高考文科数学试题及答案(Word版)
- 格式:doc
- 大小:1.01 MB
- 文档页数:9
2020年普通高等学校招生全国统一考试全国卷一文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合2{|340}A x x x =--<,{4,1,3,5}B =-,则A B =A .{4,1}-B .{1,5}C .{3,5}D .{1,3}答案:D解析:2{|340}{|14}A x x x x x =--<=-<<,则交集的定义可得,{13},A B =,故选D 2.若312i i z =++,则||z =A .0B .1C .2D .2答案:C解析:因为312i i 12i (i)1i z =++=++-=+,所以22||=112z +=,故选C3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A.14 B.12C.14 D.12 答案:C解析:如图,P ABCD -是正四棱锥,过P 作PO ABCD ⊥平面,O 为垂足,则O 是正方形ABCD 的中心,取BC 的中点E ,则OE BC ⊥,因为PO ABCD ⊥平面,所以BC PO ⊥,又PO OE O =,所以BC POE ⊥平面,因为PE POE ⊂平面,所以PE BC ⊥,设BC a =,PO h =,由勾股定理得PE =1122PBCS BC PE =⋅=212h =,所以221142PE a aPE -=,解得PE =或PE =(舍去),故选CE OPA B C D4.设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为A .15B .25C .12D .45答案:A解析:O ,A ,B ,C ,D 中任取3点的取法用集合表示有{,,}O A B ,{,,}O A C ,{,,}O A D ,{,,}O B C ,{,,}O B D ,{,,}O C D ,{,,}A B C ,{,,}A B D ,{,,}A C D ,{,,}B C D ,共有10种取法,其中3点共线的取法有{,,}O A C ,{,,}O B D ,共2种,故取到的3点共线的概率为21105=,故选AODCBA5.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i ix y i=得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是A.y a bx=+B.2y a bx=+C.e xy a b=+D.lny a b x=+答案:D解析:本题考查回归方程及一次函数、二次函数、指数函数、对数函数的图象,观察散点图可知,散点图用光滑曲线连接起来比较接近对数函数的图象,故选D。
绝密★启用前2021年一般高等学校招生全国统一考试文 科 数 学留意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必先将自己的姓名、准考证号码填写在答题卡上。
2.回答第I 卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦洁净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第II 卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I 卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{|12}A x x =-<<,{|03}B x x =<<,则A B =A .(1,3)-B .(1,0)-C .(0,2)D .(2,3)2.若a 为实数,且231aii i+=++,则a = A .-4 B .-3 C .3 D .43.依据下面给出的2004年至2021年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是A .逐年比较,2008年削减二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈削减趋势D .2006年以来我国二氧化硫年排放量与年份正相关 4.向量(1,1)=-a ,(1,2)=-b ,则(2)+⋅=a b aA .-1B .0C .1D .35.设S n 等差数列{}n a 的前n 项和。
若a 1 + a 3 + a 5 = 3,则S 5 = A .5 B .7 C .9D .116.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为A .18B .17 C .16D .157.已知三点(1,0)A,B,C ,则ΔABC 外接圆的圆心到原点的距离为A .53 BCD .43 8.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。
高考数学(文)试题及答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =Z ,集合M ={-1,0,1},N ={0,1,3},则(∁U M )∩N =(A ){-1} (B ){3} (C ){0,1} (D ){-1,3} 2.下列命题中的假命题是(A )∀x >0且x ≠1,都有x +1x>2(B )∀a ∈R ,直线ax +y -a =0恒过定点(1,0)(C )∃m ∈R ,使f (x )=(m -1)x m 2-4m +3是幂函数 (D )∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数3.在等差数列{a n }中,已知公差d =2,且a 1,a 3,a 4成等比数列,则a 2=(A )-4 (B )-6 (C )-8 (D )-104.函数y =12-x+lg x 的定义域是(A )(0,2] (B )(0,2) (C )(1,2) (D )[1,2)5.已知函数f (x )=⎩⎪⎨⎪⎧4x -4, x ≤1,x 2-4x +3,x >1。
则函数y =f (x )-log 2x 的零点的个数是(A )4 (B )3 (C )2 (D )16.一个几何体的三视图如图所示,则这个几何体的体积等于(A )4 (B )6 (C )8 (D )127.已知函数f (x )=A sin(2x +φ)的部分图象如图所示,则f (0)=(A )-12(B )-1 (C )-32(D )- 38.设O 为△ABC 所在平面内一点.若实数x 、y 、z 满足x →OA +y →OB +z →OC =0(x 2+y 2+z 2≠0),则“xyz =0”是“点O 在△ABC 的边所在直线上”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件 9.已知直线l :Ax +By +C =0(A ,B 不全为0),两点P 1(x 1,y 1),P 2(x 2,y 2),若(Ax 1+By 1+C )( Ax 2+By 2+C )>0,且|Ax 1+By 1+C |<|Ax 2+By 2+C |,则直线l (A )与直线P 1P 2不相交 (B )与线段P 2P 1的延长线相交 (C )与线段P 1P 2的延长线相交 (D )与线段P 1P 2相交10.