=2,b=1,c=0 (II )函数)(x f 在区间)22,0(单调递减证明:在区间)22,0(任取21,x x ,且令21x x < 由(I )知x x x f 12)(+= ∴)12)(()(2)12(12)()(2121211221221121x x x x x x x x x x x x x x x f x f --=-+-=+-+=- ∵22021<<<x x∴210,02121<<<-x x x x∴0)()(21>-x f x f ,即)()(21x f x f >∴函数)(x f 在区间)22,0(单调递减 20.(本小题满分12分)解:(Ⅰ)∵AB ∥CD ,CD=2AB ,E 是CD 的中点,∴四边形ABED 为平行四边形, ∴BE ∥AD .又AD ⊂平面PAD ,BE 不在平面PAD 内, ∴BE ∥平面PAD .(Ⅱ)∵PA ⊥AD ,平面PAD ⊥平面ABCD ,平面PAD∩平面ABCD=AD ,∴PA ⊥平面ABCD . ∵BC ⊂平面ABCD∴PA ⊥BC(Ⅲ)在平行四边形ABED 中,AB ⊥AD ,∴ABED 为矩形, ∴BE ⊥CD ①.由PA ⊥平面ABCD ,可得PA ⊥AB ,再由AB ⊥AD ∴AB ⊥平面PAD , ∴CD ⊥平面PAD , ∴CD ⊥PD .∵E 、F 分别为CD 和PC 的中点,可得EF ∥PD , ∴CD ⊥EF ②.而EF 和BE 是平面BEF 内的两条相交直线,故有CD ⊥平面BEF . ∵CD ⊂平面PCD , ∴平面BEF ⊥平面PCD .21.(本小题满分12分)解:(I )由题可设圆的方程为222)3(r y x =-+ ∵点)2,3(-D 在圆C 上∴4132=+=r∴圆C 的方程为4)3(22=-+y x (II )∵点M 是弦PQ 的中点∴PQ CM ⊥由A (-1,0),C (0,3)可得10=AC ∴191022=-=-=AMAC CM即圆心C 到直线l 的距离等于1(1)直线l 的斜率不存在时,直线l 为1-=x ,符合题意 (2)当直线l 的斜率存在时,可设直线l 为)1(+=x k y∵1132=+-=k k CM ,得34=k ∴直线l 为)1(34+=x y ,即0434=+-y x ∴直线l 为1-=x 或0434=+-y x22.(本小题满分12分) 解:(I )∵,且∴ ∴ 所以定义域为(II )∵是偶函数 ∴对任意恒成立即恒成立,∴0342>-⋅a a x342>x34log 2>x(III)∵函数与的图象有且只有一个交点∴方程在上只有一解即方程在上只有解令则因而等价于关于的方程在上只有一个解①当时,解得,不合题意11。
广东省2017—2018学年高一数学上学期期末考试试卷(一)(考试时间120分钟满分150分)一、单项选择题:(本大题共12小题,每小题5分,共60分.)1.已知集合M={x∈Z|x(x﹣3)≤0},N={x|lnx<1},则M∩N=()A.{1,2}B.{2,3}C.{0,1,2}D.{1,2,3}2.函数f(x)=lnx﹣的零点所在的大致区间是()A.B.(1,2) C.(2,3) D.(e,+∞)3.若m,n是两条不同的直线,α,β,γ是三个不同的平面,下些说法正确的是()A.若m⊂β,α⊥β,则m⊥αB.若m⊥β,m∥α,则α⊥βC.若α∩γ=m,β∩γ=n,m∥n,则α∥βD.若α⊥γ,α⊥β,,则γ⊥β4.已知函数,设,则有()A.f(a)<f(b)<f(c) B.f(a)<f(c)<f(b)C.f(b)<f(c)<f (a)D.f(b)<f(a)<f(c)5.将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()A.B.C.D.6.一种专门侵占内存的计算机病毒,开机时占据内存2KB,然后每3分钟自身复制一次,复制后所占内存是原来的2倍,若该病毒占据64MB内存(1MB=210KB),则开机后经过()分钟.A.45 B.44 C.46 D.477.若当x∈R时,函数f(x)=a|x|始终满足0<|f(x)|≤1,则函数y=log a||的图象大致为()A.B.C.D.8.在平面直角坐标系中,下列四个结论:①每一条直线都有点斜式和斜截式方程;②倾斜角是钝角的直线,斜率为负数;③方程与方程y+1=k(x﹣2)可表示同一直线;④直线l过点P(x0,y0),倾斜角为90°,则其方程为x=x°;其中正确的个数为()A.1 B.2 C.3 D.49.如图所示,圆柱形容器的底面直径等于球的直径2R,把球放在在圆柱里,注入水,使水面与球正好相切,然后将球取出,此时容器中水的深度是()A.2R B.C.D.10.一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的全面积是(单位:m2).()A.B.C.D.11.如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为点H,则以下命题中,错误的命题是()A.点H是△A1BD的垂心B.AH垂直平面CB1D1C.AH的延长线经过点C1D.直线AH和BB1所成角为45°12.已知函数y=f(x)是定义域为R的偶函数.当x≥0时,f(x)=若关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且仅有6个不同实数根,则实数a的取值范围是()A.B.C. D.二、填空题:(本大题共4小题,每小题5分,共20分)13.计算的结果是.14.已知4a=2,lgx=a,则x=.15.过点(1,2)且在两坐标轴上的截距相等的直线的方程.16.已知:在三棱锥P﹣ABQ 中,D,C,E,F分别是AQ,BQ,AP,BP的中点,PD与EQ交于点G,PC与FQ交于点H,连接GH,则多面体ADGE﹣BCHF的体积与三棱锥P﹣ABQ体积之比是.三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.如图,在平行四边形OABC中,点C(1,3).(1)求OC所在直线的斜率;(2)过点C作CD⊥AB于点D,求CD所在直线的方程.18.如图,正方形ABCD所在平面与三角形CDE所在平面相交于CD,AE⊥平面CDE,且AE=1,AB=2.(Ⅰ)求证:AB⊥平面ADE;(Ⅱ)求凸多面体ABCDE的体积.19.已知函数为奇函数,(1)求a的值;(2)当0≤x≤1时,关于x的方程f(x)+1=t有解,求实数t的取值范围;(3)解关于x的不等式f(x2﹣mx)≥f(2x﹣2m).20.某家庭进行理财投资,根据长期收益率市场调查和预测,投资债券等稳键型产品A的收益f(x)与投资金额x的关系是f(x)=k1x,(f(x)的部分图象如图1);投资股票等风险型产品B的收益g(x)与投资金额x的关系是,(g(x)的部分图象如图2);(收益与投资金额单位:万元).(1)根据图1、图2分别求出f(x)、g(x)的解析式;(2)该家庭现有10万元资金,并全部投资债券等稳键型产品A及股票等风险型产品B两种产品,问:怎样分配这10万元投资,才能使投资获得最大收益,其最大收益为多少万元?21.如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.(Ⅰ)求线段MN的长;(Ⅱ)求证:MN∥平面ABB1A1;(Ⅲ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.22.已知函数f(x)=ax2+bx+c(a,b,c∈R).(1)若a<0,b>0,c=0,且f(x)在[0,2]上的最大值为,最小值为﹣2,试求a,b的值;(2)若c=1,0<a<1,且||≤2对任意x∈[1,2]恒成立,求b的取值范围.(用a来表示)参考答案一、单项选择题:1.A.2.C.3.B.4.B.5.B.6.A.7.B.8.B.9.C.10.A.11.D.12.C.二、填空题:13.答案为2.14.答案为:15.答案为:2x﹣y=0或x+y﹣3=016.答案为:.三、解答题:17.解:(1)∵点O(0,0),点C(1,3),∴OC所在直线的斜率为.(2)在平行四边形OABC中,AB∥OC,∵CD⊥AB,∴CD⊥OC.∴CD所在直线的斜率为.∴CD所在直线方程为,即x+3y﹣10=0.18.证明:(Ⅰ)∵AE⊥平面CDE,CD⊂平面CDE,∴AE⊥CD,又在正方形ABCD中,CD⊥AD,AE∩AD=A,∴CD⊥平面ADE,又在正方形ABCD中,AB∥CD,∴AB⊥平面ADE.…解:(Ⅱ)连接BD ,设B 到平面CDE 的距离为h , ∵AB ∥CD ,CD ⊂平面CDE ,∴AB ∥平面CDE ,又AE ⊥平面CDE ,∴h=AE=1,又=,∴=,又==,∴凸多面体ABCDE 的体积V=V B ﹣CDE +V B ﹣ADE =.…19.解:(1)∵x ∈R ,∴f (0)=0,∴a=﹣1….(2)∵,∵0≤x ≤1,∴2≤3x +1≤4….∴….∴….(3)在R 上单调递减,….f (x 2﹣mx )≥f (2x ﹣2m )x 2﹣mx ≤2x ﹣2m…. x 2﹣(m +2)x +2m ≤0(x ﹣2)(x ﹣m )≤0…. ①当m >2时,不等式的解集是{x |2≤x ≤m } ②当m=2时,不等式的解集是{x |x=2}③当m <2时,不等式的解集是{x |m ≤x ≤2}….20.