已知圆M :x 2+y 2-8x -6y =0,过圆M 内定点P (1,2)作两条相互垂直的弦AC 和BD ,则四边形ABCD 面积的最大值为(A )2015 (B )16 6 (C )515 (D )40 1 2 3 4 5 6 7 8 9 10二、填空题:本大题共7小题,每小题5分,共35分. 11.若复数z 满足(2-i)z =1+i (i 为虚数单位),则复数z 在复平面内对应的点的坐标为 . 12.设F 1、F 2是双曲线x 216-y 220=1的两焦点,点P 在双曲线上.若点P 到焦点F 1的距离等于9,则点P 到焦点F 2的距离等于 .13.已知某程序框图如图所示,若分别输入的x 的值为0,1,2,执行该程序后,输出的y 的值分别为a ,b ,c ,则a +b +c = .14.为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为s 1、s 2、s 3,则它们的大小关系为 .(用“>”连接)15.若不等式x 2-kx +k -1>0对x ∈(1,2)恒成立,则实数k 的取值范围是 . 16.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =2,∠ASC =∠BSC =45°,则棱锥S -ABC 的体积为 .17.商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售限价b (b >a )以及实数x (0<x <1)确定实际销售价格c =a +x (b -a ),这里,x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得(c -a )是(b -c )和(b -a )的等比中项,据此可得,最佳乐观系数x 的值等于 .三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知B =60°,cos(B +C )=-1114.(Ⅰ)求cos C 的值;(Ⅱ)若a =5,求△ABC 的面积. 19.(本小题满分12分)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,PD ⊥底面ABCD ,E 是AB 上一点.已知PD =2,CD =4,AD =3.(Ⅰ)若∠ADE =π6,求证:CE ⊥平面PDE ;(Ⅱ)当点A 到平面PDE 的距离为2217时,求三棱锥A -PDE的侧面积. 20.(本小题满分13分)某校为了解学生的视力情况,随机抽查了一部分学生的视力,将调查结果分组,分组区间为(3.9,4.2],(4.2,4.5],…,(5.1,5.4].经过数据处理,得到如下频率分布表:(Ⅰ)求频率分布表中未知量n ,x ,y ,z 的值;(Ⅱ)从样本中视力在(3.9,4.2]和(5.1,5.4]的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率. 21.(本小题满分14分)设a ∈R ,函数f (x )=ln x -ax .(Ⅰ)讨论函数f (x )的单调区间和极值;(Ⅱ)已知x 1=e (e 为自然对数的底数)和x 2是函数f (x )的两个不同的零点,求a 的值并证明:x 2>e 23. 22.(本小题满分14分)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的离心率为23,半焦距为c (c >0),且a -c =1.经过椭圆的左焦点F ,斜率为k 1(k 1≠0)的直线与椭圆交于A ,B 两点,O 为坐标原点.(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)当k 1=1时,求S △AOB 的值; (Ⅲ)设R (1,0),延长AR ,BR 分别与椭圆交于C ,D 两点,直线CD 的斜率为k 2,求证:k 1k 2为定值.参考答案一、选择题:每小题5分,满分50分.1.B 2.D 3.B 4.D 5.B 6.A 7.B 8.C 9.B 10.D 二、填空题:每小题5分,满分35分.11.(15,35) 12.17 13.6 14.s 1>s 2>s 3 15.(-∞,2]16.433 17.5-12三、解答题:本大题共5小题,共65分.18.(本小题满分12分) 解:(Ⅰ)在△ABC 中,由cos(B +C )=-1114,得sin(B +C )=1-cos 2(B +C )=1-(-1114)2=5314,∴cos C =cos[(B +C )-B ]=cos(B +C ) cos B +sin(B +C ) sin B=-1114×12+5314×32=17.…………………………………………(6分)(Ⅱ)由(Ⅰ),得sin C =1-cos 2C =1-(17)2=437,sin A =sin(B +C )=5314.在△ABC 中,由正弦定理a sin A =csin C ,得5 5314=c 437,∴ c =8, 故△ABC 的面积为S =12ac sin B =12×5×8×32=103.…………………(12分)19.(本小题满分12分)解:(Ⅰ)在Rt △DAE 中,AD =3,∠ADE =π6,∴AE =AD ·tan ∠ADE =3·33=1. 又AB =CD =4,∴BE =3.在Rt △EBC 中,BC =AD =3,∴tan ∠CEB =BC BE =33,∴∠CEB =π6.又∠AED =π3,∴∠DEC =π2,即CE ⊥DE .∵PD ⊥底面ABCD ,CE ⊂底面ABCD , ∴PD ⊥CE .∴CE ⊥平面PDE .……………………………………………………………(6分) (Ⅱ)∵PD ⊥底面ABCD ,PD ⊂平面PDE ,∴平面PDE ⊥平面ABCD .如图,过A 作AF ⊥DE 于F ,∴AF ⊥平面PDE ,∴AF 就是点A 到平面PDE 的距离,即AF =2217.在Rt △DAE 中,由AD ·AE =AF ·DE ,得 3AE =2217·3+AE 2,解得AE =2.∴S △APD =12PD ·AD =12×2×3=62,S △ADE =12AD ·AE =12×3×2=3,∵BA ⊥AD ,BA ⊥PD ,∴BA ⊥平面P AD ,∵P A ⊂平面P AD ,∴BA ⊥P A .在Rt △P AE 中,AE =2,P A =PD 2+AD 2=2+3=5,∴S △APE =12P A ·AE =12×5×2=5.∴三棱锥A -PDE 的侧面积S 侧=62+3+5.…………………………(12分) 20.(本小题满分13分)解:(Ⅰ)由频率分布表可知,样本容量为n ,由2n=0.04,得n =50.∴x =2550=0.5,y =50-3-6-25-2=14,z =y n =1450=0.28.……………(6分)(Ⅱ)记样本中视力在(3.9,4.2]的3人为a ,b ,c ,在(5.1,5.4]的2人为d ,e . 由题意,从5人中随机抽取两人,所有可能的结果有:{a ,b },{a ,c },{a ,d },{a ,e },{b ,c },{b ,d },{b ,e },{c ,d },{c ,e },{d ,e },共10种. 设事件A 表示“两人的视力差的绝对值低于0.5”,则事件A 包含的可能的结果有:{a ,b },{a ,c },{b ,c },{d ,e },共4种.∴P (A )=410=25.故两人的视力差的绝对值低于0.5的概率为25.…………………………(13分)21.(本小题满分14分) 解:(Ⅰ)函数f (x )的定义域为(0,+∞).求导数,得f ′(x )=1x -a =1-ax x.①若a ≤0,则f ′(x )>0,f (x )是(0,+∞)上的增函数,无极值; ②若a >0,令f ′(x )=0,得x =1a.当x ∈(0,1a )时,f ′(x )>0,f (x )是增函数;当x ∈(1a,+∞)时,f ′(x )<0,f (x )是减函数.∴当x =1a 时,f (x )有极大值,极大值为f (1a )=ln 1a-1=-ln a -1.综上所述,当a ≤0时,f (x )的递增区间为(0,+∞),无极值;当a >0时,f (x )的递增区间为(0,1a ),递减区间为(1a ,+∞),极大值为-ln a -1.…(8分)(Ⅱ)∵x 1=e 是函数f (x )的零点,∴f (e )=0,即12-a e =0,解得a =12e =e2e .∴f (x )=ln x -12ex .∵f (e 23)=32-e 2>0,f (e 25)=52-e 22<0,∴f (e 23)f (e 25)<0.由(Ⅰ)知,函数f (x )在(2e ,+∞)上单调递减, ∴函数f (x )在区间(e 23,e 25)上有唯一零点,因此x 2>e 23.………………………………………………………………(14分)22.(本小题满分14分)解:(Ⅰ)由题意,得⎩⎪⎨⎪⎧c a =23,a -c =1。
2024年高考全国甲卷数学(文)一、单选题1.集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ()A .{}1,2,3,4B .{}1,2,3C .{}3,4D .{}1,2,92.设z =,则z z ⋅=()A .-i B .1C .-1D .23.若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为()A .5B .12C .2-D .72-4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=()A .2-B .73C .1D .295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是()A .14B .13C .12D .236.已知双曲线2222:1(0,0)y x C a b a b-=>>的上、下焦点分别为()()120,4,0,4F F -,点()6,4P -在该双曲线上,则该双曲线的离心率为()A .4B .3C .2D7.曲线()631f x x x =+-在()0,1-处的切线与坐标轴围成的面积为()A .16B.2C .12D.8.函数()()2e e sin x xf x x x -=-+-在区间[2.8,2.8]-的大致图像为()A .B.C.D .9.已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A.1B.1-C.2D.1-10.设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n ⊥其中所有真命题的编号是()A .①③B .②④C .①②③D .①③④11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A .32BCD二、填空题12.函数()sin f x x x =在[]0,π上的最大值是.13.已知1a >,8115log log 42a a -=-,则=a .14.曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为.三、解答题15.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的通项公式.16.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ;(2)求点M 到ABF 的距离.17.已知函数()()1ln 1f x a x x =--+.(1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1e xf x -<恒成立.18.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.19.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a=⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.20.实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.2024年高考全国甲卷数学(文)参考答案一、单选题1.集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ()A .{}1,2,3,4B .{}1,2,3C .{}3,4D .{}1,2,93.若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为()A .5B .12C .2-D .72-由5z x y =-可得1155y x z =-,即z 则该直线截距取最大值时,z 有最小值,此时直线联立43302690x y x y --=⎧⎨+-=⎩,解得321x y ⎧=⎪⎨⎪=,即4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=()A .2-B .73C .1D .29A .14B .13C .12D .236.已知双曲线22:1(0,0)y x C a b a b-=>>的上、下焦点分别为()()120,4,0,4F F -,点()6,4P -在该双曲线上,则该双曲线的离心率为()7.曲线()631f x x x =+-在()0,1-处的切线与坐标轴围成的面积为()A .16B .2C .12D .【答案】A【分析】先求出切线方程,再求出切线的截距,从而可求面积.8.函数()()2e e sin x xf x x x -=-+-在区间[2.8,2.8]-的大致图像为()A .B .C .D .9.已知cos sin ααα=-tan 4α⎛⎫+= ⎪⎝⎭()A .1B .1-CD .1-是两个平面,是两条直线,且①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是()A .①③B .②④C .①②③D .①③④【答案】A【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③.【解析】①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α,当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,①正确;②,若m n ⊥,则n 与,αβ不一定垂直,②错误;③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ= ,则//s m ,又因为//n s ,则//m n ,③正确;④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,④错误;①③正确,故选A.11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A .32B CD二、填空题12.函数()sin f x x x =在[]0,π上的最大值是.13.