解:(1)设投资为x 万元,由题意,知f (1.8)=0.45,g (4)=2.5;解得k 1=,k 2=,∴f (x )=x ,x ≥0.g (x )=,x ≥0;(2)设对股票等风险型产品B 投资x 万元,则对债券等稳键型产品A 投资(10﹣x)万元,记家庭进行理财投资获取的收益为y万元,则y=,x≥0.设=t,则x=t2,0≤t≤∴y=﹣,当t=,也即x=时,y取最大值.答:对股票等风险型产品B投资万元,对债券等稳键型产品A投资万元时,可获最大收益万元.21.解:(Ⅰ)连接CN,因为ABC﹣A1B1C1是直三棱柱,所以CC1⊥平面ABC,所以AC⊥CC1,…因为AC⊥BC,所以AC⊥平面BCC1B1.…因为MC=1,CN==,所以MN=…(Ⅱ)证明:取AB中点D,连接DM,DB1…在△ABC中,因为M为AC中点,所以DM∥BC,DM=BC.在矩形B1BCC1中,因为N为B1C1中点,所以B1N∥BC,B1N=BC.所以DM∥B1N,DM=B1N.所以四边形MDB1N为平行四边形,所以MN∥DB1.…因为MN⊄平面ABB1A1,DB1⊂平面ABB1A1…所以MN∥平面ABB1A1.…(Ⅲ)解:线段CC1上存在点Q,且Q为CC1中点时,有A1B⊥平面MNQ.…证明如下:连接BC1,在正方形BB1C1C中易证QN⊥BC1.又A1C1⊥平面BB1C1C,所以A1C1⊥QN,从而NQ⊥平面A1BC1.…所以A1B⊥QN.…同理可得A1B⊥MQ,所以A1B⊥平面MNQ.故线段CC1上存在点Q,使得A1B⊥平面MNQ.…22.(1)抛物线的对称轴为,①当时,即b>﹣4a时,当时,,f(x)min=f(2)=4a+2b+c=﹣2,∴,∴a=﹣2,b=3.②当时,即b≥﹣4a时,f(x)在[0,2]上为增函数,f(x)min=f(0)=0与f(x)min=﹣2矛盾,无解,综合得:a=﹣2,b=3.(2)对任意x∈[1,2]恒成立,即对任意x∈[1,2]恒成立,即对任意x∈[1,2]恒成立,令,则,∵0<a<1,∴,(ⅰ)若,即时,g(x)在[1,2]单调递减,此时,即,得,此时,∴∴.(ⅱ)若,即时,g(x)在单调递减,在单调递增,此时,,只要,当时,,当时,,.综上得:①时,;②时,;③时,.广东省2017—2018学年高一数学上学期期末考试试卷(二)(考试时间120分钟满分150分)一.单项选择题:(本大题共12小题;每小题5分,共60分)1.用列举法表示集合{(x,y)|},正确的是()A.(﹣1,1),(0,0)B.{(﹣1,1),(0,0)}C.{x=﹣1或0,y=1或0}D.{﹣1,0,1}2.函数f(x)=+lg(3x+1)的定义域是()A.(﹣,+∞)B.(﹣,1)C.(﹣,)D.(﹣∞,﹣)3.已知cosα=,角α是第二象限角,则tan(2π﹣α)等于()A.B.﹣C.D.﹣4.函数f(x)=2x+3x的零点所在的一个区间()A .(﹣2,﹣1)B .(﹣1,0)C .(0,1)D .(1,2)5.设函数f (x )=,则f (f (3))=( )A .B .3C .D .6.已知,b=log 23,c=1,d=3﹣0.5,那么( )A .d <a <c <bB .d <c <a <bC .a <b <c <dD .a <d <c <b7.函数的图象是( )A .B .C .D .8.已知函数y=x 2﹣2x +3在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围是( )A .[1,+∞)B .[0,2]C .[1,2]D .(﹣∞,2]9.给定函数①,②,③y=|x ﹣1|,④y=2x +1,其中在区间(0,1)上单调递减的函数序号是( ) A .①②B .②③C .③④D .①④10.已知cos (+α)=﹣,则sin (α﹣)的值为( )A .B .﹣C .D .﹣11.已知函数f (x )=单调递减,那么实数a 的取值范围是( )A .(0,1)B .(0,)C .[,)D .[,1)12.已知f (x )=2+log 3x (1≤x ≤9),则函数y=[f (x )]2+f (x 2)的最大值为( )A .6B .13C .22D .33二.填空题(本大题共4个小题,每小题5分,共20分)13.cos(﹣π)+sin(﹣π)的值是.14.已知y=f(x)是奇函数,若g(x)=f(x)+2且g(1)=1,则g(﹣1)=.15.若函数f(x)=a x﹣x﹣a(a>0,且a≠1)有两个零点,则实数a的取值范围是.16.已知函数f(x)=()x的图象与函数g(x)的图象关于直线y=x对称,令h(x)=g(1﹣|x|),则关于h(x)有下列命题:①h(x)的图象关于原点对称;②h(x)为偶函数;③h(x)的最小值为0;④h(x)在(0,1)上为减函数.