已知1a >,8log log 42a a -=-,则=a .【答案】6414.曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为.【答案】()2,1-【分析】将函数转化为方程,令()2331x x x a -=--+,分离参数a ,构造新函数()3251,g x x x x =+-+结合导数求得()g x 单调区间,画出大致图形数形结合即可求解.【解析】令()2331x x x a -=--+,即3251a x x x =+-+,令()()32510,g x x x x x =+-+>则()()()2325351g x x x x x =+-=+-',令()()00g x x '=>得1x =,当()0,1x ∈时,()0g x '<,()g x 单调递减,当()1,x ∞∈+时,()0g x '>,()g x 单调递增,()()01,12g g ==-,因为曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,所以等价于y a =与()g x 有两个交点,所以()2,1a ∈-.答案为:()2,1-三、解答题15.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的通项公式.4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ;17.已知函数()()1ln 1f x a x x =--+.(1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1e xf x -<恒成立.【答案】(1)见解析(2)见解析18.设椭圆22:1(0)C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.由223412(4)x y y k x ⎧+=⎨=-⎩可得(34+故()(42Δ102443464k k =-+中,以坐标原点O 为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x t y t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.222=+-+≥+-+=++-≥⨯= 22()()()()(1)326 a b a b a b a b a b a b。
2021年普通高等学校招生全国统一考试试题数学(乙卷·文科)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U ={1,2,3,4,5},集合M ={1,2},N ={3,4},则 U (M ∪N)=( ) A .{5}B .{1,2}C .{3,4}D .{1,2,3,4}2.设iz =4+3i ,则z =( ) A .−3−4iB .−3+4iC .3−4iD .3+4i3.已知命题p :∃x ∈R ,sinx <1;命题q :∀x ∈R ,e |x|⩾1,则下列命题中为真命题的是( ) A .p ∧qB .¬p ∧qC .p ∧¬qD .¬(p ∨q)4.函数f(x)=sin x 3+cos x 3的最小正周期和最大值分别是( ) A .3π和√2B .3π和2C .6π和√2D .6π和25.若x ,y 满足约束条件{x +y ⩾4,x −y ⩽2,则z =3x +y 的最小值为y ⩽3,( )A .18B .10C .6D .46.cos 2π12−cos 25π12=( )A .12B .√33C .√22D .√327.在区间(0,12)随机取1个数,则取到的数小于12的概率为( ) A .34B .23C .13D .168.下列函数中最小值为4的是( ) A .y =x 2+2x +4 B .y =|sinx|+4|sinx|C .y =2x +22xD .y =lnx +4lnx9.设函数f(x)=1−x 1+x,则下列函数中为奇函数的是( ) A .f(x −1)−1B .f(x −1)+1C .f(x +1)−1D .f(x +1)+110.在正方体ABCD −A 1B 1C 1D 1中,P 为B 1D 1的中点,则直线PB 与AD 1所成的角为( ) A .π2B .π3C .π4D .π611.设B 是尼圆C :x 25+y 2=1的上顶点,点P 在C 上,则|PB|的最大值为( ) A .52B .√6C .√5D .212.设a ≠0,若x =a 为函数f(x)=a(x −a)2(x −b)的极大值点,则( )A.a<b B.a>b C.ab<a2D.ab>a2二、填空题:本题共4小题,每小题5分,共20分。
2021年一般高等学校招生全国统一考试(陕西卷)文科数学一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1、设集合M={x|x2=x},N={x|lgx≤0},则M∪N=(A)[0,1] (B)(0,1] (C)[0,1) (D)(-∞,1]2、某中学学校部共有110名老师,高中部共有150名老师,其性别比例如图所示,则该校女老师的人数是(A)98 (B)123 (C)137 (D )1673、已知抛物线y2=2px(p>0)的准线经过点(-1,1),则该抛物线的焦点坐标为(A)(-1,0) (B)(1,0) (C)(0,-1) (D)(0,1)4、设f(x)=1,02,0xx xx⎧-≥⎪⎨<⎪⎩,则f(f(-2))=(A)-1 (B)14(C)12(D)325、一个几何体的三视图如图所示,则该几何体的表面积为(A)3π(B)4π(C)2π+4 (D)3π+46、“sinα=cosα”是“cos2α=0”的(A)充分不必要条件(B)必要不充分条件(C)充分必要条件(D)既不充分也不必要条件7、依据右边的框图,当输入x为6时,输出的y=(A)1 (B)2(C)5 (D)10 8、对任意的平面对量a,b,下列关系式中不恒成立的是(A)|a·b|≤|a||b| (B)|a-b|≤||a|-|b||(C)(a+b)2=|a+b|2(D)(a+b)·(a-b)=a2-b29、设f(x)=x-sinx,则f(x)(A)既是奇函数又是减函数(B)既是奇函数又是增函数(C)是有零点的减函数(D)是没有零点的奇函数10、设f(x)=lnx,0<a<b,若p=f ab),q=f(2a b+),r=12(f(a)+f(b)),则下列关系式中正确的是(A)q=r<p(B)q=r>p(C)p=r<q(D)p=r>q11、某企业生产甲、乙两种产品均需用A,B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如生产1吨甲、乙产品可获利分别为3万元、4万元,则该企业每天可获得最大利润为(A)12万元(B)16万元(C)17万元(D)18万元12、设复数z=(x-1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为(A)3142π+(B)112π+(C)1142π-(D)112π-二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在答题卡相应题号后的横线上.)13、中位数为1010的一组数构成等差数列,其末项为2021,则该数列的首项为________甲乙原料限额A(吨) 3 2 12B(吨) 1 2 814、如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin (6πx +Φ)+k ,据此函数可知,这段时间水深(单位:m )的最大值为____________.15、函数y =xe x 在其极值点处的切线方程为____________. 16、观看下列等式:1-1122= 1-1111123434+-=+1-1111111123456456+-+-=++…………据此规律,第n 个等式可为______________________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.) 17、(本小题满分12分)△ABC 的内角A,B,C 所对的边分别为a ,b ,c ,向量m =(a ,3b )与n =(cosA ,sinB )平行. (I ) 求A ;(II ) 若a=7,b=2,求△ABC 的面积.18、(本小题满分12分)如图1,在直角梯形ABCD 中,AD//BC ,∠BAD=2π,AB=BC=12AD=a ,E 是AD 的中点,O 是AC 与BE 的交点,将△ABE 沿BE 折起到图2中△1A BE 的位置,得到四棱锥1A BCDE -。
高考新课标2卷数学文word版含含答案--2019 年一般高等学校招生全国一致考试文科数学本试卷共5页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考据号码填写清楚,将条形码正确粘贴在考生信息条形码粘贴区。
2.选择题一定使用2B铅笔填涂;非选择题一定使用毫米黑色笔迹的署名笔书写,字体工整、笔迹清楚。
3.请依据题号次序在答题卡各题目的答题地区内作答,高出答题地区书写的答案无效;在底稿纸、试卷上答题无效。
4.作图可先使用铅笔划出,确立后一定用黑色笔迹的署名笔描黑。
5.保持卡面洁净,不要折叠,不要弄破、弄皱,禁止使用涂改液、修正带、刮纸刀。
一、选择题:此题共12 小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1.已知会合A={ x | x1},B { x |x2},则A∩ B=A. ( – 1 , +∞ )B. ( –∞, 2)C. ( – 1,2)D.2.设 z=i(2+i),则z =A. 1+2i B.– 1+2iC. 1– 2i D.– 1– 2i3.已知向量 a =(2,3),b=(3,2),则| a–b| = A.2B. 2.52.C D 504.生物实验室 5 只兔子中随机拿出有 5 只兔子,此中只有3只丈量过某项指标,若从这32 只丈量过该指标的概率只,则恰有为23A.B.3521C.D.55----5.在“一带一路”知识测试后,甲、乙、丙三人对成绩进行展望.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩宣布后,三人成绩互不同样且只有一个人展望正确,那么三人按成绩由高到低的次序为A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙6.设 f(x) 为奇函数,且当x ≥0时,1,则当 x<0时,f(x)= e x f(x)=A. ex1B. e .x. e C e1D x1x17.设α,β为两个平面,则α∥ β 的充要条件是A.α内有无数条直线与β 平行B.α内有两条订交直线与β 平行C.α,β平行于同一条直线D.α,β垂直于同一平面是函数 f(x)= sin x8.若 x1=, x 2=( >0) 两个相邻的极值点,则443 A. 2B.21 C. 1D.9.若抛物2线y =2px ( p>0 )A. 2C. 410.曲线y=2sinx+cosx在点(π,–1)处的切线方程为.x y1 0AC. 2x y 2 1 011.已知 a ∈( 0 ,π), 2sin2高考新课标2卷数学文word版含含答案2=p=----15A.B.55.3D.2 5C35x2y212.设 F为双曲线C : 221( a>0, b>0)的右焦点, O 为坐标原点,以 OFa b为直径的圆与圆x2+y2=a2交于 P 、 Q 两点.若 | PQ|=| OF|,则 C 的离心率为A. 2B.3C. 2D.5二、填空题:此题共小题,每小5 分,共 20 分.4题,2x3y6013.若变量 x , y 知足拘束条件,xy 3则 z=3x – y 的最大值是0___________.,y2014.我国高铁发展快速,技术先进.经统计,在经停某站的高铁列车中,有10 个车次的正点率为0.97 ,有20个车次的正点率为8,有 10 个车次的正点率为0.99 ,则经停该站高铁列车全部车次的均匀正点率的预计值___________.为15.△ABC 的内角 A ,B, C 的对边分别a, b , c.已知 bsinA+acosB=0 ,则为B=__________ _.16.中国有悠长的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝期间的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体. 半正多面体表现了数学的对称美.图2是一个棱数为48的半正多面体,它的全部极点都在同一个正方体的表面上,且此正方体的棱长为 1 .则该半正多面体共有________ 个面,其棱长为_________ .(此题第一空 2分,第二空3分.)三、解答题:共 70分。
年普通高等学校招生全国统一考试文科数学卷3注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上;2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;回答非选择题时,将答案写在答题卡上;写在本试卷上无效;3.考试结束后,将本试卷和答题卡一并交回;一、选择题:本大题共12小题,每小题5分,共60分;在每小题给出的四个选项中,只有一项是符合题目要求的;1.已知集合A={1,2,3,4},B={2,4,6,8},则A B中元素的个数为A.1 B.2 C.3 D.42.复平面内表示复数(2)=-+的点位于z i iA.第一象限B.第二象限C.第三象限D.第四象限3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量单位:万人的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.已知4sin cos 3αα-=,则sin 2α=A .79- B .29- C . 29D .795.设,x y 满足约束条件326000x y x y +-≤⎧⎪≥⎨⎪≥⎩,则z x y =-的取值范围是A .-3,0B .-3,2C .0,2D .0,36.函数1()sin()cos()536f x x x ππ=++-的最大值为A .65B .1C .35D .157.函数2sin 1xy x x=++的部分图像大致为 A . B .C .D .8.执行右面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为 A .5 B .4 C .3 D .29.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .π B .34π C .2πD .4π10.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥11.