其中正确命题的序号为:.三.解答题:(本大题共5小题,每小题各14分,共70分,解答应写出文字说明,证明过程或演算步骤).17.计算下列各式的值:(1)0.064﹣(﹣)0+160.75+0.01;(2).18.已知,,求A∩B.19.若,且α为第四象限角,求的值.20.已知函数f(x)是定义在R上的偶函数,且x≥0时,.(Ⅰ)求f(﹣1)的值;(Ⅱ)求函数f(x)的值域A;(Ⅲ)设函数的定义域为集合B,若A⊆B,求实数a的取值范围.21.是否存在实数a,使函数f(x)=log a(ax2﹣x)在区间[2,4]上是增函数?若存在,求出a的取值范围;若不存在,说明理由.参考答案一.单项选择题:1.B.2.B.3.C.4.B.5.D.6.D7.B.8.C9.B.10.B.11.C.12.B二.填空题13.答案为:0.14.答案为:315.答案为:(1,+∞)16.答案为:②③三.解答题:17.解:(1)原式===;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)原式===log39﹣9=2﹣9=﹣7.﹣﹣﹣﹣18.解:={x|0<x≤},={x|﹣2≤x≤3},故A∩B={x|0<x≤}.19.解:==,∵,且α为第四象限角,∴=.∴==.20.解:(I)∵函数f(x)是定义在R上的偶函数∴f(﹣1)=f(1)又x≥0时,∴,即f(﹣1)=.(II)由函数f(x)是定义在R上的偶函数,可得函数f(x)的值域A即为x≥0时,f(x)的取值范围,当x≥0时,故函数f(x)的值域A=(0,1].(III)∵定义域B={x|﹣x2+(a﹣1)x+a≥0}={x|x2﹣(a﹣1)x﹣a≤0}方法一:由x2﹣(a﹣1)x﹣a≤0得(x﹣a)(x+1)≤0∵A⊆B∴B=[﹣1,a],且a≥1∴实数a的取值范围是{a|a≥1}方法二:设h(x)=x2﹣(a﹣1)x﹣aA⊆B当且仅当即∴实数a的取值范围是{a|a≥1}21.解:设u(x)=ax2﹣x,显然二次函数u的对称轴为x=.①当a>1时,要使函数f(x)在[2,4]上为增函数,则u(x)=ax2﹣x 在[2,4]上为增函数,故应有,解得a>.…综合可得,a>1.…②当0<a<1 时,要使函数f(x)在[2,4]上为增函数,则u(x)=ax2﹣x 在[2,4]上为减函数,应有,解得a∈∅.…综上,a>1时,函数f(x)=log a(ax2﹣x)在区间[2,4]上为增函数.…广东省2017—2018学年高一数学上学期期末考试试卷(三)(考试时间120分钟满分150分)一、单项选择题:本大题共12个小题,每小题5分,共60分。
上学期高一数学期末模拟试题 05第 I 卷(选择题 共 60分)一、选择题(5分×12=60分)在每小题给出的四个选项只有一项正确1、 =( )sin120 331ABCD22 21 22、函数 y x 1 log(2 x )的定义域是( )A (1,2)B [1,4]C [1,2)D (1,2]3、下列函数是偶函数的是 ( )Ay x 21By x 3Cy lg xDyx 24、如图□ABCD 中, = , = 则下列结论中正确的是 ( )A + = -B + = C= +D-= +5、已知向量(1, 2), b( ,2)且 b ,则实数 x等于( )axaAB 9C 4D -4cos2 s in6、若 为第三象限角,则的值为( )1 sin21 cos2A-3B -1C 1D 37、要得到的3sin(2)图象,只需将的图象()y x y3sin2x4A 向左平移个单位B 向右平移个单位44- 1 -C 向左平移个单位D 向右平移个单位88 58、在△ABC 中, 如果,那么△ABC 的形状是 ( )sin A Bcos13A 直角三角形B 锐角三角形C 钝角三角形D 不确定249、已知,,则 = ( )sin(0,)sin cos 2254 11 7 7 A- BC D5 55 5tan10tan 50tan12010、=( )tan10 tan 50A-1B 1C3D311、已知向量a(3,4),且// ,则b(sin, c os) a btan3 34 ABCD4434 31112、已知,则coscos()cos, s in sin23( )1351A B C D 172726第II卷(非选择题共60分)二、填空题(5分×4=20分)将最后结果直接填在横线上.13、已知函数f(x)的图象是连续不断的,有如下x,f(x)对应值表:x)在区间有零点.则函数f(- 2 -14、已知向量满足,与的夹角为,则a a3, 5 b 120, bb aab。