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为12,A A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .63B .33C .23D .1312.已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a =A .12-B .13C .12D .1二、填空题:本题共4小题,每小题5分,共20分; 13.已知向量(2,3),(3,)a b m =-=,且a b ⊥,则m = .14.双曲线2221(0)9x y a a -=>的一条渐近线方程为35y x =,则a = .15.ABC ∆的内角,,A B C 的对边分别为,,a b c ;已知60,3C b c ===,则A =_________;16.设函数1,0,()2,0,x x x f x x +≤⎧=⎨>⎩ 则满足1()()12f x f x +->的x 的取值范围是__________;三、解答题:共70分;解答应写出文字说明、证明过程或演算步骤;第17~21题为必考题,每个试题考生都必须作答;第22、23题为选考题,考生根据要求作答; 一必考题:共60分; 17.12分设数列{}n a 满足123(21)2n a a n a n +++-=.1求{}n a 的通项公式; 2求数列{}21na n +的前n 项和. 18.12分某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温单位:℃有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:10,1515,2020,2525,3030,3535,40最高气温天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率;1求六月份这种酸奶一天的需求量不超过300瓶的概率;2设六月份一天销售这种酸奶的利润为Y单位:元,当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.19.12分如图,四面体ABCD中,△ABC是正三角形,AD=CD.1证明:AC⊥BD;2已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.20.12分在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为0,1.当m 变化时,解答下列问题:1能否出现AC ⊥BC 的情况说明理由;2证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 21.12分已知函数()2(1)ln 2x ax a x f x =+++. 1讨论()f x 的单调性; 2当0a <时,证明3()24f x a≤--. 二选考题:共10分;请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分;22.选修4―4:坐标系与参数方程10分在直角坐标系xOy 中,直线1l 的参数方程为2,x t y kt =+⎧⎨=⎩t 为参数,直线2l 的参数方程为2,x m my k =-+⎧⎪⎨=⎪⎩m 为参数,设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线C .1写出C 的普通方程:2以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设3l:(cos sin )0ρθθ+-=,M 为3l 与C 的交点,求M 的极径.23.选修4—5:不等式选讲10分已知函数()||||f x x x =+1--2.1求不等式()f x ≥1的解集;2若不等式()f x x x m 2≥-+的解集非空,求m 的取值范围.年普通高等学校招生全国统一考试文科数学参考答案一、选择题1.B 2.C 3.A 4.A 5.B 6.A 7.D 8.D 9.B 10.C 11.A 12.C 二、填空题13.2 14.5 15.75° 16.1(,)4-+∞三、解答题 17.解: 1因为123(21)2n a a n a n +++-=,故当2n ≥时, 1213(23)2(1)n a a n a n -+++-=-两式相减得(21)2n n a -= 所以2(2)21n a n n =≥- 又由题设可得12a = 从而{}n a 的通项公式为221n a n =- 2记{}21na n +的前n 项和为n S 由1知21121(21)(21)2121n a n n n n n ==-++--+ 则1111112 (1335212121)n nS n n n =-+-++-=-++ 18.解:1这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为216360.690++=,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为2当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则64504450900Y =⨯-⨯=;若最高气温位于区间20,25,则63002(450300)4450300Y =⨯+--⨯=;若最高气温低于20,则62002(450200)4450100Y =⨯+--⨯=-所以,Y 的所有可能值为900,300,-100Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为3625740.890+++=,因此Y 大于零的概率的估计值为 19.解:1取AC 的中点O ,连结,DO BO ,因为AD CD =,所以AC DO ⊥又由于ABC ∆是正三角形,故BO AC ⊥从而AC ⊥平面DOB ,故AC BD ⊥2连结EO由1及题设知90ADC ∠=,所以DO AO = 在Rt AOB ∆中,222BO AO AB += 又AB BD =,所以ODABCE222222BO DO BO AO AB BD +=+==,故90DOB ∠=由题设知AEC ∆为直角三角形,所以12EO AC =又ABC ∆是正三角形,且AB BD =,所以12EO BD =故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1:120.解:1不能出现AC BC ⊥的情况,理由如下:设12(,0),(,0)A x B x ,则12,x x 满足220x mx +-=,所以122x x =- 又C 的坐标为0,1,故AC 的斜率与BC 的斜率之积为121112x x --⋅=-,所以不能出现AC BC ⊥的情况 2BC 的中点坐标为21(,)22x ,可得BC 的中垂线方程为221()22x y x x -=- 由1可得12x x m +=-,所以AB 的中垂线方程为2mx =-联立22,21()22m x x y x x ⎧=-⎪⎪⎨⎪-=-⎪⎩又22220x mx +-=,可得,212m x y ⎧=-⎪⎪⎨⎪=-⎪⎩所以过A,B,C 三点的圆的圆心坐标为1(,)22m --,半径2r =故圆在y轴上截得的弦长为3=,即过A,B,C 三点的圆在y 轴上截得的弦长为定值; 21.解:1fx 的定义域为(0,)+∞,1(1)(21)()221x ax f x ax a xx++'=+++=若0a ≥,则当(0,)x ∈+∞时,()0f x '>,故()f x 在(0,)+∞单调递增若0a <,则当1(0,)2x a ∈-时,()0f x '>;当1(,)2x a∈-+∞时,()0f x '< 故()f x 在1(0,)2a -单调递增,在1(,)2a-+∞单调递减; 2由1知,当0a <时,()f x 在12x a=-取得最大值,最大值为 111()ln()1224f a a a-=--- 所以3()24f x a ≤--等价于113ln()12244a a a---≤--,即11ln()1022a a-++≤ 设()ln 1g x x x =-+,则1()1g x x '=- 当(0,1)x ∈时,()0g x '>;当(1,)x ∈+∞,()0g x '<; 所以()g x 在0,1单调递增,在(1,)+∞单调递减; 故当1x =时,()g x 取得最大值,最大值为(1)0g = 所以当0x >时,()0g x ≤从而当0a <时,11ln()1022a a -++≤,即3()24f x a≤-- 22.解: 1消去参数t 得1l 的普通方程1:(2)l y k x =-;消去参数m t 得2l 的普通方程21:(2)l y x k=+ 设(,)P x y ,由题设得(2),1(2).y k x y x k =-⎧⎪⎨=+⎪⎩消去k 得224(0)x y y -=≠ 所以C 的普通方程为224(0)x y y -=≠2C 的极坐标方程为222(cos sin )4(22,)ρθθθπθπ-=<<≠联立222(cos sin )4,(cos sin )0ρθθρθθ⎧-=⎪⎨+=⎪⎩得cos sin 2(cos sin )θθθθ-=+ 故1tan 3θ=-,从而2291cos ,sin 1010θθ== 代入222(cos sin )4ρθθ-=得25ρ=,所以交点M23.解:13,1,()21,12,3,2x f x x x x -<-⎧⎪=--≤≤⎨⎪>⎩当1x <-时,()1f x ≥无解;当12x -≤≤时,由()1f x ≥得,211x -≥,解得12x ≤≤; 当2x >时,由()1f x ≥解得2x >所以()1f x ≥的解集为{|1}x x ≥2由2()f x x x m ≥-+得2|1||2|m x x x x ≤+---+,而 22|1||2|||1||2||x x x x x x x x +---+≤++--+235(||)24x =--+5 4≤且当32x=时,25|1||2|4x x x x+---+=故m的取值范围为5 (,]4 -∞。
绝密★启用前普通高等学校招生全国统一考试(湖北卷)数 学(文史类)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4,5,6,7}U =,集合{1,3,5,6}A =,则U A =ð A .{1,3,5,6} B .{2,3,7}C .{2,4,7}D . {2,5,7}2.i 为虚数单位,21i ()1i-=+A .1B .1-C .iD . i -3.命题“x ∀∈R ,2x x ≠”的否定是 A .x ∀∉R ,2x x ≠ B .x ∀∈R ,2x x = C .x ∃∉R ,2x x ≠D .x ∃∈R ,2x x =4.若变量x ,y 满足约束条件4,2,0,0,x y x y x y +≤⎧⎪-≤⎨⎪≥≥⎩则2x y +的最大值是A .2B .4C .7D .85.随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为1p ,点数之和大于5的概率记为2 p ,点数之和为偶数的概率记为3p ,则 A .123p p p << B .213p p p << C .132p p p << D .312p p p <<6.根据如下样本数据x 3 4 5 6 7 8 y4.02.50.5-0.52.0-3.0-得到的回归方程为ˆybx a =+,则 A .0a >,0b < B .0a >,0b > C .0a <,0b <D .0a <,0b >7.在如图所示的空间直角坐标系O-xyz 中,一个四面体的顶点坐标分别是(0,0,2), (2,2,0),(1,2,1),(2,2,2). 给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为A .①和②B .③和①C .④和③D .④和②8.设,a b 是关于t 的方程2cos sin 0t t θθ+=的两个不等实根,则过2(,)A a a ,2(,)B b b 两点的直线与双曲线22221cos sin x y θθ-=的公共点的个数为A .0B .1C .2D .3图③ 图①图④图② 第7题图9.已知()f x 是定义在R 上的奇函数,当0x ≥时,2()=3f x x x -. 则函数()()+3g x f x x =- 的零点的集合为A. {1,3}B. {3,1,1,3}--C. {23}-D. {21,3}--10.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也. 又以高乘之,三十六成一. 该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式2136V L h ≈. 它实际上是将圆锥体积公式中的圆周率π近似取为3. 那么,近似公式2275V L h ≈相当于将圆锥体积公式中的π近似取为 A .227B .258C .15750D .355113二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位置上. 答错位置,书写不清,模棱两可均不得分.11.甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测. 若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为 件.12.若向量(1,3)OA =-u u u r ,||||OA OB =u u u r u u u r ,0OA OB ⋅=u u u r u u u r,则||AB =u u u r.13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 已知π6A =,a =1,b = B = . 14.阅读如图所示的程序框图,运行相应的程序,若输入n的值为9,则输出S 的值为 .第14题图15.如图所示,函数()y f x =的图象由两条射线和三条线段组成.若x ∀∈R ,()>(1)f x f x -,则正实数a 的取值范围为 .16.某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、平均车长l (单位:米)的值有关,其公式为2760001820vF v v l=++.(Ⅰ)如果不限定车型, 6.05l =,则最大车流量为 辆/小时;(Ⅱ)如果限定车型,5l =, 则最大车流量比(Ⅰ)中的最大车流量增加 辆/小时. 17.已知圆22:1O x y +=和点(2,0)A -,若定点(,0)B b (2)b ≠-和常数λ满足:对圆O 上任意一点M ,都有||||MB MA λ=,则 (Ⅰ)b =; (Ⅱ)λ= .三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)某实验室一天的温度(单位:℃)随时间t (单位:h )的变化近似满足函数关系:ππ()10sin 1212f t t t =-,[0,24)t ∈. (Ⅰ)求实验室这一天上午8时的温度; (Ⅱ)求实验室这一天的最大温差.第15题图19.(本小题满分12分)已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得n S 60800n >+?若存在,求n的最小值;若不存在,说明理由.20.(本小题满分13分)如图,在正方体1111ABCD A B C D -中,E ,F ,P ,Q ,M ,N 分别是棱AB ,AD ,1DD , 1BB ,11A B ,11A D 的中点. 求证:(Ⅰ)直线1BC ∥平面EFPQ ; (Ⅱ)直线1AC ⊥平面PQMN .21.(本小题满分14分)π为圆周率,e 2.71828=L 为自然对数的底数.(Ⅰ)求函数ln ()xf x x=的单调区间; (Ⅱ)求3e ,e 3,πe ,e π,π3,3π这6个数中的最大数与最小数.22.(本小题满分14分)在平面直角坐标系xOy 中,点M 到点(1,0)F 的距离比它到y 轴的距离多1.记点M 的 轨迹为C .(Ⅰ)求轨迹C 的方程;(Ⅱ)设斜率为k 的直线l 过定点(2,1)P -. 求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.第20题图绝密★启用前2014年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题:1.C 2.B 3.D 4.C 5.C 6.A 7.D 8.A 9.D 10.B 二、填空题:11.1800 12. 13.π3或2π314.1067 15.1(0)6, 16.(Ⅰ)1900;(Ⅱ)100 17.(Ⅰ)12-;(Ⅱ)12三、解答题:18.(Ⅰ)ππ(8)108sin 81212f =⨯-⨯()()2π2π10sin 33=-110()102=-=.故实验室上午8时的温度为10 ℃.(Ⅱ)因为π1πππ()10sin )=102sin()12212123f t t t t =-+-+, 又024t ≤<,所以πππ7π31233t ≤+<,ππ1sin()1123t -≤+≤. 当2t =时,ππsin()1123t +=;当14t =时,ππsin()1123t +=-. 于是()f t 在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.19.(Ⅰ)设数列{}n a 的公差为d ,依题意,2,2d +,24d +成等比数列,故有2(2)2(24)d d +=+, 化简得240d d -=,解得0d =或d =4. 当0d =时,2n a =;当d =4时,2(1)442n a n n =+-⋅=-,从而得数列{}n a 的通项公式为2n a =或42n a n =-.(Ⅱ)当2n a =时,2n S n =. 显然260800n n <+,此时不存在正整数n ,使得60800n S n >+成立. 当42n a n =-时,2[2(42)]22n n n S n +-==.令2260800n n >+,即2304000n n -->, 解得40n >或10n <-(舍去),此时存在正整数n ,使得60800n S n >+成立,n 的最小值为41. 综上,当2n a =时,不存在满足题意的n ;当42n a n =-时,存在满足题意的n ,其最小值为41.20.证明:(Ⅰ)连接AD 1,由1111ABCD A B C D -是正方体,知AD 1∥BC 1,因为F ,P 分别是AD ,1DD 的中点,所以FP ∥AD 1. 从而BC 1∥FP .而FP ⊂平面EFPQ ,且1BC ⊄平面EFPQ ,故直线1BC ∥平面EFPQ .(Ⅱ)如图,连接AC ,BD ,则AC BD ⊥.由1CC ⊥平面ABCD ,BD ⊂平面ABCD ,可得1CC BD ⊥. 又1AC CC C =I ,所以BD ⊥平面1ACC .而1AC ⊂平面1ACC ,所以1BD AC ⊥. 因为M ,N 分别是11A B ,11A D 的中点,所以MN ∥BD ,从而1MN AC ⊥. 同理可证1PN AC ⊥. 又PN MN N =I ,所以直线1AC ⊥平面PQMN .22.(Ⅰ)设点(,)M x y ,依题意得||||1MF x =+||1x +,化简整理得22(||)y x x =+.故点M 的轨迹C 的方程为24,0,0,0.x x y x ≥⎧=⎨<⎩(Ⅱ)在点M 的轨迹C 中,记1:C 24y x =,2:C 0(0)y x =<.依题意,可设直线l 的方程为1(2).y k x -=+由方程组21(2),4,y k x y x -=+⎧⎨=⎩ 可得244(21)0.ky y k -++= ①第20题解答图QBEM NACD 1C F 1D1A1BP(1)当0k =时,此时 1.y = 把1y =代入轨迹C 的方程,得14x =. 故此时直线:1l y =与轨迹C 恰好有一个公共点1(,1)4.(2)当0k ≠时,方程①的判别式为216(21)k k ∆=-+-. ②设直线l 与x 轴的交点为0(,0)x ,则 由1(2)y k x -=+,令0y =,得021k x k+=-. ③ (ⅰ)若00,0,x ∆<⎧⎨<⎩ 由②③解得1k <-,或12k >.即当1(,1)(,)2k ∈-∞-+∞U 时,直线l 与1C 没有公共点,与2C 有一个公共点,故此时直线l 与轨迹C 恰好有一个公共点.(ⅱ)若00,0,x ∆=⎧⎨<⎩ 或00,0,x ∆>⎧⎨≥⎩ 由②③解得1{1,}2k ∈-,或102k -≤<.即当1{1,}2k ∈-时,直线l 与1C 只有一个公共点,与2C 有一个公共点. 当1[,0)2k ∈-时,直线l 与1C 有两个公共点,与2C 没有公共点.故当11[,0){1,}22k ∈--U 时,直线l 与轨迹C 恰好有两个公共点.(ⅲ)若00,0,x ∆>⎧⎨<⎩ 由②③解得112k -<<-,或102k <<.即当11(1,)(0,)22k ∈--U 时,直线l 与1C 有两个公共点,与2C 有一个公共点,故此时直线l 与轨迹C 恰好有三个公共点.综合(1)(2)可知,当1(,1)(,){0}2k ∈-∞-+∞U U 时,直线l 与轨迹C 恰好有一个公共点;当11[,0){1,}22k ∈--U 时,直线l 与轨迹C 恰好有两个公共点;当11(1,)(0,)22k ∈--U 时,直线l 与轨迹C 恰好有三个公共点.21.(Ⅰ)函数()f x 的定义域为()∞0,+.因为ln ()x f x x =,所以21ln ()xf x x-'=. 当()0f x '>,即0e x <<时,函数()f x 单调递增; 当()0f x '<,即e x >时,函数()f x 单调递减.故函数()f x 的单调递增区间为(0,e),单调递减区间为(e,)+∞. (Ⅱ)因为e 3π<<,所以eln3eln π<,πlne πln3<,即e e ln3ln π<,ππln e ln3<.于是根据函数ln y x =,e x y =,πx y =在定义域上单调递增,可得e e 33ππ<<,3ππe e 3<<.故这6个数的最大数在3π与π3之中,最小数在e 3与3e 之中. 由e 3π<<及(Ⅰ)的结论,得(π)(3)(e)f f f <<,即ln πln3lneπ3e<<. 由ln πln3π3<,得3πln πln3<,所以π33π>; 由ln3ln e3e<,得e 3ln3lne <,所以e 33e <. 综上,6个数中的最大数是π3,最小数是e 3.。